
1 Applications

These techniques were developed mainly with pathfinding for circular units
in mind, however, they afford benefits to several different aspects of pathfind-
ing and also other applications that warrant discussion. These are discussed
in the sections below.

Section 1.1 describes the benefits of using the arc method to avoid ”grow-
ing” obstacles to deal with non-point units. Section 1.2 discusses several im-
plications of the abstracted graph for pathfinding for multiple units. Section
1.3 explains how searching through the graph has been modified to be an
anytime algorithm that is guaranteed to find the optimal path to the goal.

Section 1.4 looks at ways in which the abstracted graph could be used
in terrain analysis both in generating and making decisions based on RTS
game maps. Finally, Section 1.5 explores how the abstract graph affords
improvements in both search time and graph representation size and com-
plexity.

1.1 Elimination of the Minkowski Sum

One advantage obtained by using the arc method of determining the radius
of the largest circular unit that can traverse a triangle, it is unnecessary
to compute things like the Minkowski Sum of non-point units around the
obstacles. This results in several benefits.

First, there are obvious savings by not having to do this computation.
Second, especially in the case of circular units which have to be approxi-
mated by a many-sided regular polygon, this complicates the triangulation
immensely. The number of triangles in the triangulation grows by a fac-
tor of approximately the number of sides in such a polygon, which slows
down later computations on this triangulation, such as point location and
the abstraction algorithm.

Furthermore, the triangles that are added to the triangulation by this
operation - particularly in the case of circular units - are often very thin
and sliver-like, which add little to the overall description of the space and
are generally difficult to deal with. Finally, if there was more than one
unit footprint, a separate version of the triangulation would have to be
maintained for each possible size and shape of unit. This would be a large
overhead, especially as the number of different units increased.

This technique allows application to any radius of circular unit without
any overhead, and extends easily to units of other shapes and sizes as well.

1.2 Reduction to Network Flow

Another benefit realized by both the maximum radius determination and the
abstraction of the graph is that the problem of moving multiple units can
be reduced to a network flow problem. Once the problem is raised up to the

1



abstract level with only degree-3 nodes between each of which is known the
approximate distance and narrowest point, it can be viewed from a higher
level.

With this information, a number of possibilities become apparent for
sending multiple units to a single destination. One can determine if it is
advantageous to send all units along the shortest path to the goal, or if that
route is too narrow, perhaps it would be better to select a longer but wider
path for all the units. Another possibility would be to split the units between
available paths, possibly sending the faster units along longer paths so all
the units arrive at roughly the same time, or assigning the faster units to
the shortest path in order to get some units to the goal as soon as possible.

Given this extra information of the paths’ lengths and narrowest points
coupled with the units’ speed and size attributes, further dimensions to the
group pathfinding problem can be realized. One could send units simply
based on the capacities of the edges in the abstract graph as in a network
flow problem, or could take the egdes’ lengths into account to further benefit.
Finally, incorporating the different units’ sizes and speeds would add more
information to the problem than was possible before.

It would be possible to tailor the path combinations for particular appli-
cations such as the speed/cohesion tradeoff. Perhaps early in a game where
the locations of enemy forces are largely unknown, it may be beneficial to
send all units on the same path, even if it is long or the narrowest point
may bottleneck the units. This is because if the units are attacked, they
would stand a better chance at survival as a group than if they were split
up. Later when the enemy units’ positions are known, it may be possible
to split up the group into different paths and allow them to reach the goal
sooner without such risk of ambush.

There are many uses for the abstract graph and the information it car-
ries, that many possibilities for tuning paths for multiple units should be
achievable.

1.3 Anytime Algorithm and Optimal Paths

The method of searching for a path by estimating one moving between
midpoints of edges can lead to suboptimal solutions once the shortest path
is determined within the triangles of this canonical path. By erring on the
side of caution, we can both find the globally optimal solution, and return
some solution quickly as part of an anytime algorithm.

When a unit is travelling between two edges of a triangle, its shortest
path through that triangle is an arc of radius equal to the radius of the
unit, between those edges from the vertex joining them. Thus by recording
this angle as the cost of traversing a triangle, the length of the arc can be
determined simply by multiplying this value by the radius of the unit.

The search for a path is done using the Euclidean distance between the
goal and the closest point to it on the current edge for that unit - at least

2



that unit’s radius from either incident vertex - to form an admissible and
consistent heuristic. Because the cost incurred at any point along the search
will not be known until a path is determined and the funnel algorithm run,
we must estimate it. This is where the underestimation becomes useful.

The cost associated with reaching any state is calculated as the cost
associated with reaching its parent plus the larger of: the arc length for that
unit through the next triangle, or the difference between the heuristic values
of that state and its parent. This means the cost incurred at any state is at
most that which would actually be incurred once the entire path has been
calculated.

A path is found using these costs, and then the triangles traversed in
this path are entered into the funnel algorithm in order to determine actual
length of the shortest path within these triangles. The search can now
return a (possibly suboptimal) solution. However, search can continue, using
branch-and-bound in order to prune paths whose minimum accumulated
costs exceed the actual cost of the best path found so far. When more paths
are found, the funnel algorithm can be run on them and if their actual cost
is less than the best path found so far, this new path replaces it.

Because the accumulated costs are minimums, the optimal path cannot
be pruned in this way and the search algorithm will eventually find it. Not
only is it beneficial that the algorithm find the optimal solution but the
ability to return a solution quickly and improve upon it with time would be
especially useful when working within the real-time constraints of a game
such as an RTS.

1.4 Terrain Analysis

Another main advantage of the triangulation of an environment and the
abstraction thereof with information of the capacities of the different paths
is that the information can be used for terrain analysis. This representation
allows quick determination of open areas, narrow ”choke” points, centers
with access to a number of places on the map, others with limited entrances,
etc.

Such information is especially useful in an RTS game where one might
want to build a base in a large area with limited access points to guard. One
might also want to guard structures at the narrowest points along corridors
connecting it to other regions, or station units in a place where they will
readily have access to several points on the map.

This would also be useful when generating fair and useful maps on which
to play games such as RTS. This could be used to ensure that there are
enough places on the map suitable for bases, none of which are significantly
better than others, and have these places connected somewhat evenly, with
a few large or interesting regions in between.

3



1.5 Graph Simplification

An obvious advantage of the abstraction of the triangulation is that the
graph induced by triangles adjacent by an unconstrained edge is significantly
simplified. This leads to a number of improvements.

One such improvement is that searching through this abtracted graph
requires accessing fewer nodes. If a path does not exist between the start and
goal, this is determined instantly instead of by exhausting all triangles in
the connected component of either the start or goal node. Then, if there are
no ”floating” obstacles near the path between the start and goal triangles,
this can be determined instantly and the actual path trivially thereafter,
whereas a regular search would have to be performed in the absence of this
abstraction.

With the abstraction in place, the search between any two points consists
of locating their triangles, jumping from those triangles (if they are degree-
1) to the closest connected degree-2 node, then (having reached or starting
off in degree-2 triangles,) jumping to adjacent degree-3 nodes and searching
between degree-3 nodes.

Without such an abstraction, search must traverse individual triangles.
This is detrimental because it visits many more search nodes, on the order
of the number of triangles in the graph. In contrast, the abstract search
visits only decision points (degree-3 abstract nodes), which are linear in the
number of ”floating” obstacles, irrespective of the number of vertices in the
graph.

Another advantage of this abstraction is that the abstract graph is much
more representative of the actual decisions faced when finding a path, just
deciding to which side of each obstacle to travel, and trusting the best path
given this decision can be found. Without the abstraction, one must search
for a path when logically, there is really only one. One must also follow long
corridors - where really the only choice should be to exit out the other side
- or worse, following dead-end branches off such corridors that do not lead
to the goal.

Thus the abstraction leads to much faster searches as described above
and also at the highest level only includes the actual decision points on the
graph, producing a much more compact and meaningful representation.

4


