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Pathfinding is arguably the most fundamental AI task in current video games. No matter 

the technique used for the decision making of in-game characters, they lose the desired 

illusion of intelligence if they cannot navigate about their surroundings effectively. 

Despite its importance and that it is a well-studied problem, pathfinding is often 

performed using techniques that do not provide or take advantage of information on the 

structure of the environment.

In this article, we present an approach to pathfinding that addresses many of the 

challenges faced in games today. The approach is fast, uses resources efficiently, works 

with complex polygonal environments, accounts for the size of the object (for example, 

character or vehicle), provides results given varying computational time, and allows for 

extension to dynamic pathfinding, finding safe paths, and more. At the heart of this 

approach is an abstraction technique that removes all information from the environment 

that is extraneous to the pathfinding task.

Motivating Example

As an example, imagine a man planning a route between two houses in a city. If the 

originating house is in a bay, for example, the man can assume that as long as the 

destination house is not in that same bay, the start of the route will be to leave the bay. 



After that, he won’t consider turning off onto side streets from which there is no exit 

unless they contain the destination because they would be dead ends. When the route 

reaches main roads, the man needs only consider at which intersections to turn; he 

ignores making decisions partway between intersections because the only possible 

options are to proceed or turn back, which would be nonsensical.

Each intersection represents a decision point in planning the route—they are where the 

man will decide to travel on the north or south side of the stadium for instance. After a 

series of these decisions, the route will reach the destination, and although the man 

ignored dead-end streets and going partway between intersections to this point, he can 

still plan a route to a house in a cul-de-sac or in between intersections on a street. You 

will also notice that the path is formed at the high level of streets, and after it is formed, 

particulars such as lanes can be determined. After all, it would make no sense to 

consider using each possible lane if after forming the complete path, it becomes obvious 

that the left lane is preferred or perhaps necessary. Our algorithm follows a similar high-

level human-like decision-making process.

Outline

We will start by introducing triangulations, our environment representation, and in 

particular Dynamic Constrained Delaunay Triangulations (DCDTs), which provide 

many advantages for this work. We will cover some considerations for pathfinding with 

this representation and some for the extension to nonpoint objects (specifically circular 

objects with nonzero radius). From there, we describe the abstraction method used to 

achieve the simplified representation of the environment and how the search uses this 



information. Finally, we provide some experimental results, draw conclusions, and 

suggest possible extensions to the work.

Pathfinding in Triangulations

Here we will introduce some different triangulations as well as how they are 

constructed and considerations for their use as an environment representation and for 

pathfinding.

Types of Triangulations

A fundamental aspect of the methods represented here is the use of triangulations to 

represent the environment. Here we will briefly cover the different types of 

triangulations and how they relate to pathfinding.

Given a collection of vertices in two dimensions, a triangulation (see Figure 1a) is 

formed by joining pairs of these vertices by edges so that no two edges cross. When no 

further edges can be added, all faces in the convex hull of the vertices are triangular.

A special case is a Delaunay Triangulation (DT) (see Figure 1b) that specifies that the 

minimum interior angle of the triangles in the triangulation must be maximized. This 

avoids thin triangles wherever possible, which is a useful property that we will explore 

later. DTs can be constructed from triangulations by taking (convex) quadrilaterals in 

the triangulation formed by two triangles sharing an edge, and replacing that shared 

edge with one joining the other two vertices in the quadrilateral, whenever this results in 

a shorter diagonal.



Another version of a triangulation is a Constrained Triangulation (CT), which specifies 

that certain edges must be included in the final triangulation. We now make the 

distinction between these predetermined edges (called constrained edges) and those 

added during the triangulation process (called unconstrained edges). CTs are 

constructed in the same way as regular triangulations but with the constrained edges 

added first to ensure they are included. Constrained edges that cross are broken up at the 

intersection points. When used as an environment representation, a CT uses constrained 

edges to indicate barriers between traversable and obstructed areas.

*** Insert Figure 1a, Figure 1b, Figure 1c Here ***

Figure 1 (a, b, c) Examples of (from left to right) regular, Delaunay, and Constrained 
(Delaunay) Triangulations. 

A CT can also carry the Delaunay property, forming a Constrained Delaunay 

Triangulation (CDT) (see Figure 1c). CDTs are formed from CTs using the same edge-

flipping technique for creating DTs, with the added proviso that constrained edges 

cannot be flipped. CDTs maximize the minimum interior angle of the triangles as much 

as possible while maintaining constrained edges. This is the representation used by the 



techniques described in this article but with one more technique that makes it ideal for 

use in games.

A technique presented by Marcelo Kallmann [Kallmann03] allows for the creation of 

DCDTs. This algorithm handles the online addition and removal of vertices or 

constrained edges in an existing CDT with minimal performance cost. Constraints are 

added to or removed from those already present, affected unconstrained edges are 

removed, and the surrounding area is re-triangulated, and then the Delaunay property is 

propagated out to areas that have since lost it. This update requires minimal resources 

and can be done in real time. 

Triangulations offer many advantages for pathfinding over other environment 

representations, such as the ability to handle edges that are not axis-aligned. 

Specifically, triangulations can represent environments with straight barriers perfectly 

and can represent curved barriers using a number of short segments, providing an 

approximation that is superior to axis-aligned methods.

When stored, triangulations often require fewer cells than grid-based methods. This not 

only presents an advantage for pathfinding but also provides more information about the 

environment. For example, the traversibility of a tile contains no information on the 

surrounding area, whereas assuming all vertices and constrained edges in a triangulation 

represent obstacles (otherwise, they just add unnecessary complexity to the 

representation), a triangle indicates the distances to obstacles in each direction. This 

makes triangulations a perfect candidate for working with different-sized objects; you 

can determine if an object can pass through a section of the triangulation with relative 

ease using a technique introduced later.



Considerations for Pathfinding

The basis of triangulation-based pathfinding is the idea that paths are formed by moving 

from triangle to adjacent triangle across unconstrained edges, much like moving 

between traversable adjacent cells in tile-based environments. However, when using 

tiles, the exact motion of the object is known to go through the centers of the tiles (at 

least before smoothing) as the path is being formed. If you assume during the search that 

the path goes through the center of the triangles it traverses, the approximation of the 

path’s length can be very poor because triangles are typically much larger than tiles. 

This can lead to suboptimal paths that can spoil the illusion of intelligence by moving 

an object to its destination by a longer than necessary path. Here we present 

requirements for finding optimal paths on a triangulation, which together form the first 

search algorithm presented, Triangulation A* (TA*).

Pathfinding (and, in fact, all heuristic search) uses a pair of values to guide its search: 

the distance traveled to the current point in the search, or g-value, and an estimate of the 

distance remaining, or h-value. To find an optimal path, the h-value must be no more 

than the actual distance remaining to the goal because overestimates could make the 

search abandon a branch leading to an optimal solution. The g-value is assumed to be 

exact, so when the search reaches somewhere that was reached by a shorter path, the 

current path is abandoned because taking the other path must be shorter.

However, for triangulations, a path being searched may enter a triangle through one 

edge and then leave through one of the two others. The full path between the start and 

goal points as a result of this decision (and likely subsequent ones) produces different 

paths leading to this triangle, and so the distance covered to reach it cannot be known 



exactly during the search. Therefore, to produce an optimal solution, we must introduce 

two constraints. The first is that the g-value must not be larger than the true distance 

between the start of the search and the current triangle as it is reached in the final path 

to the goal. This follows the same logic in preventing the search from abandoning a 

potentially optimal path. The other constraint is that we cannot eliminate a node in the 

search simply because it was reached with a potentially shorter path because we do not 

know which path was shorter.

These requirements fit well with an anytime algorithm, that is one that finds a solution 

and improves it as long as it is given more resources. As with any other point in the 

search, when the goal is reached, the shortest path is not immediately known. Therefore, 

even after the goal is found, the search continues, accepting paths to the goal shorter 

than the best one currently known. Search is determined to have found an optimal path 

when the length of the shortest path found is less than the sum of the g- and h-values of 

the paths yet to be searched. This follows from these being underestimates of the path 

length, so any paths remaining in the search must be longer than the best one found. 



Other Enhancements

To find the triangle that contains the start (and goal) point, you must perform a task 

called point localization. An inefficient approach, such as performing a greedy walk 

along adjacent triangles, would mask any benefits the triangulation could afford. 

There is a simple but improved way to handle this task. First, the environment is divided 

into rectangular cells (for our experiments, a modest 10 x 10 grid was used). When the 

triangulation is constructed, triangles are tested as to whether they lie on the center 

point of any cells. If so, the triangle is recorded for that cell. When locating a point, its 

containing cell is determined easily, and the process of moving progressively closer to it 

is started from the triangle covering the midpoint of that cell. This results in shorter 

point localization times, allowing the full advantage of the triangulation-based methods. 

In some cases, the possibility of the search visiting a triangle multiple times could mean 

the search converges more slowly on the goal. However, for maximum flexibility, we 

want to find the first path quickly in case the pathfinding task is not given much time. 

Therefore, we modified the search algorithm to only expand each triangle once until the 

first path has been found, after which they can be expanded again. This makes the first 

path available earlier without affecting the algorithm’s ability to converge on an optimal 

path. 

Triangle Width

One of the main challenges of pathfinding is dealing with objects larger than points. 

Incorporating this constraint is necessary to achieve paths that do not bring objects into 

collision with obstacles in the environment. A popular method for achieving this result 



is to enlarge the obstacles in the environment by the radius of the object and then 

perform pathfinding as if for a point object. This technique has the drawback that a 

separate representation of the environment must be calculated and stored for each size 

of object, resulting in compounded time and memory costs. An advantage to the use of 

triangulations for pathfinding is their aptitude in handling this kind of problem.

We have developed a method for measuring the “width” of all triangles in a CDT, which 

is, for any two (unconstrained) edges of the triangle, the largest circular object that can 

pass between those two edges. We use circular objects because they require no 

consideration for orientation, and, in most cases, the pathfinding footprint of game 

objects can be fairly well approximated by a circle of some radius. 

After this is calculated for all triangles in the triangulation, pathfinding for an object of 

any size can be done as if for a point object except that paths which traverse between 

two edges of a triangle with a width less than the object’s diameter are excluded. The 

calculation does not require much processing and memory and is done once only. This 

allows for objects of any size, eliminating the restrictive need to create game objects of 

discrete sizes for the sole purpose of pathfinding.

Finding the width for the traversal between two edges of a particular triangle is 

equivalent to finding the closest obstacle (a vertex or point on a constrained edge) to the 

vertex joining those two edges, in the area between them. If one of the other vertices of 

the triangle represents a right or obtuse angle, the closest obstacle is the vertex 

representing that angle, and the width of the triangle is the length of the edge joining 

this vertex to the one where the two edges meet.



Otherwise, if the edge opposite the vertex in question is constrained, the closest obstacle 

is the closest point to the vertex on that edge, and the width is the distance between 

them. Finally, if the edge opposite the vertex being considered is unconstrained, a search 

across that edge will determine the closest obstacle to that vertex. This search is 

bounded by the shorter of the distances to the other two vertices in the triangle because 

they are potential obstacles. It considers vertices in the region formed by the extension 

of the edges of the original triangle for which the calculation is being done and 

constrained edges in this region that would form acute triangles if their endpoints were 

connected to the base vertex.

Note that because the search is always bounded by the distance to the closest obstacle 

found so far and that Delaunay triangulations make it impossible for the search to 

traverse any triangle multiple times, this operation can be performed on a triangulation 

very quickly.

Modified Funnel Algorithm

The result of pathfinding in a triangulation is a sequence of adjacent triangles 

connecting the start to the goal called a channel. However, because triangles are larger 

than tiles, it does not translate directly into an efficient path through them. Luckily, you 

can find the shortest path through a channel quickly using a funnel algorithm (see Figure 

2a). This algorithm has the effect of conceptually pulling a rubber band through the 

channel between the start and the goal, producing a sequence of line segments touching 

the vertices of the channel and forming the shortest path.



However, this operation is meant for point objects, and our generalized solution seeks to 

find shortest paths for circular objects of nonzero radius. Therefore, we developed a 

modified version of this algorithm (see Figure 2b) that basically consists of adding a 

circle with the same radius as the object centered around each vertex in the channel 

except the start and goal vertices. The shortest path is found by a similar method but 

now consists of arcs along these circles and line segments between and tangent to them 

to avoid collision with the obstacles.

Some considerations to keep in mind are that this algorithm assumes that the channel is 

wide enough to accommodate the object in question. Although this technique produces 

the optimal path for the object through the channel, it assumes the object is capable of 

traveling in a curve. If this is not the case, the object can approximately follow the arcs 

produced by this algorithm by traveling in several short straight segments, turning in 

between.

Figure 2 (a, b) The funnel algorithm (left) determines paths for point objects, and the 
modified version (right) produces paths for circular objects of some radius.



Triangulation Abstraction

The most important part of the process we use to reduce the pathfinding graph produced 

by the triangulation (see Figure 3a) is a simple classification of each triangle as a node 

in the abstract graph by level. We do this by assigning each triangle an integer value 

between 0 and 3 inclusive, indicating the number of adjacent graph structures.  The 

graph resulting from this procedure (see Figure 3b) caries additional information about 

the structure of the environment.  

Level-0 nodes, or islands, are simply triangles with three constrained edges. These are 

easily identified when the algorithm passes over the triangles in the triangulation.

Level-1 nodes form trees in the graph and represent dead ends in the environment. There 

are two kinds of level-1 trees in a reduced graph: rooted and unrooted. The root of a 

rooted tree is where the tree connects to the rest of the graph (via a level-2 node). 

Unrooted trees have no such connection; they are formed in areas of the graph that do 

not encompass other obstacles.

Level-1 nodes are identified as triangles containing two or fewer constrained edges and 

containing at most one unconstrained edge across which is a level-2 node. Level-1 nodes 

with two constrained edges are easily found in a first pass over the triangulation, and for 

each of these found, the triangle across the unconstrained edge is put in a queue for 

processing as a possible level-1 node. Each triangle on the queue is evaluated if it now 

fits the description of a level-1 node, and if so, is classified as one; the unclassified 

triangle adjacent to it across an unconstrained edge (if one exists) is put on the queue for 

processing. This process will propagate through a rooted tree until the root is reached, or 

for an unrooted tree, throughout the whole connected component.



Figure 3 (a, b) A triangulation (left) is reduced to an abstract graph (right) where 
circles, squares, filled squares, and filled circles represent level-0, -1, -2, and -3 nodes, 
respectively.

Level-2 nodes represent corridors in the environment and are adjacent (across 

unconstrained edges) to two nodes that are either level-2 or level-3. A connected group 

of level-2 nodes can form a corridor between two distinct level-3 nodes, a loop 

beginning and ending at the same level-3 node, or a ring with no level-3 beginning or 

end. All triangles remaining after the level-0, -1, and -3 nodes are identified are 

classified as level-2.

Level-3 nodes are the most important in the pathfinding search because they identify 

decision points. Search from a level-3 node can move directly to level-3 nodes adjacent 

across either unconstrained edges or level-2 corridors and represent choices as to which 

direction to pass around an obstacle. After level-0 and level-1 nodes are identified, 

level-3 nodes are those triangles with neither constrained edges nor adjacent level-1 

nodes.

Abstraction Information

In addition to each triangle’s level, the abstraction stores other information about each 

node in the environment for use in pathfinding. The adjoining node is recorded for each 

direction depending on its type. For level-1 nodes in rooted trees, the root of the tree is 



recorded for the edge through which it is reached. For level-2 nodes not in rings, they 

are the level-3 nodes reached by following the corridor through the edges for which they 

are recorded. For level-3 nodes, they are the level-3 nodes adjacent directly or across 

level-2 corridors in each direction.

The abstraction is also where a triangle’s widths (between each pair of edges) are held. 

It also stores the minimum width between the current triangle and each adjoining node 

so the search can tell instantly if the object can reach that node.

We also included an underestimate of the distance between the current triangle and each 

adjoining node to be used in the search to improve the accuracy of this value and make 

the search more efficient.

Abstraction Search

Finding a path on the reduced triangulation graph requires more steps than performing 

the search on the base triangulation. First, a number of special cases are examined to 

determine if a search of the level-3 nodes needs to be done at all, then the start and goal 

points need to be connected to level-3 nodes on the most abstract graph, and finally, a 

search between level-3 nodes is run. This is the basis for Triangulation Reduction A* 

(TRA*), described later. As before, at each step, the width of the triangles being 

traversed is checked against the diameter of the object for which pathfinding is being 

performed, and paths that are too narrow for it are not considered.

The simplest check performed is to see if the endpoints are on the same connected 

component in the environment—that is, they are not in separate areas divided by 

constrained edges. Because identifying the different components requires no more 



processing on top of the reduction step, we can instantly see if there are any possible 

paths between them. If they are on different connected components, no path can exist 

between them. If they are on the same one, there is a path between them, and the only 

question is whether it’s wide enough to accommodate the object. You can then check 

whether the endpoints are in the same triangle; if so, the path between them is trivial. 

This covers when the endpoints are in the same island triangle.

Next we check whether the endpoints are in an unrooted tree or in a rooted tree with the 

same root. In these cases, we can search the tree for the single path between the start 

and the goal. Because trees are acyclic (no two triangles can be joined by multiple paths 

that do not visit other triangles more than once), we can eliminate aspects of the search 

meant for finding the shortest path because only one exists (other than those containing 

cycles that needlessly lengthen the path). The result is a simplified search where the 

midpoints of the triangles are considered as exact points on the path, the Euclidean 

distances between them are used as distance measures, and no triangle needs to be 

considered twice. Also in the case of rooted trees, the search need not venture outside 

the tree. Note that these searches are so localized and simple that they are almost trivial 

in nature (see Figure 4a).



Figure 4 (a, b) Cases where the endpoints are in the same tree and a path is easily found.

Then for search endpoints in level-1 nodes, we search moves to the root of the tree. In 

some cases, the other endpoint will be at the root of this tree. This can be determined 

instantly and the optimal path constructed easily by simply moving along the one 

(acyclic) path to the root of the tree (see Figure 4b). Otherwise, the search next 

examines patterns with level-2 nodes.

If both endpoints are on level-2 nodes (or in level-1 trees rooted at level-2 nodes) on a 

ring or the same loop (see Figure 5a), there are two possible paths between them—going 

clockwise or counterclockwise around the ring or loop. Both of these paths are fully 

constructed, and the shorter of the two is taken as the optimal path.

If the level-2 nodes associated with the endpoints are on the same corridor (see Figure 

5b), we form one path along that corridor and determine its length, and then the level-3 

nodes found by going the opposite directions are considered the start and goal nodes for 

the level-3 search, respectively. The level-3 node search is performed as usual from 

here, except that the search now has an upper bound: the length of the path already 

found.



Figure 5 (a, b) The start and goal can also be on the same level-2 corridor, loop, or ring.

If none of these cases applies, the search travels from the level-2 nodes associated with 

the start to the level-3 nodes on either end of that corridor. These are the starting points 

for the level-3 node search. If the starting point is on a level-3 node, there is only one 

starting point for this search. The same procedure is performed for the goal point—

potential goals are the level-3 nodes at either end of the corridor if the goal point is on a 

level-2 node, and if it was on a level-1 node, from the corridor on which the goal node’s 

tree is rooted. If the goal point is on a level-3 node, that is one goal for the level-3 

search.

The search from here is performed similarly to TA*, except instead of moving across 

unconstrained edges to adjacent triangles, it moves across corridors of level-2 nodes to 

other level-3 nodes. A few additional techniques are available for estimating distances 

on the abstract graph. The same tests for g- and h-values, the anytime algorithm, and the 

revisiting of nodes are performed as before.

Discussion

The criteria that decide about the adoption of new algorithms in video games are their 

space and time requirements, quality of the results, versatility, and simplicity. Usually at 

least one of these conditions is violated—in our case, it’s simplicity.

The implementation of TA* and TRA* relies on efficient code for point localization and 

maintaining Delaunay triangulations dynamically. For this, we use Marcello Kallmann’s 

DCDT library [Kallmann03] whose point localization procedure we improved. Dealing 



with arbitrarily located points usually complicates computational geometry algorithms 

due to limitations of integer or floating point-based computations. The DCDT library we 

used is general and complex. However, for new game applications, it’s conceivable that 

all line segment endpoints are located on a grid, and segments only intersect in grid 

points. This constraint greatly simplifies the DCDT algorithm. In addition, the TA* and 

TRA* abstraction and search mechanisms are not exactly easy to implement, although 

the software provided on the ***insert CD-ROM icon*** CD-ROM can help AI 

programmers get familiar with the technique and test it in their settings.

Figure 6 (a, b) Environments have few triangles and level-3 nodes, giving TA* and 
TRA* greater speedup over A* than even enhanced grid-based methods such as PRA*.

The space requirement of TRA* is only slightly larger than the original polygonal map 

description because the size of the abstraction is linear in the number of islands in the 

world, which is usually orders of magnitudes smaller than the total number of triangles. 



Moreover, compared with grid-based representations, the space savings when using 

triangulations at the lowest level can be substantial if there are big unobstructed areas 

(see Figure 6a). In the experiments we touch on here [DemyenBuro06, Demyen06], we 

used 120 maps taken from Baldur’s Gate and Warcraft 3 scaled up to 512 x 512 tiles, 

and the total memory requirement for TRA* was at most 3.3 MB. We did not try to 

optimize memory consumption, and with 184 bytes per triangle allocated by the DCDT 

library, there is certainly room for improvement.

TRA*’s runtime can be broken down into two components: map preprocessing time 

(triangulation, reduction, sector computation) and actual pathfinding time. The most 

complex maps could be preprocessed within 400 milliseconds (ms) on an Athlon 64 

3200+ computer, which were split roughly in half between triangulation and reduction. 

The median preprocessing time was 75 ms. In this set of experiments, we focused on 

static environments. However, you can repair triangulations and the reduced graph 

efficiently if changes are local. TA* and TRA* are considerably faster than grid-based 

A* . We observed 170× median speedups over A* for TRA* and 30× for TA*, for 

finding the first approximation of optimal paths of length 512 (see Figure 6b).  The 

absolute times for TA* (see Figure 7a) and TRA* (see Figure 7b) show they work well 

for real-time applications.  



Figure 7 (a, b) TA* and TRA* find a path within a couple milliseconds.

In over 95% of the considered cases, the length of the path first reported by TA* is 

shorter than the grid-A* path. We know that A* computes shortest paths, so this 

statement doesn’t seem correct. However, the object motion in grid-A* is restricted to 

eight directions, whereas in triangulation-based pathfinding, objects can move freely. 

The TRA* path quality reaches that of grid-A* if after finding the initial path, we 

continue to search for better paths for the time it took to find the first. Thus, equating 

path quality, TRA* is about 85 times faster than grid-A* when finding long paths in the 

maps we considered. Note this is an abridged version of a more complete experimental 

analysis provided in the accompanying thesis [Demyen06].

Triangulation-based pathfinding as we described it is not only fast but also versatile. 

TA* and TRA* can be regarded as anytime algorithms: The more time we invest after 

the initial search phase, the shorter paths become. These algorithms also find optimal 



paths for moving circles of varying size, which is useful for group pathfinding when we 

use bounding circles. Triangulations are also very suited for detecting strategic terrain 

features, such as chokepoints.

Conclusion

We have shown the usefulness of triangulations for environment representations, both in 

efficiency and for the benefits it affords to pathfinding. We have also shown 

enhancements to pathfinding on the triangulation itself, providing an anytime algorithm 

for finding better paths when given more resources and converging on the optimal path.

The main contribution of this work, however, is the reduction step performed on the 

triangulation. On top of identifying useful structures in the environment, it allows for 

much faster pathfinding. Coupled with the many opportunities for extending this work 

for different needs and situations outlined next, we hope the efficiency and flexibility of 

these techniques will find application in the games industry.

Future Work

One of the most exciting aspects of these techniques is their suitability to further 

extension. Among these is the ability to deal with dynamic environments. For example, 

if mobile obstacles block an object’s path, it could possibly steer around the object 

within its channel to avoid running the pathfinding search again. If pathfinding is being 

done for a group of objects, one search could yield a channel for all objects to use. In the 

case of a narrow path and many or large objects, more paths could be found, and the 

objects split between them to meet up at the goal. If paths are being found for multiple 

objects going in different directions, you could avoid collisions by recording at which 



times each object will be going through a triangle when its path is found. How crowded 

a triangle is at any time could be calculated based on the size of the triangle and the size 

and number of objects going through it at that time. When finding paths for subsequent 

objects, those going through crowded triangles could be avoided, and some steering 

should be adequate to avoid collisions.

There are also several possible extensions if more precomputation is a desired tradeoff 

for more speed. For example, precalculating the best paths between level-3 nodes would 

require a fraction of the memory required by most navigation mesh approaches. The 

pathfinding task would only require moving from the start and goal to adjoining level-3 

nodes and fetching the rest from a table. The level-3 node graph could be abstracted 

even further by collapsing any doubly connected components of this graph into single 

nodes in a higher-level graph. This graph would then consist of a group of trees, and 

because paths in trees are trivial, only pathfinding between the entry points of the 

doubly connected components would be necessary. If some suboptimality is acceptable, 

you could even precalculate and cache paths between these entry points for lightning-

fast pathfinding with minimal memory cost. 

If pathfinding needs to be done for only a few sizes of objects, separate environment 

representations could be constructed for each. The exchange for the increased memory 

would be instant knowledge of a path existing for a particular object and not having to 

test paths for minimum width requirements.

You could also use these techniques in more complex cases. Pathfinding on the surface 

of 3D environments could be done by triangulating the passable surfaces. Overlapping 

areas such as bridges could be handled by forming separate triangulations and creating 



virtual links between the edges. These links could also be given costs to simulate 

additional time or effort for moving between meshes by jumping or climbing ladders, for 

example. 

If objects need to take paths with certain properties, such as being clear of enemies or 

containing enemies whose total power is less than the object, then other information 

such as the “threat” of an enemy can be localized to a triangle and propagated through 

the abstract graph in the same way as triangle widths. The pathfinding search could then 

avoid returning paths that traverse corridors where the total enemy power is greater than 

a certain threshold.

Source Code and Demo

The software that accompanies this book contains Marcello Kallmann’s DCDT 

implementation ***insert CD-ROM icon*** , with the work shown here built on top. 

Functions of interest are SearchPathBaseFast, SearchPathFast, and Abstract, which 

implement TA*, TRA*, and the reduction process, respectively. The executables are 

found in the se/bin directory—setut.exe will run a GUI for visualizing pathfinding in a 

reduced triangulation. Press “6” when the program opens to see the DCDT, noting the 

red constrained edges, gray unconstrained edges, yellow level-1 trees, green level-2 

corridors, cyan level-0 islands, and magenta level-3 decision points. Click two points to 

find a path between them; the black lines are the channel, and the blue lines are the path. 

You can also drag the obstacles around and see the triangulation, abstraction, and path 

change. The information contained in the abstraction for the triangle over which the 

mouse is currently positioned is printed in the console window. 
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