
Efficient Triangulation-Based Pathfinding

Douglas Demyen and Michael Buro
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{demyen|mburo}@cs.ualberta.ca

Abstract

In this paper we present a method for abstracting an environ-
ment represented using constrained Delaunay triangulations
in a way that significantly reduces pathfinding search effort,
as well as better representing the basic structure of the envi-
ronment. The techniques shown here are ideal for objects of
varying sizes and environments that are not axis-aligned or
that contain many dead-ends, long corridors, or jagged walls
that complicate other search techniques. In fact, the abstrac-
tion simplifies pathfinding to deciding to which side of each
obstacle to go. This technique is suited to real-time computa-
tion both because of its speed and because it lends itself to an
anytime algorithm, allowing it to work when varying amounts
of resources are assigned to pathfinding. We test search algo-
rithms running on both the base triangulation (Triangulation
A* – TA*) and our abstraction (Triangulation Reduction A*
– TRA*) against A* and PRA* on grid-based maps from the
commercial games Baldur’s Gate and WarCraft III. We find
that in these cases almost all paths are found much faster us-
ing TA*, and more so using TRA*.

Introduction
Pathfinding continues to be a critical area in many fields, not
least of which are robotics and games. For the former, it is
important to have a technique that incorporates the size of
the robot so that a path can be found which will not result
in damage to the equipment. In the latter, it is of paramount
importance that paths be found very quickly, as there is sel-
dom much time alloted to pathfinding, and that the paths
found be close to optimal, in order to give the illusion of in-
telligent movement. Our technique addresses both concerns,
finding the majority of paths tested in less than 1 ms.

Different methods of abstracting search space have so far
been successful in speeding up search, sometimes with a mi-
nor reduction in solution quality. Hierarchical A* (Holte
et al. 1996) searches layers of increasingly abstracted rep-
resentations of the search space to produce heuristics for
the layers below. HPA* (Botea, Müller, & Schaeffer 2004)
divides an environment into sectors, and caches the path
lengths between entry points of these sectors to quickly pro-
duce a nearly-optimal path across the whole environment.
Recently, PRA* (Sturtevant & Buro 2005) forms cliques of
adjacent nodes at each level to form a more abstract level
until the whole environment is a single node. Search is per-
formed on a suitably abstract level and projected down and
refined on lower levels back to the original graph.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Similarly to how HPA* and PRA* attempt to separate
low-level from high-level decision-making when pathfind-
ing the same way a human won’t decide their exact steps
before walking to the store, TRA* attempts to reduce the
decisions that need to be made. This is equivalent to how a
human might decide on which side of a shrub to walk when
crossing a yard, and taking for granted the best path around
that side of the shrub.

Polygonal representations of an environment offer several
advantages over grid representations in pathfinding includ-
ing exact representation of straight barriers at arbitraryan-
gles, retention of all valid paths, and fewer cells in larger,
open areas. A successful method of polygonal representa-
tion is triangulation which has many properties useful for
pathfinding, and thanks to recent work (Kallmann, Bieri, &
Thalmann 2003) can be updated dynamically as well. Tri-
angulations are also interesting in that they lend themselves
well to abstraction and determination of the size of objects
that can move through the various parts of the environment.

This paper will first explore considerations for determin-
ing the largest objects that may move through a triangle, and
how to find the shortest path for such an object through a
sequence of triangles. We will then describe the structure of
the abstraction used, an algorithm for its construction, and
the information it contains. Next we will look at the search
process in both the base triangulation and our abstracted ver-
sion, and then compare them experimentally also with other
state-of-the-art pathfinding algorithms. Finally, we summa-
rize the contribution of this paper, draw some conclusions,
and suggest future research directions.

Triangulation-Based Pathfinding
Given an environment represented with a polygonal descrip-
tion — one that has barriers between traversable terrain
and obstacles described as line segments (see Fig. 1a) —
we wish to create a triangulation. This is done by insert-
ing edges between these line segments’ endpoints until all
spaces are divided into triangles (Fig. 1b).

This is in fact a constrained triangulation, since the barri-
ers are required to be edges in the triangulation. These are
calledconstrainededges, and the ones added to complete
the triangulation are calledunconstrainededges. In terms of
pathfinding, we can cross unconstrained edges but not con-
strained ones. Making a constrained triangulationDelaunay
specifies that the unconstrained edges be such that the min-
imum angle of the triangles is maximized. This guarantees
the optimal path will not cross any triangle more than once,



b) Triangulated World

c) Triangle Graph d) Abstract Triangle Graph

a) Polygon World

Figure 1: How a reduced triangulation graph is constructed
from a polygonal world description

by avoiding thin triangles where to get between two edges,
an object would have to exit and re-enter through the other.

In its simplest form, pathfinding in a constrained trian-
gulation is done by hopping from triangle to triangle. This
presents a challenge because we do not know the path the
object will take through each triangle. In (Kallmann 2005),
states are considered the midpoint of a triangle edge, their
children the midpoints across the triangle, and the object’s
path is made up of straight-line segments between these. In
addition, each visited triangle is marked so it cannot be vis-
ited again. This method can result in suboptimal paths, but
in practice performs well. Since we are concerned with pro-
ducing optimal results where we do not have to pay much of
a penalty, we take a different approach.

Triangulation A*, or TA*, is our triangulation pathfinding
algorithm. Similar to above, we consider the states in the
search to be triangles and their children to be triangles adja-
cent across unconstrained edges. However in order to avoid
pruning the optimal solution, we made some changes.

Because we do not know the actual distance through the
sequence of triangles until reaching the goal, we must con-
sider all paths to a triangle in order to obtain the optimal so-
lution. When considering a triangle in either TA* or TRA*
(Triangulation Reduction A*, described later), we estimate
the cost incurred (theg-value) and the heuristic (theh-value)
from anypoint on the entry edge of the triangle. The heuris-
tic is calculated as the Euclidean distance between the goal
and the closest point to it on this edge. We know this heuris-
tic to be both admissible and consistent, which is helpful
since the incurred cost must also be estimated.

The estimation of theg-value as it turns out is critical in
the efficiency of the search. The higher this value is, the
fewer nodes are searched, much like with theh-value. How-

ever, theg-value — and by extension the sum of this and
the h-value — must be no greater than their true values if
the anytime algorithm is to converge on the optimal solu-
tion. This algorithm works as follows: we search as usual
until we find a path to the goal, we run the modified fun-
nel algorithm described later to determine the actual cost of
this path, and we continue searching, calculating lengths of
paths found and updating our best path each time we find
one shorter, until our best path is no greater than the sum of
theg− andh-values of the remaining search nodes, at which
point we know we have the shortest possible path.

In order to achieve the highest possible underestimate for
the g-value, we take the maximum of a number of known
admissible values: the Euclidean distance between the start
and the closest point to it on the entry edge of the current
triangle; the distance between the start and the goal minus
this node’sh-value; the parent node’sg-value plus the dif-
ference between itsh-value and that of the current node; and
the parent node’sg-value plus the shortest path between its
entry edge and that of the current triangle. All these combine
to create a fairly accurateg-value without TRA* having to
query individual triangles.

It turned out that a large portion of the time in the above
method was spent finding the triangle containing the start-
ing point. This is because the point location used in (Kall-
mann 2005) simply “walked” from a fixed starting triangle
progressively closer to the point. To help speed this up, we
implemented a sector-based method wherein we overlaid a
grid of points on the triangulation and determined in which
triangle each was contained. This allowed the point location
to begin “walking” from the triangle around the closest grid
point, resulting in much better performance. For the experi-
ments reported later, we used a modest grid size of10× 10.

Non-Point Objects
It is often the case in games that moving objects have some
size that must be considered while pathfinding. This is usu-
ally handled by means of “growing” the obstacles in the
environment corresponding to the size of the objects and
pathfinding within this environment as with a point object.
While this approach has been shown to work, it has a draw-
back in that this environment must be calculated for each
size (and shape) of object. This may not be singly disad-
vantageous if there are few such object footprints, however
if there are many or we desire to find a path for an object
of arbitrary size, the time for such a calculation and the can
become unwieldy.

If the environment is being represented as a grid, more
problems can arise due to the fact that it is often unnatural
to represent objects by way of grid squares. For example,
a circular object is often represented by a square or a “ras-
terized” circle, which are imprecise. If, on the other hand,
the environment is triangulated, objects that are circular(or
otherwise radially symmetrical) can be added around the ob-
stacles by use of the Minkowski Sum (by approximation to
a regular polygon), however this leads to a large number of
thin, sliver-like triangles which complicate pathfinding and
have other undesirable effects on triangulations. In both
cases, object shapes that aren’t roughly radially symmetri-



d

a) Triangle width b) Channel of triangles

C

A

B
b

a

start

goal

c) Funnel algorithm d) Example path

c

Figure 2: Object radius considerations

cal are seldom used in practice because of the complexity it
adds to the problem.

Width Calculation
Triangulations offer a unique opportunity to accommodate
differently sized and shaped objects. At the time of writing,
the focus was on circular objects because of their promi-
nence in games. However, we believe with some calculation,
other shapes could be managed as well. When considering a
path for an object through a triangle, one must simply check
that the “width” through the triangle between the entry and
exit edges be large enough to accommodate that object (for
a circular object, it must be twice the object’s radius). This
width, when traveling between (unconstrained) edgesa and
b of a triangle (see Fig. 2a), can be calculated as the closest
obstacle to vertexC in the region between the raysCa and
Cb, where an obstacle is either a vertex in the triangulation,
or a point on a constrained edge.

One can check that a width of2r through a triangle be-
tween edgesa andb is necessary and sufficient for a path to
exist for an object of radiusr between those edges in that
triangle. This eliminates the need for a separate representa-
tion of the environment for each size of object. While in the
worst case determining the width of one triangle is linear in
the number of triangles in the environment, the properties of
a triangulation make it likely that calculating the widths of
all triangles in the environment will be similarly linear.

Modified Funnel Algorithm
A search through a triangulation does not yield a particular
path, but a series of adjacent triangles with the start position
in the first triangle and the goal position in the last. From
this, we construct achannel(Kallmann 2005), a simple poly-
gon with the start and goal positions as vertices and which

traces the perimeter of the triangles in between (Fig. 2b).
Once we have this channel, we wish to find the shortest

path within it to use for object motion. For a point object,
this can be found in time linear in the number of triangles in
the channel with what is called thefunnel algorithm(Hersh-
berger & Snoeyink 1994). Obviously, since we are dealing
with larger objects, we desire an algorithm which can find
the shortest path within a channel, while keeping at least
distancer from the vertices of the channel (with the excep-
tion of the start and goal vertices). It turns out that with
some small modifications to the funnel algorithm, we can
find such a path also in linear time. We assume that such a
path is possible; if a channel cannot yield a valid path for an
object of radiusr, it would not be considered by the search.

The original funnel algorithm is described in (Hersh-
berger & Snoeyink 1994), which we will not cover for lack
of space. The simple modification to accommodate circular
objects with radiusr is conceptually adding circles of radius
r around each interior vertex, as in Fig. 2c. When consid-
ering the angle between two vertices, a segment tangent to
the circles around the vertices is used instead of a segment
connecting the vertices.

The result of this algorithm is a path consisting of arcs
around vertices and line segments tangent to these arcs, be-
tween them, as shown in Fig. 2d. This produces the opti-
mal path within the channel for an object of the given ra-
dius. However, this path requires that the object be capable
of curved motion, so when this is not available, it can be
approximated by straight segments.

Triangulation Graph Reductions
Each triangle in the triangulation is mapped to a single
“node” in the abstract graph. These nodes are categorized by
degree between 0 and 3, inclusive, which refer to the num-
ber of adjacent graph structures. Specifically, a triangle is
mapped to a degree-n node when3−n of its edges are such
that: either the edge is constrained or the triangle across that
edge is mapped to a degree-1 node.

We will cover a brief example based on the graph in Fig. 3
to illustrate how these nodes are categorized. First we go
through the triangles in the graph to determine which of
them have one or fewer unconstrained edges. In this ex-
ample, the two triangles at the top of the “Y” structure have
one unconstrained edge each since they have only one adja-
cent triangle. These are mapped to degree-1 nodes. If any
were encountered with no unconstrained edges, these would
be mapped to degree-0 nodes.

Next, we put the triangle to which these are adjacent on
to a queue for processing. We go through this queue and
find that the triangle next to the top left one now has only
one adjacent triangle not mapped to a degree-1 node, so this
triangle is mapped to a degree-1 node and the triangle at the
fork is added to the queue. This process continues until the
queue is empty. We will notice that this happens when the
triangle at the base of the “Y” is reached: it has two adjacent
triangles not mapped to degree-1 nodes. If a connected com-
ponent of the triangulation is acyclic (i.e. the triangle graph
forms a tree), this component’s triangles will all be mapped
to degree-1 nodes, since they will “collapse” from all sides.



Figure 3: Typical triangulation graph and its reduced form.

At this point we go through the other triangles in this
graph and find unmapped triangles with no constrained
edges or adjacent triangles mapped to degree-1 nodes. These
are mapped to degree-3 nodes, and then we cross each edge
and visit each adjacent unmapped triangle in turn, mapping
them to degree-2 nodes, until no such node is adjacent or the
triangle qualifies to be mapped to a degree-3 node.

In this way, the edges of the graph at the bottom of Fig. 3
would be formed, the triangles on them being mapped to
degree-2 nodes. The degree-3 nodes form the vertices of this
graph. Any remaining unmapped triangles map to degree-2
nodes, since they would form one or more “rings”.

Degree-n nodes are connected ton adjacent graph struc-
tures. Since all degree-0 nodes are based on triangles
with all constrained edges, they aren’t adjacent to anything.
Degree-1 nodes are adjacent to a degree-2 node, which we
call the “root”. For example the degree-1 nodes in the “Y”
in Fig. 3 are adjacent to the degree-2 node at the bottom of it.
The exception is when the triangulation graph is acyclic, as
described above, when the degree-1 nodes in this unrooted
tree aren’t adjacent to anything.

Degree-2 nodes are adjacent to degree-3 nodes, as shown
in Fig. 3 where degree-2 nodes on an edge are adjacent to the
degree-3 nodes that form the endpoints of that edge. Again,
if the degree-2 nodes form a “ring”, this is an exception and
they aren’t adjacent to anything. Finally, degree-3 nodes are
adjacent to other degree-3 nodes either directly adjacent or
across chains of degree-2 nodes, of which there must be 3.

This algorithm presented is linear in the number of trian-
gles in the triangulation. As well, in the case that the envi-
ronment changes, and the triangulation is repaired locallyas
in (Kallmann, Bieri, & Thalmann 2003), the abstract graph
can be repaired locally using in the best case the triangles
that were modified, and in the worst case, the connected
component that was modified.

The nodes in the abstract graph, in addition to containing
the adjacent graph structures, also contain spatial informa-
tion to be used in searching the graph. Each node contains
information on the adjacent node (if any) in each direction,a
lower bound on the distance to that triangle to help estimate
g-values, and the narrowest point between the triangles. We
also record the width between pairs of unconstrained edges

through the triangle.
Both the triangulation itself, plus all the abstraction in-

formation can be stored in an average of less than 183 bytes
per triangle, so that even the largest maps in our experiments
could be stored in around 3MB, the majority of those tested
in under 1MB, and if the environments were designed for
triangulation, considerably less. This is an important con-
sideration, especially for games.

Further Reductions
There are extensions that are possible for the graph and ab-
straction layers. Further abstraction is achievable if onecol-
lapses doubly-connected components of the abstract graph
into single nodes of a more abstract graph. Where on the
abstract graph the nodes represent decision points for which
way to go around an obstacle, in this new graph, they would
represent “rooms” in the environment which contain multi-
ple paths between their entry and exit points.

This graph would then be a tree of doubly-connected
components. Because it is a tree, the highest level of the
pathfinding problem would become trivial as there is only
one path between any two points in a tree. The best paths
between each pair of entry points of each doubly-connected
component could even be cached, after which the search
function would only have to get from the start and goal
points on to this new abstracted graph.

Abstracted Triangulation Searches
We here introduce TRA*, which searches the abstraction
described above. While these algorithms both consider
triangles as states, TA* generates children as the trian-
gles adjacent across unconstrained edges, and TRA* gen-
erates degree-3 nodes adjacent across degree-2 corridors.
This greatly benefits search because the number of degree-3
nodes is only dependent on the number of obstacles (there
are2n− 2 for n obstacles) and not their features.

TRA* also has many cases for which no real search must
take place. For example, if both the start and the goal are
in an unrooted degree-1 tree or if they are both in a tree
rooted at the same degree-2 node, we can find the path using
a simple search. This search can consider just the midpoints
of the triangles and only expand each node once, since we
know that in a tree, there is only one path between any two
points. Therefore, once we have a channel between the start
and goal points, it must contain the shortest path between
them and we can stop. If either the start or goal is in the root
triangle of a tree containing the other, we can simply walk
from the tree along the single path to the root.

If both are on the same degree-2 edge or in trees rooted
in the same edge, we form one path by walking between
them on that edge, and then consider the start and goal to
be the degree-3 endpoints of that edge and continue with the
degree-3 search to check for any shorter paths. If, however,
those endpoints are the same degree-3 node, we form an-
other path across that node to compare with the other path
and take the shortest. Similarly if both are on a degree-2
ring, we form a paths going each way around the ring and
take the shortest. Only if none of these cases hold do we
need to perform a search of the degree-3 nodes.



The search of the degree-3 nodes is performed as follows.
If the goal is on a triangle mapped to a degree-1 or 2 node,
the goals of the search are considered to be the degree-3 end-
points of the edge on which the goal lies or the tree con-
taining the goal is rooted, otherwise it is simply the node
mapped to by the triangle containing the goal. Likewise, the
queue for the search algorithm is initialized with either the
node mapped by the triangle on which the start lies if that is
degree-3, or those adjacent to it if not. Search then proceeds
as before moving between the degree-3 nodes of the abstract
graph, with the same considerations as TA*.

Experiments
While one could argue that our technique is not compara-
ble to grid-based pathfinding techniques, this type of en-
vironment offers both a plethora of maps used in commer-
cial games and fast algorithms with which to compare ours.
Hence we took this opportunity to see if TA* and TRA*
could beat these other techniques “at their own game”.

For comparison sake, we used the exact same maps, and
start and goal points as in the PRA* experiment presented
in (Sturtevant & Buro 2005). The data was kindly made
available by the authors. In the interest of simplicity, we
also used the results from that experiment, with the excep-
tion of halving the execution times to adjust for the different
CPU speeds. The set of maps consisted of 75 Baldur’s Gate
maps — a grid of tiles marked traversable or untraversable
— and 41 WarCraft III maps — a grid of different types
of terrain and heights in which paths cannot cross height
differences without ramps, or boundaries between different
types of terrain. All maps were scaled to512 × 512, while
maintaining their connectivity. Each map contained 1280
paths with length between 0 and 511, 10 in each of 128
“buckets” (a path with lengthl belonging to bucketi ex-
actly wheni = ⌊l/4⌋). Both TA* and TRA* were run on
the total 148480 paths over 116 maps on a computer with an
AMD Athlon64 3200+ processor and 1GB of RAM using
Microsoft Visual Studio .NET 2003. As with A* and PRA*,
neither TA* or TRA* have been highly optimized for speed.

Both TA* and TRA* performed admirably in almost all
cases. Despite not benefiting from the abstraction infor-
mation, TA* still found most paths faster than the grid-
based methods (see Fig. 4 and note the scale on the time
axes). This is a testament to the usefulness of triangu-
lations for reducing the number of nodes in the environ-
ment. One can also note that because the environments were
grid-based, non-axis-aligned barriers were approximatedby
jagged edges, and there were more triangles in the environ-
ment than if it was built using off-axis segments.

Of course, TRA* does not suffer from this effect, its size
only depending on the number of obstacles, not their shape.
As a result, TRA* performed better overall, as seen in Fig. 4,
demonstrating the effectiveness of the abstraction on the tri-
angulation, reducing the effective number of nodes in the
environment even further. One advantage TA* had over
TRA* is that since TRA* skipped between degree-3 nodes
in search, it was not able to calculate as accurateg-values as
TA*. As a result, TRA* was sometimes led astray more and
also could not prove its solution to be optimal as quickly.

 0

 50

 100

 150

 200

 250

 300

 0  100 200 300 400 500

T
im

e 
(m

ill
is

ec
)

A* path length

A* Execution Time

 95%  
 75%  

Median
 25%  
  5%  

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500

A* path length

PRA* Execution Time

 95%  
 75%  

Median
 25%  
  5%  

 0

 2

 4

 6

 8

 10

 12

 0  100  200  300  400  500

T
im

e 
(m

ill
is

ec
)

A* path length

TA* Execution Time (F=1)

 95%  
 75%  

Median
 25%  
  5%  

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  100  200  300  400  500

A* path length

TRA* Execution Time (F=1)

 95%  
 75%  

Median
 25%  
  5%  

Figure 4: Time percentiles for A*, PRA*, TA*, and TRA*

Due to the aforementioned estimations and the need to
consider all paths to each node, one thing that posed a
problem to the triangulation searches was the presence of
many, especially small obstacles — this was most apparent
in the WarCraft III maps, which were often sprinkled with
trees. Besides creating more triangles for TA* to search and
degree-3 nodes for TRA* to search, this forced them to con-
sider a large number of paths to each node. In the case of
small obstacles, these paths differed very little in theirg-
values, keeping the searches from pruning them.

Because of this, a small fraction of searches would take
several times longer than the others. Since these would not
be acceptable in a real-time setting, we modified TA* and
TRA* slightly to not expand a triangle twice until the first
path was found. This allowed for the first paths to be found
much faster, without affecting subsequent paths.

The path quality of the anytime algorithms are shown in
Fig. 6. TheF values refer to the multiple of the time to find
the initial path at which the statistics were taken. The graphs
show the 75th and 95th percentiles for the path lengths for
the algorithms, divided by the length of the path found by
TA* with F = 10, or TA*(10). This was chosen because in
most cases, TA*(10) was optimal, but to address the times
when it was not, the “bound” line was added to these graphs.
Since we know that the A* paths were optimal when con-
strained to a grid, this line represents the minimum length a
pathcouldhave without this constraint. The bound for the
nth percentile is calculated as the(100 − n)th percentile of
the A* length, divided by a constantC ≈ 1.0824 which rep-
resents how much longer a grid-based path could possibly
be over its arbitrary motion equivalent.

We see when looking at the bound that TA*(10) is defi-
nitely within 4% of the optimal path length 75% of the time,
and within 6%, 95% of the time. As these graphs show, TA*



 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  100 200 300 400 500

tim
e 

ra
tio

A* path length

Median Speedup over A*

TRA*(F=1)
TA*(F=1)

PRA*

 0

 50

 100

 150

 200

 250

 0  100 200 300 400 500
# 

no
de

s 
ex

pa
nd

ed
 / 

10
00

A* path length

Node expansions (90-th perc.)

A*
PRA*

TA* (F=1)

Figure 5: Median speedup and90th node expansion perc.

 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

 0  100 200 300 400 500

Le
ng

th
 R

at
io

A* path length

TA* Path Length Ratio (75. perc.)          

A*
F=1
F=2

bound

 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 0  100  200  300  400  500

A* path length

TA* Path Length Ratio (95. perc.)          

A*
F=1
F=2
F=4
F=6

bound

 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06
 1.08

 0  100 200 300 400 500

Le
ng

th
 R

at
io

A* path length

TRA* Path Length Ratio (75. perc.)            

A*
F=1
F=2
F=4

bound

 0.92
 0.96

 1
 1.04
 1.08
 1.12
 1.16
 1.2

 1.24
 1.28
 1.32

-100  0  100 200 300 400 500

A* path length

TRA* Path Length Ratio (95. perc.)            

F=1
A*

F=2
F=4
F=8

bound

Figure 6: Path length ratio percentiles for TA* and TRA*

finds its shortest path most of the time right away, although
less so on longer paths. As seen in the top-left graph, in 75%
of paths, the first solution found rarely differs from the last,
only when looking at the 95th percentile graph do we see
that a need for more time to achieve this result.

The bottom graphs show that TRA* requires higherF
values to avoid this departure from the final solution. This
is because TRA*’s slightly less preciseg-values sometimes
cause it to take several times longer to find its final solution
than its first. However, because TRA* finds its first solution
so much faster than TA*, it can often reach its final solution
before TA* finds its first. We also see that even when the
path degenerates from TA*(10), the path length is usually
still less than the optimal path when constrained to the grid.

The fact that the time to find the optimal solution, or one
near it, increases with the A* path distance of the path can
be used to our advantage. The length of the first path found
can be used to determine for how much longer the algorithm
should be run in order to be likely to find a path within a
certain amount of optimal.

We see when comparing the TA* and TRA* performance
in the left graph of Fig. 5 that just the benefit of the trian-
gulated representation of the environment makes TA* many
times faster to find a first path than both grid-based methods,
and the added benefit of the abstraction makes TRA*’s first
solution even faster. We also see how many node expan-
sions are saved using these methods — in the right graph,
TA*’s node expansions are barely visible, with TRA*’s (not
shown) being significantly less than that.

For the environments used, the preprocessing took
roughly 20µs per triangle, with almost half the time being
spent on each the triangulation and abstraction portions and
an almost negligible amount on point location sectors.

Conclusion and Future Work
In this paper we have shown several benefits of
triangulation-based pathfinding including precisely repre-
senting any polygonal environment, pathfinding for non-
point objects, producing paths with arbitrary motion, signif-
icantly reducing the search space especially if triangulation
graph reductions are applied, and providing anytime search
algorithms which find the first path very quickly, and refin-
ing it to the optimal path. Compared with the standard A*
search and its recent improvement PRA* our new algorithms
TA* and TRA* perform better on a large set of maps.

There are many possible extensions to this method which
warrant further exploration. The natural benefits to provid-
ing a channel instead of a single path could be useful when
considering multiple units moving in a group. Also the ab-
straction information would be an excellent basis for terrain
analysis, since dead ends, corridors, intersections, and choke
points are already identified. Finally, many techniques de-
signed for use with a grid representation have potential on a
triangulation with minor modification.

Acknowledgments
We thank Nathan Sturtevant for his assistance with this pa-
per. Financial support was provided by NSERC and iCORE.

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding.J. of Game Develop.1(1):7–28.
Hershberger, J., and Snoeyink, J. 1994. Computing min-
imum length paths of a given homotopy class.Computa-
tional Geometry Theory and Application4:63–98.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A.
1996. Hierarchical A*: Searching abstraction hierarchies
efficiently. InAAAI/IAAI Vol. 1, 530–535.
Kallmann, M.; Bieri, H.; and Thalmann, D. 2003. Fully
dynamic constrained delaunay triangulations. InGeomet-
ric Modelling for Scientific Visualization. Springer-Verlag.
241–257.
Kallmann, M. 2005. Path planning in triangulations. In
Proceedings of the IJCAI Workshop on Reasoning, Repre-
sentation, and Learning in Computer Games, 49–54.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding
using map abstraction and refinement.AAAI1392–1397.


