std::ranges::empty
Defined in header <ranges>
|
||
inline namespace /*unspecified*/ { inline constexpr auto empty = /*unspecified*/; |
(since C++20) (customization point object) |
|
Call signature |
||
template< class T > requires /* see below */ |
||
Determines whether or not t
has any elements.
Let t
be an object of type T
. A call to ranges::empty
is expression-equivalent to:
- bool(std::forward<T>(t).empty()), if that expression is valid.
- Otherwise, (ranges::size(std::forward<T>(t)) == 0), if that expression is valid.
- Otherwise, bool(ranges::begin(t) == ranges::end(t))
In all other cases, a call to ranges::empty
is ill-formed, which can result in substitution failure when ranges::empty(t) appears in the immediate context of a template instantiation.
Expression-equivalent
Expression e is expression-equivalent to expression f, if e and f have the same effects, either are both potentially-throwing or are both not potentially-throwing (i.e. noexcept(e) == noexcept(f)), and either are both constant subexpressions or are both not constant subexpressions.
Customization point objects
The name ranges::empty
denotes a customization point object, which is a const function object of a literal semiregular class type (denoted, for exposition purposes, as empty_ftor
). All instances of empty_ftor
are equal. Thus, ranges::empty
can be copied freely and its copies can be used interchangeably.
Given a set of types Args...
, if std::declval<Args>()... meet the requirements for arguments to ranges::empty
above, empty_ftor
will satisfy std::invocable<const empty_ftor&, Args...>. Otherwise, no function call operator of empty_ftor
participates in overload resolution.
Example
#include <iostream> #include <ranges> #include <vector> template <std::ranges::input_range R> void print(R&& r) { if (std::ranges::empty(r)) { std::cout << "\tEmpty\n"; return; } std::cout << "\tElements:"; for (const auto& element : r) { std::cout << ' ' << element; } std::cout << '\n'; } int main() { { auto v = std::vector<int>{1, 2, 3}; std::cout << "1. calling ranges::empty on std::vector:\n"; print(v); v.clear(); print(v); } { std::cout << "2. calling ranges::empty on std::initializer_list:\n"; auto il = {7, 8, 9}; print(il); print(std::initializer_list<int>{}); } { std::cout << "2. calling ranges::empty on a raw array:\n"; int array[] = {4, 5, 6}; // array has a known bound print(array); } { struct NoEmptyNorSize : private std::vector<int> { auto begin() { return std::vector<int>::begin(); } auto end() { return std::vector<int>::end(); } }; std::cout << "3. calling ranges::empty on an object that satisfies only case 3):\n"; print(NoEmptyNorSize{}); } }
Output:
1. calling ranges::empty on std::vector: Elements: 1 2 3 Empty 2. calling ranges::empty on std::initializer_list: Elements: 7 8 9 Empty 2. calling ranges::empty on a raw array: Elements: 4 5 6 3. calling ranges::empty on an object that satisfies only case 3): Empty
See also
(C++17) |
checks whether the container is empty (function template) |