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Figure 1: Part of a triangulation

1 Closest Obstacle Calculation

For our purposes, we must find the diameter of the larget circular unit that
can move between two (unconstrained) edges of a triangle in a Constrained
(Delaunay) Triangulation. For example, between edges a and b in Figure 1
above. Luckily this is equivalent to finding the closest obstacle to the vertex
joining these two edges (vertex C in the diagram) in the region extending
between the edges as shown. An obstacle can be a vertex or a point on a
constrained edge.

There are three cases possible within a triangle which can determine the
closest obstacle in this region. The first such case is that either angle at
vertex A or at vertex B is a right angle or obtuse (Section 1.1), the second
arises when these angles are accute and edge c is constrained (Section 1.2),
and finally the last possibility is when angles A and B are accute and edge
c is unconstrained (Section 1.3).

Pseudocode for the algorithm which determines the closest obstacle be-
tween edge a and b in triangle T is given in code listings 1, 2, and 3. A brief
discussion on the complexity of this algorithm is given in Section 1.4, and
the proofs that this technique is equivalent to finding the maximum radius
of a unit with a valid path through this triangle are given in Section 2.

In these proofs, we assume circular units, but this can apply to other
shapes as well. The maximum allowable size through a series of adjacent tri-
angles yields a winding path though them and can be used to determine the
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Figure 2: Case 1: angle at vertex A is obtuse

throughput of smaller units, or the maximum allowable size of a rectangular
unit, for example.

The techniques used assume that at the very least, each vertex in a
triangulation represents a contraint. That is, if one was representing an
environment, one would only add a vertex to the triangulation either because
it was an endpoint for a constrained edge, or if it were a point obstacle.

This is intuitive because adding unneeded vertices would only complicate
the triangulation and slow down subsequent algorithms. If such vertices were
added, however, these methods might incorrectly determine the maximum
diameter of a unit through a path in the case where a path for the true
largest possible unit would pass through such an unconstrained vertex.

In each case, the path for the unit of maximum diameter is determined
as an arc hugging vertex C. While the unit need not always follow this path
to traverse the triangle, it is true that a unit couldn’t successfully traverse
some other path and not this one, as is proven in Section 2.

1.1 Case 1: Angle A or B is Right or Obtuse

When the angle at either vertex A or B is right or obtuse, the first case
applies. Assume, without loss of generality, that the angle at vertex A is
right or obtuse. It follows that edge b is shorter than edge a. Thus the
maximum allowable diameter d of a circular unit between edges a and b in
this triangle is the length of edge a. See Figure 2 for a visual explanation.

This follows from the fact that the closest point on a line to a point is
where a line passing through the point intersects the line at a right angle.
Any other line intersecting both the point and the line is necessarily longer
than this, as is shown below.

In Figure 3, the point c is the point where a line passing through point p
intersects with line ab at a right angle. For any other point c′ on the line ab,
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Figure 3: The closest distance of a line to a point

it will be some positive distance l away from c. Thus if the distance from p
to c is d, then the distance (d′) from p to c′ is

√
d2 + l2 > d. Thus c is the

closest point to p on line ab, as desired.
Similarly, consider Figure 4. The length of segment b is

√
|CP |2 + |PA|2.

For any point A′ 6= A along the segment between vertex A and vertex B, the
length of the segment between C and A′ would be

√
|CP |2 + (|PA|+ |AA′|)2 >√

|CP |2 + |PA|2 since |AA′| > 0. Thus vertex A is the closest point on seg-
ment AB to vertex C, and since there can be no obstacles in this triangle
(any obstacles would have been incorporated in the triangulation), it follows
that the closest obstacle is |b| away from vertex C and this is the maximum
diameter of a unit that can traverse from edge a to edge b in this triangle.

1.2 Case 2: Edge c is Constrained

In the case that the interior angles at both vertices A and B are accute, the
point on the line passing through the vertices A and B that is closest to
vertex C lies between A and B as shown in Section 1.1 above. In the case
that edge c is constrained, this point is an obstacle. This situation is shown
in Figure 5.

As described in Section 1.1, since there can be no obstacles within the
triangle, the closest point on edge c to vertex C (when edge c is constrained)
represents the closest obstacle to vertex C in the triangle. Assuming the
distance between vertex C and the point P on segment AB which makes
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Figure 5: Case 2: angles at vertices A and B are accute and edge c is
constrained
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Figure 6: Vertex B is the closest obstacle to vertex C

CP perpendicular to AB, is d, the diameter of the largest circular unit that
can traverse the triangle from edge a to edge b is d, as desired.

1.3 Case 3: Edge c is Unconstrained

In the case where edge c is not constrained and the angles at both vertices
A and B are accute, the situation gets slightly more complex, as the closest
point on segment AB to vertex C no longer represents an obstacle.

Vertices A and B are still obstacles, and thus the maximum unit diameter
that can traverse this triangle from edge a to edge b is bounded above by
both |a| and |b|. Figure 6 shows a case where the shorter of edges a and
b is the distance to the closest obstacle. However, since there may still be
obstacles on the opposite side of edge c from vertex C closer to C than either
A or B, we must consider these possibilities.

What must occur then is a search that is bounded by the closest obstacle
found so far. Thus this search begins by searching across edge c to the
triangle opposite this edge, bounded above by min{|a|, |b|} and continues as
described below.

When the search enters a triangle via an edge, it checks the other two
edges as follows. We will say each edge is the segment between two vertices
U and V . First of all, an edge will only be considered if both angles 6 CV U
and 6 CUV are accute, that is, if the closest point on the line passing through
U and V to vertex C lies between these two points. Figure 7 shows how
considering such a segment could falsely determine the closest obstacle to
vertex C. If this criterion is not met, search along this branch ends.

Next, we consider the distance from vertex C to the closest point on edge
UV . If this distance is greater than the current upper bound, search along
this branch returns because further search will not yield a closer obstacle
than the closest already found. This situation is depicted in Figure 8. If this
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Figure 8: Edge a is farther from vertex C than A, so it is not considered

distance is less than the current upper bound and edge UV is constrained,
then the current upper bound is updated to reflect this new distance, and
search returns from this branch. A case where a constrained edge determines
the closest obstacle to vertex C is shown in Figure 9. Finally if the distance is
less than the current upper bound and UV is unconstrained, search continues
across this edge.

1.4 Complexity

Of course, we desire to know that this algorithm’s complexity will be rea-
sonable if we wish to use it in certain domains. While a proof of the upper
bound of this algorithm’s running time would be quite involved, we can
make a number of observations to see that it will not be unmanageable.

First of all, both cases 1 and 2 require constant running time. Case 1
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Figure 9: Edge b′ becomes the closest obstacle to vertex C

Algorithm 1 DistanceBetween(Vertex C, Edge e)
A , B ← EndpointsOf(e)
if Ax = Bx then

a← 1
b← 0
c← −(Cx)

else
rise← By −Ay

run← Bx −Ax

intercept← Ay − ( rise
run )Ax

a← rise
b← −run
c← run× intercept

end if
return |a·Cx+b·Cy+c|√

a2+b2
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Algorithm 2 SearchWidth(Vertex C, Triangle T , Edge e, Distance d)
U, V ← EndpointsOf(e)
if IsObtuse(C, U , V ) ∨ IsObtuse(C, V , U) then

return d
end if
d′ ← DistanceBetween(C, e)
if d′ > d then

return d
else if IsConstrained(e) then

return d′

else
T ′ ← TriangleOpposite(T , e)
e′, e′′ ← OtherEdges(T ′, e)
d← SearchWidth(C, T ′, e′, d)
return SearchWidth(C, T ′, e′′, d)

end if

Algorithm 3 CalculateWidth(Triangle T , Edge a, edge b)
C ← VertexBetween(a, b)
c← EdgeOpposite(C, T )
A← VertexOpposite(a, T )
B ← VertexOpposite(b, T )
d← min{Length(a), Length(b)}
if IsObtuse(C, A, B) ∨ IsObtuse(C, B, A) then

return d {Case: 1}
else if IsConstrained(c) then

return DistanceBetween(C, c) {Case: 2}
else

return SearchWidth(C, T , c, d) {Case: 3}
end if
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Figure 10: Searching across all triangles to find the width of triangle T1

occurs quite frequently in triangulations, and when there are few or no point
obstacles (triangulated vertices not representing endpoints of constrained
edges) case 2 will occur even more often.

Also one can notice that unless vertex C is very obtuse, case 3 can-
not result in a very long search. In most cases, the bound of the search
(min{|a|, |b|}) will not exceed the value at the start of the search (the dis-
tance of edge c from vertex C) by very much. For a search to traverse many
triangles, particularly when this difference is small, the triangles across edge
c would have to be very thin. This is uncommon to see in most triangu-
lations and a very rare case in Delaunay Triangulations. Such a case is
illustrated in Figure 10.

Although searching a triangle can conceivably expand search across two
other edges resulting in an exponential search, we must remember that in
the worst case, the search is still limited by the number of triangles in
the triangulation and thus could not be worse than linear. Next one must
note the conditions under which search could branch in such a way. These
conditions are rare to find in a triangulation, and nearly (if not completely)
impossible in a Delaunay Triangulation.

As an example, observe Figure 11. In this case the algorithm for finding
the width between edges a and b in triangle T will result in a search across
edge c and into triangle T ′, and then across both edges a′ and b′. However,
in a Constrained Delaunay Triangulation, edge c would have been replaced
by the edge shown in grey, and thus this effect would not have occurred.

Finally, although the worst case is linear in the number of triangles in
the triangulation for searching a single triangle, observing the properties of
the other triangles searched will reveal that they will almost or always fall
under case 1 or 2 when searched. Because of this, the complexity of running
this algorithm on all the triangles in the triangulation is likely linear and
not quadratic.
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Figure 11: Finding the width of triangle T results in a branching search

This can be seen in Figure 10 where finding the width of triangle T1

will result in a search through triangles T2, T3, T4, and T5. However, the
algorithm run on all the other triangles will not result in any search at all.
Thus the cost of finding the widths of all these triangles is linear in the
number of triangles.

2 Maximum Unit Diameters

In this section, we show that the distance to the closest obstacle between
edges a and b is equivalent to the diameter of the largest circular unit with
a valid path between these edges. In Section 2.1, we define what constitutes
a valid path and go through some preliminary proofs that we will use in the
sections that follow.

In Section 2.2, we prove that whenever the closest obstacle between edges
a and b is at distance d from vertex C then there exists a valid path between
these edges for a circular unit of diameter d, thus the method is sound.

Then in Section 2.3, we prove that for every valid path for a unit of a
given diameter, there will be no obstacles within this distance of vertex C
between edges a and b, and thus the method is complete. These combined
prove the equivalence of the distance between vertex C and the closest ob-
stacle between edges a and b and the diameter of the largest unit with a
valid path between these edges.

Finally, in Section 2.4 we show that the path found using this method
given the radius of a unit is equivalent to the minimum length path between
any points along these edges while avoiding obstacles. This will become a
useful result later on.
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2.1 Definitions

Consider the region which exists between the rays extending from vertex C
toward A and from C toward B. Call this region R. Figure 12 illustrates
this region for a triangle. We will say there is a valid path from edge a to
edge b for a circular unit of radius r in triangle T if and only if there exists
a path p such that:

1. One end of p is on edge a

2. The other end of p is on edge b

3. p is contained entirely in region R

4. For each point on p, there is no obstacle (vertex or point on a con-
strained edge) which is closer than r

5. For each point on p, there exists a point within distance r which is
inside triangle T

Point 5 above warrants some discussion. It is possible to find a path
possessing all the above properties except 5, however because the unit com-
pletely leaves the triangle T , we consider the path to instead go from edge a
to edge c, continuing somehow through other triangles, and then returning
to triangle T going from edge c to edge b.
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Figure 14: An invalid path that is > r away from T at some points

The reason it is not required for the path to stay entirely within T
is because sometimes a path might exist where the unit is always partially
within T but the path itself might cross edge c. Suppose the triangle opposite
edge c is T ′. If we required the path to be entirely within T , such a path
would require finding a path from a to c in T , from c to c in T ′, and then
from c to b in T . This would complicate the problem unnecessarily and so
such a path is only considered to be going through triangle T .

An example of a path p that leaves T but still satisfies this requirement
is shown in Figure 13, and an example of a path that is invalid because it is
> r away from Triangle T at some points is shown in Figure 14.

Furthermore, we must make an exception to the rule for point 4. When
the unit is crossing the edge a - that is, for points on the path for which
some segment of length r extending from it intersects edge a - we do not
consider obstacles in the region opposite edge a from region R. Similarly,
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Figure 15: Obstacle outside of region R interfering with a path inside of it

when the unit crosses b, we do not consider obstacles in the region opposite
edge b from R.

This is because the ultimate goal of finding these paths through individ-
ual triangles is to combine the paths through adjacent triangles together to
form a single path through a triangulation. Thus obstacles on the opposite
side of a will be the considered when finding a path through the triangle
which shares edge a, and similarly for b. An example of such an obstacle
interfering with a path outside of region R is given in Figure 15.

With that being said, sometimes an obstacle outside of region R can
interfere with a path through T . If, at some point along a path, the unit
is crossing the boundary of R outside either edge a or edge b, then those
obstacles are not being considered in the paths through the triangles sharing
those edges and thus must be considered by T .

The arc method, which states that the distance to the closest obstacle
in region R from vertex C is the diameter of the largest circular unit with a
valid path between edges a and b in triangle T , uses a special kind of path,
which we call an arc path. Equivalently, we may refer to such a path as one
which ”hugs” vertex C.

An arc path for a unit of radius r is a path p such that each point on p is
at distance r from vertex C. This forms an arc of radius r between edges a
and b in region R. It also hugs vertex C by keeping the unit at the minimum
distance at which requirement 4 is not violated by this vertex. Figure 16
shows an example of such a path.
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Arc paths are used because by their very definition, they satisfy require-
ments 1, 2, 3, and 5, leaving only requirement 4 to be verified. This final
requirement for a unit of radius r is met for an arc path exactly when the
closest obstacle to vertex C in region R is at distance ≥ 2r from vertex
C. We prove that this method finds valid paths correctly wherever any are
prenent in the sections that follow.

For the purpose of using it in the proof of the arc method’s completeness
in Section 2.3, we will now show that an arc path will not cross the boundary
of R other than through edges a and b. We will prove this by contradiction,
assuming we have a valid path which crosses this boundary and showing it
is not an arc path.

For a path hugging vertex C to be valid, the arc around C of radius 2r
in region R must be free of obstacles. Because vertices are considered to be
obstacles, both edges a and b must have length at least 2r in order for this
path to be valid.

Without loss of generality, we will simply consider the boundary of R by
edge b. The proof extends identically to the boundary by edge a. Now, the
unit must cross the boundary of R not at edge b, and not partially at edge
b since that would imply the unit overlaps vertex A, which is an obstacle,
and the path would violate requirement 4 and be invalid.

Thus the closest point, which we will call w, on that boundary of R to
some point on the path, which we will call p, must be outside of edge b.
Thus since the segment from w to p must be perpendicular to the boundary
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Figure 17: A unit crossing the boundary of region R below edge b

of R, then p must be farther from vertex C than w. Also we know that w is
farther from vertex C than vertex A, and vertex A is at least 2r from vertex
C. Thus p would have to be farther than 2r from vertex C, which violates
our definition that an arc path always be at distance r from vertex C. A
diagram of this proof is found in Figure 17.

Thus an arc path will not cross a boundary of region R outside of edges
a and b, as desired. By corollary, to verify requirement 4 of an arc path, we
need only consider obstacles within region R.

2.2 Soundness

Here, we will prove that if there is no obstacle within 2r of vertex C in region
R, then there is a valid path through triangle T from edge a to edge b. In
particular, we will prove that there is such a path hugging vertex C because
by the very definition of these arc paths, this already satisfies requirements
1, 2, 3, and 5 in Section 2.1 above.

It remains to prove that if no obstacle is within distance 2r from vertex
C - that is, there is no obstacle inside the arc of radius 2r around vertex C
in region R - then the arc path satisfies requirement 4. This we will prove
below.

Since the unit travelling along the path hugging vertex C has radius r,
every point on this path will be at distance r from C, by the definition of
these arc paths. For requirement 4 not to be met, there must be an obstacle
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Figure 18: Using the triangle inequality to prove soundness

within distance of less than r from one of these points.
However, because of the triangle inequality, we know that an obstacle

that is ≥ 2r from vertex C cannot be < r from any point that is at distance
r from that same point. This is depicted in Figure 18 for clarity. Thus,
if there are no obstacles within distance 2r of vertex C in region R, there
are none within distance r of any point along the path from edge a to b in
triangle T hugging vertex C. Therefore, requirement 4 is met and the path
is valid, and finally, the arc method is sound.

2.3 Completeness

In order to prove that if there exists a path from edge a to edge b in the
triangle T for a unit of radius r then there are no obstacles within distance
2r of vertex C in region R, we will prove the contrapositive. Assume there
is an obstacle at distance < 2r from vertex C in region R.

We will consider the point p to be the closest obstacle to vertex C in
region R. Such a point must exist in region R because by definition (Section
2.1), only obstacles in region R can interfere with an arc path from edge a
to edge b through triangle T .

Now consider the line segment going from vertex C to this point p. We
know that the length of this line segment is < 2r. For the remainder of the
proof, we will consider this point to be the only obstacle in region R. This
is a relaxed constraint, and certainly, if no path exists with this single point
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obstacle, no path exists with any amount of obstacles including p.
Next, consider a segment between vertex C and p, and a ray extending

from p perpendicular to and away from edge c of the triangle. One can
see that these partition R into two sub-regions. This partitioning can be
observed in Figure 19. Thus, we can see that any valid path travelling from
edge a to edge b in region R must cross either the segment between C and
p, or the ray extending from p, since edge a and edge b are in different sub-
regions of R and a valid path must be entirely within R by requirement 3.
We will cover both of these cases below.

First, assume the path of a unit with radius r crosses the segment be-
tween C and p at some point u. Since the segment between C and p has
length < 2r, we know u must be at distance < r from either vertex C or
p (or both). Thus if the path crosses any point on this segment, it comes
within distance r of some obstacle, and thus fails to meet requirement 4
above. This can be seen in Figure 20 where the above unit is interfering
with vertex C (its centre is distance < r from C) and the lower unit with
point p.

Similarly, if the path crosses the ray extending from p perpendicular
and away from edge c, it must cross at some point v on the ray that is at
least distance r from p, otherwise it would fail to meet requirement 4 and
would be an invalid path. Figure 21 shows that a unit crossing this ray is
indeed at distance > r from triangle T . We also use that there cannot be an
obstacle within a triangle in a triangulation: obstacles are either represented
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Figure 20: A unit trying to pass between C and p

as vertices or edges of disjoint triangles.
Thus the point v where the path crosses the ray must be at least r away

from p. Since the ray is perpendicular to c - the closest edge of T to p - the
point that is distance r away from v that is closest to triangle T is along
that ray. Since v is at least r away from p, which itself is outside of T , it
follows that at point v, there is no point within distance r which is inside
triangle T . Thus requirement 5 is violated and the path is invalid.

Finally we conclude that since there is nowhere that a path from edge a
can cross the partition to edge b and remain valid, all such paths are invalid.
Thus if a valid path exists for moving a circular unit of radius r from edge
a to edge b in triangle T , there must be no obstacles within distance 2r of
vertex C in region R, as desired.

2.4 Minimal Length

Here we will prove that the arc path with radius r between two edges in a
triangle is actually the shortest valid path for a unit of that radius between
those two edges in the triangle. This result will become useful when we
begin searching for paths in Constrained (Delaunay) Triangulations.

We know that a unit of radius r cannot come within r of a vertex without
invalidating its path (as we assume all vertices in a triangulation represent
constraints). This means that any valid path must have all points at least
at distance r from vertex C (again when considering paths between edge a
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and edge b).
The paths where all points are exactly distance r from vertex C is indeed

the arc path with radius r, so it remains to prove this path is shorter than
paths with points > r away from vertex C. This we will prove below.

There are two cases to consider for this proof: one where the alternate
path meets edges a and b at the same points as the arc path (distance r
away from vertex C), and one where the alternate path meets these edges
at different points. We will consider the former possibility first.

If the path touches both edges a and b at the same place as the arc path
and departs from it at some point in between, we know that the alternate
path must depart from the arc path at some point which we will call i and
rejoin it at some point which we will call j, with some point not on the arc
path (at distance > r from vertex C) in between, which we will call k. This
configuration is shown in Figure 22.

Consider a path that follows the arc path to point i, goes in a straight
line to point k, and then to point j, and continues following the arc path
through the triangle. Because the shortest distance between any two points
is a straight line, we know that this path is at least as short as any other
path through these points. It remains to prove that the arc path between
points i and j is shorter than the path from i to k to j. This we prove below.

Take first the triangle formed by vertex C, and points i and k as shown
in Figure 23. Consider the angle 6 iCk to be θ. We know the arc in this
triangle has length rθ so we must show segment ik has length > rθ. We
know the segment Ci has length r and segment Ck has length > r, we must
find the length of segment ik.

We know that 6 Cik is either a right angle or obtuse, because otherwise
segment ik would be closer than r to vertex C at some points. Also, the
more obtuse this angle is, the longer the segment ik would have to be given
we know the length of segment Ci and angle θ. Thus we will assume 6 Cik
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is a right angle, and the real length of segment ik will be at least that which
we find using this assumption.

We can calculate the length of segment ik to be r · tan(θ), so if this
section of the arc is shorter than segment ik, then we have r · tan(θ) ≥ rθ
or tan(θ) ≥ θ, which is true for −π

2 < θ < π
2 , which is all we require. Thus

segment ik is longer than that portion of the arc, and this applies identically
to segment kj as well. We have shown, then, that the arc path is the shortest
of valid paths through the triangle that pass through points at distance r
away from vertex C on edges a and b.

The proof concerning paths that do not meet both edges a and b at
distance r from vertex C, follows similarly. Consider one side where the
alternate path and the arc path do not meet an edge at the same place.
Without loss of generality, assume this is edge a. We will also assume that
the arc path and the alternate path have at least one common point. The
extension of this proof to alternate paths that do not meet the arc path at
all will be given afterward.

Let the closest such common point to edge a be point i and the point on
edge a that this alternate path meets be point k. This is shown in Figure
24 Assume now that the alternate path between i and k is a straight line
because any path between i and k must be at least as long as the straight-
line path between them. Now the proof that segment ik is longer than the
corresponding section of the arc path is identical to the proof above.

Now we will show that this extends to alternate paths that do not share
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any common points with the arc path. For a path that does not touch the
arc path at any point, consider an arc path of minimum radius r′ that does
touch this path. We know r′ > r because if r′ < r then part of this path
would be at distance < r from vertex C and would thus be invalid.

From the proof above, the length of this alternate path is greater than
that of the arc path with radius r′. Since this path is longer than the arc
path of radius r (r′ > r ⇒ r′θ > rθ where θ = 6 ACB), we have that the
alternate path is longer than the arc path with radius r.

Thus we have shown that the arc path of radius r between two edges of
a triangle is the shortest valid path for a circular unit of radius r between
those edges of that triangle, as desired.

3 Combining Triangles into a Path

As stated in Section 2, the purpose of finding the diameter of the largest
circular unit that can traverse a triangle from one edge to another is so we
can determine the diameter of the largest circular unit that can traverse
a path of adjacent triangles. We can also use this knowledge to guide the
search for a path for a circular unit of a certain diameter. In this section,
we will give several results relevant to this goal.
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