
Signal Optimization via Heuristic Search and Traffic
Simulation

by

Abdullah

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Abdullah, 2021

Abstract

Traffic congestion is a severe problem in many cities. One way to reduce it

is by optimizing traffic signal timings. Experts spend a lot of time analyz-

ing traffic patterns to produce good handcrafted timing schedules. However,

these timing schedules can be less responsive when there is a sudden change in

traffic flow. In this thesis, a novel way to formulate the traffic signal optimiza-

tion problem as a signal-player game is proposed. The model uses a heuristic

search algorithm called Monte Carlo Tree Search (MCTS) which is incorpo-

rated with a traffic simulator called Simulation of Urban MObility (SUMO)

to approximate the optimal traffic signal timings. The model is tested against

handcrafted timing schedules across different types of road networks, such

as interconnected intersections, a long corridor of intersections, and intersec-

tions with Light Rail Transit (LRT) crossings. Experimental results show that

our model performs significantly better in most cases when compared to our

handcrafted policies. For instance, in one of the networks, our search model

outperforms the handcrafted policy by 29% in all performance measures we

considered. Moreover, in a real-world scenario with LRT crossings, MCTS

surpassed the handcrafted policy by 18%. The strength of our model is that

it can foresee changes in traffic flow patterns through simulations and react

accordingly. Therefore, MCTS along with simulations is a viable alternative

to experts handcrafting traffic light timing policies manually.

ii

Acknowledgements

I am grateful to my supervisor Dr. Michael Buro for all his help and support.

His guidance and valuable comments helped me think more critically. I am also

thankful to Autonomous Systems Initiative (ASI) for supporting this project

financially.

Most importantly, I would like thank my wife, Suzana for all her love and

support through out my masters. She motivated me when I felt depressed and

always encouraged me to give my best. I also want to thank my parents for

their love and support.

iii

Contents

1 Introduction 1

2 Background 4
2.1 Terminology . 4
2.2 Traffic Signal Optimization . 5

2.2.1 Fixed Timing Systems 5
2.2.2 Responsive Timing Systems 5
2.2.3 Different Types of Objective Functions 9

2.3 Monte Carlo Tree Search . 10
2.3.1 Selection . 11
2.3.2 Expansion . 13
2.3.3 Rollouts . 14
2.3.4 Backpropagation . 14

2.4 MCTS and Traffic Optimization 14

3 Signal Optimization via Heuristic Search and Traffic Simula-
tion 16
3.1 Formulating the Traffic Signal Optimization Problem as a Single-

player Game . 16
3.2 Combining MCTS with SUMO 19

4 Experimental Setup 26
4.1 MCTS Setup for Experiments 26
4.2 SUMO . 27

4.2.1 Configuring SUMO . 28
4.2.2 Computing Objective Function and Performance Metrics 28
4.2.3 Driving Policies in SUMO 31
4.2.4 Incorporating MCTS with SUMO 31
4.2.5 Parallel MCTS with SUMO 32
4.2.6 Speeding up SUMO Simulations 32

4.3 Road Networks in SUMO . 33
4.3.1 Real World Implementation 33
4.3.2 Interconnected Intersections 34
4.3.3 Long Corridor of Intersections 36
4.3.4 Real World Intersections with Railway Crossings 37

5 Experimental Results 39
5.1 Optimizing the Number of Iterations for MCTS 40
5.2 Optimizing the Exploration Constant for MCTS 43
5.3 Selecting a Rollout Policy for MCTS 45
5.4 MCTS vs. Handwritten Time Schedules 49

5.4.1 Interconnected Intersections 49
5.4.2 Long Corridor of Intersections 51

iv

5.4.3 Real World Intersections with Railway Crossings 53

6 Conclusion and Future Work 56

Bibliography 59

v

List of Tables

4.1 Runtimes for different methods 34

5.1 Total distance traveled in the network for different MCTS iter-
ations and the random baseline policy 41

5.2 Total distance traveled in the network for different C values
together with their standard errors 44

5.3 Comparison between different Rollout Policies without MCTS
with standard errors in parentheses 48

5.4 Comparison between different Rollout Policies with MCTS with
standard errors in parentheses 48

5.5 Comparison between MCTS and Handwritten Policy on Net-
work 1 with standard errors in parentheses 50

5.6 Comparison between MCTS and Handwritten Policy on Net-
work 2 . 53

5.7 Comparison between MCTS and Handwritten Policy on Net-
work 3 . 54

vi

List of Figures

2.1 Steps of Monte Carlo Tree Search 11

3.1 Saved state before calling MCTS 21
3.2 Root node and its edges corresponding to the saved state . . 22
3.3 Edge rewards after exploring all edges 23
3.4 Edge rewards after selecting and exploring the first edge . . . 23
3.5 Edge rewards after selecting and exploring the third edge . . . 24
3.6 Tree expansion when intersection Jn02 is changing phase . . . 24

4.1 Network 1: a road network with 6 intersections 35
4.2 Four signal phases of an intersection 36
4.3 Network 2: a corridor of intersections 37
4.4 Network 3: a road network with LRT crossings 38

5.1 The first of the 106 starting scenario with the top-middle inter-
section zoomed . 40

5.2 The second of the 106 starting scenario with the top-middle
intersection zoomed . 41

5.3 Total distance traveled in the network for different iterations . 42
5.4 Average total distance traveled in the network for different C

values . 44

vii

Chapter 1

Introduction

Throughout the last decade, there has been a drastic growth in population in

most major cities of the world. Similarly, the number of vehicles on the road

has risen considerably [31]. Thus, traffic jams are causing serious problems for

many cities because they have an adverse impact on people and the environ-

ment. Waiting increases fuel consumption, which leads to an increased amount

of money spent on fuels [30]. Moreover, traffic congestion can negatively affect

a city’s economy in many ways. For instance, congestion can stress people

out because it makes people late to work. This can badly affect their mental

state and as a result, their performances can get worse. In addition, important

deliveries such as food or medical supplies can arrive late.

Traffic congestion can be mitigated in various ways. Two of the most

common approaches are building new roads or expanding existing roads. Both

are expensive and require a lot of time to implement. Another way to tackle

traffic congestion is to optimize traffic signal timings for increasing the traffic

flow. Optimizing the traffic timings can save money since it takes an existing

traffic infrastructure and tries to increase traffic throughput in the network.

Therefore, we want to create a timing schedule that can adapt and react to

increasing traffic within a network of roads. This can greatly improve the

traffic movements without having to alter any road infrastructure [66]. Since

the roads in a city are inter-connected with alleys and other narrow roads,

optimizing only the major intersections is insufficient as this may increase the

flow of traffic towards smaller intersections. Hence, optimization should be

1

done on all intersections of a given network. Optimizing traffic signal timings

can improve network flow while reducing other factors such as fuel consumption

or waiting time. To improve traffic flow, different objective functions can

be optimized [24]. Popular optimization objectives are: increasing the total

distance traveled or the number of completed trips or reducing the number of

stops.

Traffic optimization techniques try to reduce traffic congestion by creating

optimized timing schedules for traffic signals. They can effectively minimize

delays, fuel consumption and improve flow, safety, and cost management in the

traffic system. Previous work in this domain is heavily based on mathematical

optimization or evolutionary techniques. However, mathematical optimization

techniques require precise mathematical domain models. In addition, real-

world schedules are handwritten, which requires extensive analysis of traffic

patterns. In this thesis, we propose a model that uses a search algorithm along

with traffic simulation to approximate the optimal timings for traffic signals

without requiring to analyze any traffic patterns. Search algorithms explore

different possibilities to identify patterns in traffic flow by themselves.

In this work, we model the traffic light optimization problem as a single-

player game and use a search algorithm to approximate the optimal timings of

traffic signals. In particular, given an objective function f that maps a traffic

history of fixed duration T , to a real number such as total distance driven,

our goal is to find a sequence of traffic light duration that maximizes f . A

more detailed formulation is given in Ch. 3. To optimize traffic light schedules

we use a search algorithm called Monte Carlo Tree Search (MCTS) to achieve

traffic signal coordination across several traffic intersections. MCTS takes the

current state of the game and builds a search tree by choosing moves from a set

of possible actions and performing simulations. These simulations help MCTS

determine the outcome or result of choosing particular action sequences. The

reason behind using a search algorithm along with simulations is that it gives

us the ability to look ahead and find changes in traffic movements. To per-

form traffic simulations, we use a traffic simulator called Simulation of Urban

MObility (SUMO) [36]. For this research, we have written our own MCTS al-

2

gorithm that uses the SUMO simulator. We tested the performance of MCTS

across various traffic networks, including real-world scenarios containing rail-

way crossings. To measure the performance of MCTS, we used four different

traffic metrics: the total distance traveled in the network by all the vehicles,

the total number of stops, total delays, and the number of completed trips.

We compare MCTS’s performance with handwritten traffic timing schedules.

Our experiments show that MCTS either performs better or equally well to

the handwritten schedules we designed, which indicates that search algorithms

can be beneficial in this domain.

The contributions of our research work are:

1. We formulated the traffic signal optimization problem as a single-player

game, which allows us to use standard tree search algorithms, such as

MCTS, for optimization

2. We created a model that takes LRT schedules into consideration and

looks ahead into the future and plans accordingly. Previous work on

traffic optimization only considers current data or historic traffic data.

3. We use MCTS to make decisions for multiple intersections in a net-

work by considering major traffic participants (like LRTs) to plan better.

Monte Carlo Tree Search has been used previously for a single intersec-

tion but not for a whole network. .

The remainder of the thesis is organized as follows. Ch. 2 will focus on

related work and background knowledge on traffic signal optimization and

heuristic search. Ch. 3 will discuss the formulation of traffic light optimization

as a single-player game and describes how a search algorithm can be combined

with a traffic simulator. Ch. 4 will present our experimental setup. Subse-

quently, Ch. 5 will describe our simulation results as well as their analysis.

Finally, Ch. 6 will provide a summary and a discussion of future work.

3

Chapter 2

Background

This chapter provides some necessary background knowledge to better un-

derstand the thesis. First, important terminology related to traffic signals is

introduced. Then we discuss previous work on traffic signal optimization and

Monte Carlo Tree Search.

2.1 Terminology

There are three terms that are fundamental to traffic signal coordination: cycle

length, split, and offset. The definition of each term is taken from the literature

[61].

1. Cycle Length is defined as the time it takes to iterate over a set of

distinct phases. For example, a traffic signal has three phases, yellow

(Y), red (R), and green (G), and they are arranged in the following

sequence: YRG. The duration of the yellow, red, and green phases are

5, 10, and 15 seconds, respectively. Then the cycle length is 30 seconds.

To coordinate the phases between two adjacent intersections, their cycle

lengths need to be the same [45].

2. Split are commonly referred to as the length of the green phase. In

other words, it is the amount of time set aside for this phase. The split

for the example described above will be 15 seconds.

3. Offsets refer to the difference in time between the same phase of two

adjacent traffic signals. It defines how far behind or ahead the starting

4

time of a traffic signal’s phase is with respect to a reference point, which

can either be a traffic signal or a master clock. For example, if there are

two traffic signals, A and B, and A is the reference point then the offset

of B is how far behind B’s green phase is to A’s green phase.

2.2 Traffic Signal Optimization

Finding a good sequence of timings for traffic signals in a short period of time

is difficult because it is a combinatorial problem. To get real-time solutions,

different optimization algorithms can be used to achieve coordination within

traffic networks [18]. Existing traffic control systems can be divided into two

major groups: fixed timing systems and responsive timing systems.

2.2.1 Fixed Timing Systems

In fixed timing systems, all parameters, such as cycle lengths, offsets, splits,

and phases are kept fixed for certain time period during the day based on

historic traffic data [21]. To accommodate for changing traffic flow throughout

the day, different hand-crafted timing schedules are used that are created based

on traffic flow [66]. The shortcoming of fixed timing systems is that they can

not react to sudden changes in traffic flow.

2.2.2 Responsive Timing Systems

Since the 1970s, a variety of responsive traffic control systems have been im-

plemented for improving traffic signal coordination systems (e.g., [4], [34] and

[20]). For example, many cities around the world are using systems such as

SCOOT (Split Cycle Offset Optimization Technique) [6], SCATS (Sydney Co-

ordinated Adaptive Traffic System) [57], and TRANSYT (TRAffic Network

StudY Tool) [47] to optimize their traffic control systems. SCATS is one of

the earliest traffic control systems that significantly improved traffic move-

ment at a low cost. To minimize the degree of saturation of roads, SCATS

chooses a plan from a set of predefined signal plans for different times of the

day. Another widely used system is SCOOT. It reduces the number of stops

5

and delays in a network by continuously measuring traffic density on all ap-

proaches of an intersection and making small changes to phase lengths, offsets,

and cycle lengths. TRANSYT is based on a hill-climbing type of optimiza-

tion technique that tries to balance total delay and the number of stops in

a network. Responsive traffic control systems can be further split into two

categories: actuated and adaptive traffic control systems.

Actuated Traffic Control Systems

In actuated traffic control systems, the phase lengths are constantly adjusted

by utilizing traffic sensors. They use simple calculations to come up with

signal timings. These systems do not predict traffic flow but rather detect

changes in traffic using historical and current data. There are two types of

actuated traffic control systems based on sensor usage. The first one is a fully

actuated traffic control system and the other one is semi-actuated. In the

semi-actuated system, the sensors are used only in the minor roads, whereas

in the fully actuated system, all roads at different intersections have traffic

sensors [10].

Adaptive Traffic Control Systems

Adaptive traffic control systems optimize by predicting traffic movement and

planning accordingly to improve vehicle movement in arterial roads, which are

high-capacity urban roads [4], [17]. Different algorithms have been proposed

for adaptive traffic control systems, which are discussed next.

1. Webster

Webster [29], calculates a cycle length that reduces the waiting time

of vehicles, which is the delay at an intersection. The cycle length is

computed based on the number of vehicles and the time loss. Time loss

is the time required to accelerate and leave the intersection. Once the

cycle length is determined, the green split is calculated based on the

ratio of the volume of vehicles per phase. Since Webster only works with

a single intersection, it cannot coordinate multiple intersections.

6

2. Green Wave

Another common signal scheduling technique is called a green wave. It

minimizes vehicle delays by syncing the traffic signals along a corridor,

ensuring smooth progression of the vehicles [4]. This strategy drasti-

cally reduces waiting times and pollution and at the same time increases

traffic movement throughout a city. To achieve a green wave, the cycle

lengths for all intersections need to be the same. The offsets for the

green phases are calculated based on the distance between intersections

and the average speed of vehicles. Many optimization algorithms, such

as Particle Swarm Optimization and Genetic Algorithms can be used to

find good green wave schedules. The green waves can greatly benefit ve-

hicles traveling in one direction due to the continuous sequence of green

signals but might not be beneficial in the opposite direction [63].

An algorithm was proposed in [5], which calculates the starting tim-

ing of green phases to create a green wave. The authors calculated the

amount of time required for an intersection to stay green so that an

emergency vehicle can pass through without stopping. The formula was

the queue length at an intersection multiplied with the time it takes for

one car to pass that intersection. Furthermore, to ensure coordination

among consecutive intersections for green waves, the authors suggested

that one traffic light should turn green before another traffic light de-

pending on the route of the emergency vehicle. In addition, the difference

in their timings should be the time it takes for a car to travel from one

intersection to another.

3. MAXBAND

Using mixed-integer linear programming, a traffic control system called

MAXBAND was introduced in [35]. MAXBAND utilizes fixed cycle

lengths and determines the splits and offsets to find the maximum band-

width for the green phases to synchronize intersections along a cor-

ridor. In another study [19] the authors improved the MAXBAND

method by proposing the MULTI-BAND method, which not only consid-

7

ers traffic movement in one direction but also incorporates dedicated left

turns. Moreover, in [60] the authors modified the MAXBAND method

by dividing a large network into smaller sub-networks. Then, by using

MAXBAND, the model finds the maximum green bandwidth solution for

these small networks. Afterwards, these sub-solutions are used to build

a solution for the whole network prioritizing the peak traffic direction.

4. Actuated and Self-Organizing Control Systems

Actuated and self-organizing control systems use sensor data along with

a set of rules to determine phase lengths (e.g., [29] and [14]). The phase

lengths are determined based on requests, which are defined by how

many cars are near or passing through an intersection. Upon receiv-

ing requests, the control system looks at preset rules and determines

whether to change to the next phase or extend the length of the current

phase. The difference between actuated and self-organizing systems lies

in the request. For the actuated system, if vehicles are approaching the

intersection during a green phase, a request is generated, whereas, for

the self-organizing system, a request is generated when the number of

vehicles approaching an intersection crosses a limit.

5. Other Optimization Techniques

A comparative study on particle swarm optimization and social learning

particle swarm optimization (SL-PSO) was conducted in [10]. In SL-

PSO, at every iteration, the randomly generated particles update their

positions based on the values of the best particles. The authors used an

objective function that measures total travel time and the constraints

were defined in terms of cycle length, the length of the green phase,

and delay. The paper results showed that both optimization techniques

performed similarly. Another algorithm was proposed in [52], in which

the authors suggested that the duration of the first intersection of a

corridor depends on the queue length multiplied with the time taken

for vehicles to leave the intersection plus a time loss for acceleration.

8

Timings for the subsequent intersections are calculated similarly. The

offset then is the distance between the intersection divided by the average

speed. A greedy algorithm was proposed in [2], which gathers vehicular

information at each intersection through mobile GPS, and based on the

longest queue, the timing for the green phase is assigned. The system

relies heavily on vehicle GPS information which is collected through a

mobile application. For a scenario in which no drivers have the mobile

application, the system will choose a static cycle length.

2.2.3 Different Types of Objective Functions

The most commonly used objective functions in the literature are delay, travel

time and the number of stops (e.g., [37], [58], [62], [65] and [40]). Apart

from these, there exist other objective functions, such as throughput and

throughput-minus-queue. Throughput is the number of vehicles that have

passed through the network and throughput-minus-queue is the difference be-

tween the total number of vehicles passing through the network and the sum

of the queue lengths at every intersection. Maximizing throughput-minus-

queue rather than throughput, can produce better results in over-saturated

conditions since it reduces gridlocks in the network (e.g., [25], [43] and [11]).

Different objective functions (delay, travel time, throughput, number of

trips, and weighted trips) were compared to find out which was most effec-

tive in traffic signal timing optimization [24]. The authors of [24] used dif-

ferent demand patterns (traffic scenarios) on a network and then evaluated

8 performance measures to compare the objective functions. The demand

patterns were symmetric under-saturated, symmetric over-saturated, asym-

metric under-saturated, and asymmetric partially over-saturated. The paper

found that all objective functions performed similarly in the under-saturated

scenario, but for the over-saturated scenario, throughput and weighted trip

maximization outperformed the others.

A different objective function was explored in [33], in which the authors

maximized the proportion of non-stopping vehicles to the total number of

vehicles traveling through a corridor of intersections. A linear combination of

9

this ratio and the average time traveled was considered and using an iterative

signal control algorithm, the values for the splits were determined.

2.3 Monte Carlo Tree Search

Tree search algorithms, such as breath-first search and mini-max search are

often used in games to select moves. These algorithms explore all branches

in the tree to ensure that all possible move variations are checked within the

search horizon. However, they require exponential time in the worst case to

visit all the branches. In 1987, Bruce Abramson combined mini-max search

with the Monte Carlo method (an expected-outcome model based on random

game playouts) and found that it significantly improved the search time [1].

Monte Carlo (MC) methods have been initially used in statistical physics and

mathematics for optimization and numerical integration. The concept of using

randomness to solve deterministic problems (gives the same output for the

same initial input) is quite useful in solving higher-dimensional integrals. MC

chooses random values to evaluate the integral [64]. The combination of tree

search and MC is known as Monte Carlo Tree Search (MCTS) which was

introduced by Rémi Coulom in [15]. MCTS has been highly successful as a

search algorithm framework. It has been used in many games such as Go,

Chess, and Shogi (e.g., [8], [41] and [54]) to create world-class game playing

systems.

MCTS has also been applied to single-agent games. One of the earliest

examples is the work on SameGame in [50], in which MCTS was able to

obtain a high score on standardized tests. This is remarkable because the size

of the game tree is approximately 21.162.2, where 21.1 is the average branching

factor and 62.2 is the average game length. The authors allowed an equal

computational budget over multiple runs and created a tree per move rather

than a tree per game.

In MCTS, a single iteration consists of four distinct steps: Selection, Ex-

pansion, Simulation, and Backpropagation, as shown in Fig. 2.1. In each

iteration, MCTS expands the tree and stores the previous search information

10

Figure 2.1: Steps of Monte Carlo Tree Search [49]

in nodes and edges. Nodes store search information including the state of the

game, whereas edges store search information. With this information, MCTS

can choose edges more efficiently and steer the direction of the search towards

better actions. This is part of the selection process which is crucial since the

tree can grow large depending on the branching factor. Hence, it becomes

quite expensive in terms of memory and time to explore branches of the tree

that have a low expected reward. Through the selection process, we can ensure

a balance between exploitation and exploration of branches. Details about the

MCTS phases are discussed next.

2.3.1 Selection

The selection process controls how the tree is traversed. Exploration refers

to testing or trying out unseen or seemingly non-optimal possible actions for

finding a global optimum. More exploration implies that the tree will grow

wider in size, whereas exploitation greedily chooses the action with the best-

estimated reward. An exploitation strategy will make the tree grow deeper as

we traverse certain edges more often and expand only those edges. If MCTS

explores more branches then finding a good solution in a short amount of time

may be difficult. However, if MCTS exploits more, then our search is most

likely to find sub-optimal solutions as it will not visit other moves.

One problem that closely resembles this predicament is the Multi-Armed

11

Bandit Problem. In this problem, a gambler is presented with an n-armed

slot machine and the gambler has to pull a set number of arms to gain money.

The gambler then repeatedly pulls an arm and receives a reward, with the

goal of maximizing his overall reward. A popular solution to this is the Upper

Confidence Bound (UCB1) algorithm [3]. UCB1 is an optimistic algorithm in

which actions are evaluated based on observed performance and future poten-

tial. The formula for UCB1 is as follows:

UCB1(a) = Q(a) +

√
2 log t

N(a)
(2.1)

where t is the total number of trails so far, N(a) is the number of times actions

a has been explored, and Q(a) is the average reward for action a. An action’s

value decreases the more it is chosen. This encourages the algorithm to explore

other actions with higher values. UCB1 requires exploring the actions at least

once before selection takes place [42]. It assumes that the rewards gained from

each action are between [0,1].

In [28], the authors developed UCT (Upper Confidence Bounds for Trees)

algorithm, which is a well-known MCTS variant that is based on UCB1 [3], in

which the selection process was biased towards the moves with high rewards.

This can be achieved by adding an exploration value to the estimated value,

which is the expected reward of an action, and calculated by dividing the total

reward gained by playing a move by the total number of times the move has

been visited [23]. It associates a bandit problem with each search node. The

modified action evaluation equation for UCT is as follows:

UCT (s, a) = Q(s, a) + C

√
logN(s)

N(s, a)
(2.2)

Here, N(s) is the number of times the state s has been visited, N(s, a) is the

number of times action a has been chosen, and C is a constant which controls

the amount of exploration and exploitation. For high values of C, UCT will

explore more, and with lower C values UCT will exploit more. Therefore, with

a high C value, the UCT value of less-visited edges will surpass the most visited

edges and MCTS will be forced to explore those edges. UCT was implemented

12

in MoGo (a computer program for playing Go), and in 2008, MoGo became a

master in 9× 9 Go.

Using UCT requires the search to visit all actions in a node at least once.

This can be costly if the branching factor is high. To overcome this, a popular

type of UCT search called Predictor + UCT (PUCT) was introduced in [48].

Later in 2015, Google Deepmind developed AlphaGo based on PUCT, which

was able to defeat a professional Go player on the regular 19×19 board for the

first time [53]. In 2017, AlphaGoZero [56], and AlphaZero[55] was introduced,

which was able to learn Chess, Shogi, and Go from scratch and bested many

world champion programs. The predictor acts as a guide that informs MCTS

about how good or how bad an action is. This helps MCTS to divert its search

towards better actions and not waste resources while exploring actions that

will not yield a good end game reward. The updated formula for PUCT is

PUCT (s, a) = Q(s, a) + CP (s, a)

√
N(s)

1 +N(s, a)
(2.3)

Here, P (s, a) is the predictor value that corresponds to prior probability of

an action. It acts a guide and helps to ensure that, initially, MCTS does

not explore all actions but rather use the search budget on actions with high

PUCT values and low visits. Later on, actions with higher Q(s, a) values are

exploited more.

2.3.2 Expansion

Expansion is about how nodes are added to the search tree in each iteration.

One strategy is to add a fixed number of nodes in every iteration but this

can lead to the tree expanding more rapidly and consuming more memory.

Another way is to expand a node only when there have been at least k visits,

which ensures some level of confidence in the node. For our experiments,

we used a strategy outlined in [59]. The strategy expands a single node in

every iteration because our computation is not tree-size bound, but rather

simulation-time bound.

13

2.3.3 Rollouts

Simulations are performed based on rollouts. Rollouts generate sequences of

actions that advance the game to a terminal state that can be easily evaluated.

Rollouts select actions based on specific policies. For example, in a random

policy, actions are selected randomly from a uniform distribution, whereas

more informed policies can either be handcrafted or generated by a learning

algorithm. At the end of a rollout, the result of the state is calculated and

passed back up the tree.

2.3.4 Backpropagation

The results of rollouts are propagated up the tree along the same path traversed

in the selection step. During backpropagation, the edge statistics are updated

in the following way:

N(s, a)←− N(s, a) + 1 (2.4)

Q(s, a)←− (Q(s, a) ∗ (N(s, a)− 1) +R(s, a))/N(s, a) (2.5)

Here, we increment the number of visits and we update the total edge reward

by adding the reward calculated from the rollout. This is done on every edge up

to the root node. The newly updated statistics are then used by the selection

step in the next iteration.

2.4 MCTS and Traffic Optimization

Due to MCTS’s immense success, many researchers have applied it in different

domains including traffic optimization [44]. However, previous work has only

used MCTS for a single intersection, whereas we are using MCTS for multiple

intersections. It is the tree expansion technique that makes MCTS a great

algorithm to make decisions without having to have extensive knowledge on a

domain [7]. In [39], several algorithms including Covariance Matrix Adapta-

tion Evolution, Genetic Algorithm, Particle Swarm Optimization, Differential

Evolution, Monte Carlo, and Archipelago were compared based on the number

of stops and completed trips. The authors found that the evolution method

14

using the covariance matrix adaptation strategy performed best. In [13], UCT

was used in conjunction with the fuel consumption metric to compute actions

for connected autonomous vehicles (CAVs). In this work, MCTS decides ei-

ther to maintain a constant speed or accelerate or decelerate. The decisions

are made based on whether a CAV can cross at a traffic light safely or not.

15

Chapter 3

Signal Optimization via
Heuristic Search and Traffic
Simulation

This chapter is focused on the formulation of the traffic optimization problem

as a single-player game. We also describe the process of incorporating MCTS

with a traffic simulator by using a small network as an example.

3.1 Formulating the Traffic Signal Optimiza-

tion Problem as a Single-player Game

In this section, we define the game state, actions, and terminal state for our

game. Games can be categorized into the following: single-player vs. mul-

tiplayer, deterministic vs. stochastic, and perfect information vs. imperfect-

information, etc. In a traffic network, one or more traffic signals need to make

decisions about the length of their next phase. Traffic signal optimization can

be viewed as a cooperative multiplayer game in which each traffic light is an in-

dividual player, acting by itself in choosing its next phase length. Traffic lights

making their own decisions can be regarded as decentralized control. But in

our case, we view the problem as a centralized control problem in which a

centralized control agent chooses the phase lengths for all signals. This makes

coordinated planning between traffic signals much easier, allowing us to model

the traffic light optimization problem as a single-agent optimization problem.

Furthermore, in the real world, traffic networks are stochastic, as there is al-

16

ways randomness in car movements. In our simulations, the routes for each car

are set before it enters the network. Therefore, the vehicles’ destinations are

assumed to be known, but the movements of vehicles are stochastic. There-

fore, states reached by a given move sequence are unique. This means that

our game is a perfect information game, and thus amenable to straightforward

MCTS search.

In what follows, we will formalise our single-player traffic game by defining

the game state, actions, state transition and terminal state. The game state

at time t is defined as follows:

st = [current time t,
all vehicles’ positions along their trajectories,
all vehicles’ speeds,
current phase of all traffic lights,
remaining duration of each phase]

It is possible to simulate a game by using a game state and a traffic network.

The simulator can position the vehicles in the network by using the existing

information from the game state and subsequently, apply actions to the state

to change signal phases. Applying a move and simulating the game forward

is done by the method make_move(move). This method takes a move in the

form of (junction id, time) and changes the phase of junction junction id to

the next phase, and assigns the time to this junction. The pseudo-code of

make_move(move) is described in Alg. 1. The nextPhase of a junction can

be found from the sequence of phases assigned to an intersection. So, if the

current phase was “red”, then the next phase would be “green”. If there are

no actions to execute then the method would progress the game forward until

a traffic light has 0 seconds remaining for its current phase or the game has

reached its terminal state.

17

Algorithm 1 Pseudo-code for make move

function make move(move)
junc id ← move[0]
time ← move[1]
if junc id 6= −1 then

apply time to junction junc id in state s
end if
while not is terminal() do

if another signal has 0 time remaining then
break

end if
simulate game until a signal is changing or terminal state is reached

end while
end function

A game is simulated forward by moving the vehicles along their paths and

reducing the remaining times in all the traffic signals. When a traffic light has 0

seconds remaining for its current phase then the method, generate_moves() is

called. This method looks at the next phase of the traffic signal and generates

a list of actions that can be assigned to that traffic signal. If there are no

traffic signals that are changing their phases, then generate_moves() returns

a special move (−1, 0), which tells make_move to simulate forward without

applying any signal timing changes. In a scenario, in which two traffic signals

have reached 0 seconds at the same time, the following steps are executed.

At first, generate_moves() generates a list of moves for one of the traffic

signals. Then one of the actions from the list is chosen and make_move(move)

is called, which then assigns the chosen timing to the traffic signal, but will

not progress the game forward since there is another traffic light that is at

0 seconds. Therefore, generate_moves() is called again to generate a list of

actions for that traffic light. Again, a move is chosen from the list for which

make_move(move) is called. This time, make_move(move) assigns the timing

to the second traffic light and simulates the game forward. A set of possible

actions in the game can be defined as a set of possible timings such as,

actionList(s) =

((−1, 0)) if no changes

((j, t)) if nextPhase(s,j) = “y”

((j, t1), (j, t2), ..., (j, tn)) if nextPhase(s,j) = (“r”or“g”)

18

where s is the current simulation state, j ≥ 0 is the id of a junction whose phase

is about to change, t and ti are traffic signal phase timings, and the yellow,

red, and green phases are denoted by y, r, and g, respectively. The timing

values of the actions can be continuous or discrete. Using a continuous set of

timings is preferable as it would be possible to find the best timing. However,

MCTS cannot work with an infinite set of actions. Therefore, we opted to use

a discrete set of timings. Lastly, the game time T is defined before the game

begins. Therefore, we can use the following definition to check whether a game

has reached a terminal state or not:

isTerminal(s) =

{
True if s.t = T

False otherwise

Once in the course of a simulation, a terminal state is reached, the reward

for the entire action sequence up to this point is computed. For example, if

the total travel distance is chosen as a reward function, in terminal states the

distances driven by all cars in the network up to this point are added. With

these definitions, traffic light optimization can now be described as finding a

sequence of light phase actions (ji, ti) that generate the highest reward when

reaching terminal states at time T . Details about the objective function will

be discussed in Ch. 4.

3.2 Combining MCTS with SUMO

In this section, we present pseudo-code to illustrate how MCTS works together

with a traffic simulator. Looking at Alg. 2, we can see that the Game class,

which refers to the game definition presented above, has several functions

including generate_moves(), make_move(move), get_result() and is_ter-

minal(). In the beginning, a game object is initialized with a traffic scenario

(start state) and the duration (T) which specifies how long the game would

last. After the game starts, we wait for a traffic signal to change its phase.

Then we call method generate_moves() to give us the list of possible timings

for the traffic light that is changing its phase.

19

Algorithm 2 Pseudo-code of the main program and MCTS

function main(start state)
main game ← initialize game(start state, T)
while not main game.is terminal() do

simulate game forward until a traffic signal is changing phase or
terminal state reached
moves ← game.generate moves()
if length(moves) = 1 then

game.make move(moves)
else

save current state of the game
move ← MCTS(saved state)
game.make move(move)

end if
end while

end function

function MCTS(saved state, n)
mini game ← initialize game(saved state, horizon time)
tree ← create root of the search tree
for i← 1, n do

propagate down the tree to reach a leaf node
moves ← main game.generate moves()
tree.add edges(moves)
move ← select an edge
mini game.make move(move)
while not mini game.is terminal() do

moves ← mini game.generate moves()
select a move based on rollout policy from moves
mini game.make move(move)

end while
reward ← mini game.get result()
tree.add node()
tree.backpropagate reward(reward)

end for
move ← tree.select root move()
return move

end function

20

For example, if traffic light A is changing its phase from red to green then

generate_moves() would return the list of possible timings for the green

phase. If only one timing is returned then it means that the next phase

is yellow. Therefore, instead of calling MCTS, we can assign the timing to

the traffic light and move the simulation forward. This is done by method

make_move(move) that takes timing and assigns it to a traffic signal and moves

the game forward until another traffic light is changing its phase. If two traffic

lights are changing their phases simultaneously then make_move(move) would

not simulate the game forward. It would just assign the timing to a traffic

light and stop.

If generate_moves() returns multiple timings, then the state of the game,

st is saved and passed on to MCTS, which then starts from this saved state and

builds the search tree based on the results obtained from rollouts. The rollout

is a step in MCTS in which a sequence of actions is played based on a policy

to play the game until a terminal state is reached. Method get_result() is

called to retrieve the value of the objective function in a terminal state.

To demonstrate how MCTS would work alongside a traffic simulator, we

will use a simple network with two intersections. As shown in Fig. 3.1, inter-

section Jn01, which is about to change from yellow to red, and intersection

Jn02 has 14 seconds remaining on its current phase.

Figure 3.1: Saved state before calling MCTS

21

This network state is saved and passed on to MCTS to determine a good timing

for the next phase for intersection Jn01. According to [29], the minimum length

of the green phase for major arterial roads is 10 seconds. For our experiments,

we used the following list of timings: 10, 15, 20, and 25 seconds. The reason

to choose longer timings such as 20 and 25 is to allow the search algorithm

to reduce long queues as quickly as possible. The lower timing values help to

achieve synchronization among intersections.

MCTS takes this saved state and creates the search tree. Fig. 3.2 depicts

the root node and its edges for MCTS. The root node represents the current

state of the game and expanding the root node gives us the possible timings

that can be assigned to the next phase for intersection Jn01. Next, we select

an edge (10 seconds in this case), and follow this edge and check whether we

have reached a leaf node. After that, we perform a rollout, which simulates

the game for a set time period (until the simulation reaches 100 seconds in

this instance). Once the rollout ends, the final reward is retrieved and back-

propagated up the tree. After performing the same steps for the next two

edges, we end up with a tree that is shown in Fig. 3.3. Here, we can see that

the edge with 10 seconds achieved the best reward. Therefore, we select this

edge and apply it to the junction and simulate forward until another junction

is changing its phase or the game time is reached.

Figure 3.2: Root node and its edges corresponding to the saved state

22

Figure 3.3: Edge rewards after exploring all edges

After simulating the game for 10 seconds, we can see that intersection Jn01

is changing its phase and 4 seconds are left on intersection Jn02. Consequently,

expanding the tree adds one edge with the value of 5 seconds since the next

phase for intersection Jn01 is yellow as shown in Fig. 3.4. We repeat the steps

described above and back-propagate the results up the tree. After the update,

we can see that the edge with 20 seconds has the next best reward and we

explore and update the tree accordingly. This is illustrated in Fig. 3.5. Here,

we choose the edge with value 10 again and move down the tree. After that,

we apply this edge value to the intersection and move the simulation forward

for 14 seconds.

Figure 3.4: Edge rewards after selecting and exploring the first edge

23

Figure 3.5: Edge rewards after selecting and exploring the third edge

After 14 seconds, intersection Jn02 is changing its phase. Hence, we expand

the tree to get three new edges, as shown in Fig. 3.6. The selection, expansion,

rollout, and back-propagation are continued until the maximum number of

iterations, n is reached. Finally, the edge with the best reward at the root

node is returned by MCTS. For instance, choosing the edge with the value 10

gives us the highest distance traveled, 2km.

Information such as vehicles’ speed, routes, distance moved, etc. are re-

trieved from the simulator. We assume that this information is available in

the real world through sensors. For instance, a vehicle’s speed can be easily

calculated using sensors that are embedded in the road. Similarly, a vehicle’s

position can be determined through cameras. We can also analyze a series of

footage from several cameras and calculate the distance traveled by a vehicle.

Additionally, routing information is available in the simulator but it can be

quite difficult to determine in the real world.

Figure 3.6: Tree expansion when intersection Jn02 is changing phase

24

However, we can estimate a vehicle’s route in the real world by using several

techniques. One technique is to use GPS data along with a distribution chart

to determine the probability of a car going straight or taking a left or a right

turn. Also, if people are using navigation applications such as Google maps,

then the route information can be retrieved from these applications.

25

Chapter 4

Experimental Setup

In this chapter, we will discuss the algorithms, policies, and simulation software

that we used in our experiments.

4.1 MCTS Setup for Experiments

UCT requires rewards to be bounded for convergence but in many applications,

tight value bounds may not be available. Therefore, normalization methods

have been developed. There are many ways to normalize Q values. One way

is to divide it by a large number but to come up with a feasible value, one

requires domain knowledge or trial and error experiments [51]. Instead, we use

the Max-Min Normalization method introduced in [51], in which the selection

process uses the following modified PUCT equation:

PUCT ∗(s, a) = Qnorm(s, a) + CP (s, a)

√
N(s)

1 +N(s, a)
(4.1)

with

Qnorm(s, a) =
Q(s, a)−mina′ Q(s, a

′
)

maxa′ Q(s, a′)−mina′ Q(s, a′)
(4.2)

Here, a
′

iterates over all possible actions that can be taken in state s. In

case of ties between two or more actions, we randomly choose one of them. In

the Expansion step, we expand a node in every iteration. As for simulation, we

used SUMO to generate the rollouts, and 3 minutes was used for the horizon

time (the end time of a rollout). For each network, we have different vehicle

population policies, which are described in Secs. 4.3.2, 4.3.3 and 4.3.4.

26

Algorithm 3 Pseudo-code for Rollouts

function rollout(state)
game.load state(state)
while not game.is terminal() do

move list ← game.generate moves()
move ← rollout policy(move list)
game.make move(move)

end while
game.get result()

end function

function rollout policy(moves)
return random.choice(moves)

end function

Since our simulations take a long time to complete, we could not use longer

horizon times. However, within 3 minutes we can at least expect 6 phase

changes on different traffic signals as our list of timings are 10, 15, 20, and 25

seconds. Therefore, with 3 minutes MCTS will be able to foresee any changes

in traffic flow. The pseudo-code in Alg. 3 illustrates how the rollout method

works with a random policy. At first, we load the game state from a leaf node.

Then a list of actions is generated from which an action is chosen randomly and

applied to the game. This is repeated until a terminal state is reached and the

final result is returned. For this research work, we do not have enough data

to train an informed rollout policy. Therefore, we either randomly selected

actions from a uniform policy or based on hand-crafted policies. Lastly, for

backpropagation we utilized equations (2.4) and (2.5).

4.2 SUMO

For simulating traffic movements, we used SUMO (Simulation of Urban MO-

bility) [36]. It was developed by the German Aerospace Center and community

users and was made an open-source software in 2001. SUMO can simulate large

road networks with different types of vehicles such as cars, buses, LRT, etc. It

has a network editor with a Graphical User Interface (GUI) application. The

network editor can be used to create, modify or import road networks.

27

4.2.1 Configuring SUMO

There are four files that are required to simulate a scenario in SUMO. The first

file is a configuration file that specifies which network and route file SUMO

uses. The configuration file also specifies other optional parameters, such

as random seeds or the length of the simulation in seconds. The network

file defines the road network in XML format. This file is generated by the

network editor after creating a network and saving it. The route file contains

the information of all routes created by us (users). Each route is given an

ID and a list of edges from the road network that forms a path for vehicles.

The last file is a script file that can be used to control the simulation. SUMO

is designed to work as a server-client application. It acts as a server that

starts the simulation on a TCP network port. SUMO listens on this port

for incoming connections. To connect to SUMO and control the simulation, a

control interface called Traffic Control Interface (Traci) is used. By using Traci,

we can control the simulations step by step. We can pause the simulation at

every time step and do calculations when required. Traci also allows us to add

vehicles to the network as the simulation proceeds. This is helpful since we

can create different traffic flows in the network. For example, we can create

heavy traffic in one direction and after a certain time period, we can change

the direction of traffic flow. This also means that we can create a scheduled

LRT that passes an intersection at regular time intervals.

4.2.2 Computing Objective Function and Performance
Metrics

SUMO provides an XML file called tripinfo which contains information about

vehicles that have reached their destinations. This file contains values, such

as departure and arrival time, duration and length of the journey, number

of stops, and any delays during the journey. We can easily parse this file to

evaluate our objective function. However, the file does not provide information

about vehicles that have not finished their journeys at the end of the simulation

but the statistics of such vehicles are of interest as well. We can retrieve this

28

information by using different methods provided by SUMO. Since our results

are based on the values obtained from SUMO, we wanted to know how accurate

these values are compared to the real world. In [38], the authors compared the

accuracy of SUMO’s traffic simulation with the real-world traffic data. They

gathered traffic data of Jianghan Zone in Wuhan, China, from the public

domain and found that the simulated traffic data was close to that of the real

world. For our model, we retrieve the following values from the simulator: the

total distance traveled, the total number of stops, the total number of trips

completed, and the total delay in the network, which we now describe in more

detail in turn.

Total Distance Traveled

The total distance traveled is calculated by adding the distance covered by

all vehicles up to time point T . We want to maximize the total distance

traveled as this will increase the throughput in the network. Total distance

traveled is a suitable objective function for optimizing the traffic flow, since

in the real world we want each vehicle to cover as much distance as possible

in a given amount of time. It is also correlated with the number of stops,

the number of trips completed, and the total delay in the network. Increasing

the distance traveled means vehicles will reach their destinations faster with

fewer number of stops. As a result, the delay in the network will also decrease.

Also, in congested intersections, the rate of flow increases with the increase

of total distance traveled [32]. Additionally, we can easily calculate the total

distance traveled in the real world using cellular signals and techniques such

as handsoff and location update [26]. The total distance traveled is calculated

in the following way:

total distance =
n∑

i=1

dvi

Here, n is the total number of vehicles in the network, vi is the ith vehicle,

and dvi is the distance traveled by vehicle i. From SUMO’s tripinfo file, we

can retrieve the distance traveled by a vehicle that has completed its trip. For

vehicles that are still in the network, we can use SUMO functions to get their

29

distance information.

Total Number of Stops

The total number of stops is the number of times the vehicles have to stop at

all intersections. So, we want this value to be low since stopping at multiple

intersections increases delay and carbon dioxide (CO2) emission. We calcu-

lated the number of stops rather than the CO2 emission since in the real world

it will be difficult to get an accurate measurement of CO2 emission from all

vehicles. The number of stops can be read from the tripinfo file for the vehicles

that have completed their trips. For the vehicles that have not finished their

trips, we can check how many times their speed has gone below a threshold.

If a vehicle’s speed is below this threshold then we consider that the vehicle is

coming to a stop. For our experiments, the threshold was 0.1m/s.

Total Number of Trips

The total number of trips is calculated by counting the number of vehicles that

have reached their destinations. We want more trips to be completed since

this implies that more cars are exiting the network in the real world. Thus,

more number of completed trips means less congestion and more new cars can

enter into the network.

Total Delay

Total Delay is the difference between the actual and the ideal time taken

to complete a trip. The ideal time is the time that a vehicle would take

to complete its trip if there are no traffic signals or other vehicles. In the

real world, no one likes to wait for a long period of time or travel slowly

because they want to reach their destinations as quickly as possible. There

can be situations in which vehicles in minor traffic flows are waiting for a

longer period of time compared to the vehicles in major traffic flows. We do

not want our algorithm to ignore minor traffic flows and only concentrate on

improving major arterial flows. Therefore, measuring this parameter will give

us an insight into how much time a vehicle spends waiting in the network.

30

4.2.3 Driving Policies in SUMO

The default driving policy in SUMO closely resembles real-world driving be-

havior. For example, cars that are about to take a left turn at an intersection

will wait until it is safe to do so. Similarly, cars will only change a lane if there

are no cars beside them. According to SUMO’s documentation, there are two

types of car dynamics used in SUMO: Euler dynamics and ballistic dynamics.

In Euler dynamics, the speed of a car is considered to be constant at any given

time step and any change in speed is done instantly in the next time step. For

example, if the speed of a car is 25m/s at time step t and it applies brakes to

decelerate to 4m/s then at time step t+ 1, the speed of the car will be 4m/s.

For ballistic dynamics, cars accelerate and decelerate over several time steps

to come to a complete stop. Therefore, if a car is decelerating at 2m/s2 then

at time step t+ 1, the speed of the car will be (25− 2)m/s. We used ballistic

dynamics in all of our experiments as it models real-world physics better.

4.2.4 Incorporating MCTS with SUMO

To use SUMO with MCTS, we have to save and load simulation states multiple

times. We start our main simulation and proceed forward until a traffic signal

is about to change its phase. If the traffic signal is changing to a yellow

phase then we do not need to call MCTS as yellow phases have a constant

time of 5 seconds. But if the next phase is a red or green phase then we

save the current state of the simulation before calling MCTS. The saved state

includes car positions and the state of the traffic lights. it is passed on to

MCTS to perform a search. In this way, the saved state is used as the starting

point for the simulations of every iteration. Furthermore, if we stop the main

simulation and let MCTS start a new simulation for every iteration then the

system becomes very slow. Because if we use Traci to stop the simulation

and start the simulation again, SUMO will reload the entire network. That

means it would re-create the entire network which is time-consuming. This

was extremely slow and prevented us from running multiple experiments.

31

4.2.5 Parallel MCTS with SUMO

To speed up the simulation time of our experiments, we implemented parallel

MCTS in which we had four individual threads (we refer to them as workers)

that would perform rollouts and return the results to a server. The server

traversed down the MCTS tree until it reached a leaf node and then it passed

the game state at that leaf node to an available worker. While traversing down

the tree we incremented a parameter called virtual loss [12]. The virtual loss

parameter helps MCTS to avoid traversing the same path multiple times in a

concurrent environment. In the selection process of MCTS, the action a with

the highest value according to the following equation:

a = argmax
a′

(PUCT ∗(s, a′)− L ∗Qnorm(s, a′)) (4.3)

However, this implementation had its issues with SUMO, since we require

4 instances of SUMO to be running on the same computer. Unfortunately,

SUMO does not allow multiple instances of itself to run on a single computer.

Therefore, we ended up using non-parallel MCTS and decided to use a different

set of built-in functions of SUMO to speed up our simulations.

4.2.6 Speeding up SUMO Simulations

To prevent SUMO from reloading the entire network in every iteration, we do

not stop or close the simulation. Rather we just load the saved state which only

changes the vehicles’ positions. Furthermore, we keep track of traffic signal

states so that we can automatically reset their states along with the simulation

state. This ensures that SUMO does not construct the network again, rather

only changes the vehicles’ positions. We also noticed that increasing MCTS’s

iterations increased memory usage considerably. Through memory profiling,

we found that versions of SUMO prior to v1.9.0 have a memory leakage bug in

the function which is responsible for loading a state. Since at the beginning of

every iteration a saved state is loaded, running more iterations would increase

memory usage. For example, if we use 100 iterations for MCTS, the memory

usage was around 4 gigabytes. When we increased the number of iterations to

32

500, the memory usage increased to approximately 40 gigabytes. This bug was

reported to the SUMO team and they were able to fix it in the 1.9.0 version.

This finally allowed us to run multiple experiments in parallel using Compute

Canada resources.

4.3 Road Networks in SUMO

This section will describe the 3 different types of road networks used in our

experiments. Before that, we will also discuss how our model can be imple-

mented in the real world.

4.3.1 Real World Implementation

To implement our model in the real world, we first need to create an accurate

representation of the road network. This can be done in two ways: by creating

the whole network by hand in the SUMO simulator or by using OpenStreetMap

API to export the map of the city and then importing it into SUMO. After that,

traffic phase sequences can be defined for each traffic signal in the network.

Once the network and the traffic lights are set up, vehicles can be introduced

into the network. To match the traffic flow of the real world, data from sensors

like cameras can be used to control the density of vehicles in different areas.

In the real world, we can not run MCTS when the traffic lights are changing

phases. Thus, we have to run MCTS ahead of time. For instance, if the next

signal change happens in 15 seconds then we can run MCTS for 15 seconds to

decide the timing for the next phase. Once MCTS has decided on the timing,

a message can be sent to the signal controller on-site to set the timing for the

upcoming phase. So, we can see that this model is easy to implement and

parts of it can be swapped to enhance performance. For instance, we can use

a different simulator (if needed), use neural network based policies in-tree or

in rollouts, or use different objective functions.

The average runtimes of each of the major methods in our model as shown

in Table 4.1. We can observe that most methods of MCTS run quickly ex-

cept for the selection and the rollout methods, which are dependent on the

33

Table 4.1: Runtimes for different methods

Methods Average Time

MCTS Selection 19.6 ms
MCTS Rollout 173.6 ms

MCTS Expansion 70 µs
MCTS Backpropagation 20 µs

Game load state 73.9 ms
Game generate moves 40 µs

Game make move 2.3 ms
Game get results 5.2 ms

MCTS 1 complete iteration 267.3 ms
MCTS with 600 iterations 160 s

game’s make move method. The whole selection process calls the make move

method multiple times as it traverses down the tree (multiple actions). The

make move method is slow since Traci relies on TCP connections to commu-

nicate with SUMO to control the simulation. Also, loading a network state

and getting results from SUMO takes a considerable amount of time as both

methods need to parse XML files. As far as the memory requirement is con-

cerned, we only require 45 Megabytes to run a simulation, which is quite low.

If we can improve the runtimes of loading a state and making a move then it

will be possible to implement this model in the real world. Different ways of

improving the simulation are discussed in Ch. 6.

4.3.2 Interconnected Intersections

Network 1 consists of 6 intersections in a 2-by-3 grid format as shown in

Fig. 4.1. The reason to choose such a network is that it represents a small

section of a city with interconnected roads. This network has short and long

corridors with heavy traffic flow in a particular direction. The ten edges on

the perimeter are used to insert vehicles into the network. Each intersection

has four-phase traffic signals. There are two distinct yellow phases, one for

vertical direction and the other for horizontal direction. The other phases are

alternating between green and red. For instance, if it is green for the vertical

direction then it is red for the horizontal direction and vice versa.

34

Figure 4.1: Network 1: a road network with 6 intersections

Each phase and the trajectories of cars through an intersection are shown

in Fig. 4.2. Fig. 4.2a displays the green phase for the north to south and south

to north direction, whereas Fig. 4.2c displays the green phase for the west

to east and east to west direction. There are no dedicated left-turn phases

in this network. Furthermore, left turns and right turns have lower priorities

compared to the other directional flows. Moreover, for this network heavy

traffic flow is introduced from the north traveling to the south.

To run tests and compare the results, 106 different starting scenarios were

created. At first, we started a simulation with no vehicles and then added cars

to the network as the simulation progressed. We let the simulation run for

24 hours (wall-clock time). Then, at every 15 minutes interval, we saved the

network state, which included the cars’ positions, the traffic lights’ phases, and

their corresponding duration. Each of these saved states became the starting

point of our 106 scenarios.

35

(a) Phase 1 (b) Phase 2

(c) Phase 3 (d) Phase 4

Figure 4.2: Four signal phases of an intersection

4.3.3 Long Corridor of Intersections

Network 2 contains 4 intersections lined up next to each other, as illustrated

in Fig. 4.3. This network represents a long road stretch controlled by several

traffic signals. Vehicles traveling through this network will greatly benefit

from a green wave. Again, a green wave is achieved when the green phases of

several traffic signals are aligned, so that traffic can flow through the signals

continuously. We are using this road network to test MCTS’s capability to

come up with a green wave schedule. The car insertion policy for this network

varies as the simulation progresses. We tried to model the rush hours of a

real-world scenario with this network. In the real world, we have more cars

going downtown in the morning, while in the evening it is the opposite.

36

Figure 4.3: Network 2: a corridor of intersections

To model this, we started with heavy traffic movements from the west to east

direction and light traffic from the other three directions i.e. south to north,

north to south, and east to west. After a while, we switch the heavy traffic

flow from east to west and light traffic from east to west (adding more vehicles

from east to west and fewer vehicles from west to east). The time interval at

which the switch occurs is not constant. By doing this, we can test MCTS

on how quickly it can adapt to sudden changes in traffic flow and provide an

updated schedule. However, in the real world, there can be situations in which

the simulation rollout thinks that the change will happen at time t, when in

fact the changes will happen earlier or later. Since the system receives real-

time data from sensors, the simulations can be updated quickly. Also, MCTS

is being called at every phase change, so there would be at least one phase

change at every minute. Therefore, MCTS would be able to readjust the

timings according to the updated simulations. In Ch. 6, we will discuss a

technique that will be able to address this issue.

4.3.4 Real World Intersections with Railway Crossings

The architecture of the final network is taken from a real-world location. We

wanted to test how viable MCTS’s solutions are in a traffic scenario with LRTs.

Network 3 (depicted in Fig. 4.4) contains two parallel roads with LRT tracks

running between them.

37

Figure 4.4: Network 3: a road network with LRT crossings

There are two rail crossings where cars can cross the LRT tracks to move

from east to west or vice versa. Vehicles are added in a balanced way in

all directions. The objective of this network is to test MCTS’s capability to

foresee the movement of LRTs and schedule the traffic lights in such a way

that the movements of traffic from either east to west or west to east do not

coincide with LRTs passing through intersections. This network represents the

intersections at 111 St. near the Southgate Mall in Edmonton. We did a field

study to record the traffic signal’s phases and their corresponding timings of

each intersection and implemented it in SUMO. This network acts as a baseline

to test how adaptable MCTS is in the real world.

In this chapter, we have discussed the experimental setup for MCTS and

how it is used with SUMO. We also described different road networks that

were used in the experiments. The next chapter will describe and discuss the

experimental results we obtained.

38

Chapter 5

Experimental Results

In this chapter, we discuss the results yielded from the previously described

experiments. We have compared MCTS with handwritten policies for all per-

formance metrics. We also performed experiments to optimize the parameters

of MCTS such as the number of iterations, the exploration constant, and the

rollout policy. Finding a globally optimal parameter vector is a hard com-

binatorial problem in this domain, which doesn’t offer much analytical help,

such as gradients. We, therefore, resort to a simple, but popular hill-climbing

method, that locally optimizes a single parameter, while holding the others

fixed, and repeating the process. We are aware that this approach can only

approximate good solutions, and we’ll leave finding better optimization meth-

ods to future research. For our experiments, we began optimizing the C value

by setting the number of iterations to 200 and using a random rollout policy.

The reason we decided to use 200 iterations is that the experiments would fin-

ish in a reasonable amount of time. Also, we were not sure how MCTS would

behave with the other rollout policies and therefore, opted to use the random

rollout policy. We found that there was a huge performance gain by using

C = 1 to C = 2. After that, the performance gains from higher C values were

not significant. Since our experiments take a long time to complete (roughly

7 to 8 hours for one experiment), we decided to optimize our number of iter-

ations first. This helped us to find the highest number of iterations that we

could perform in a reasonable amount of time. Then we found the best value

for the exploration constant for that given number of iterations and explored

39

different rollout policies to maximize the performance of MCTS.

5.1 Optimizing the Number of Iterations for

MCTS

The first experiments were used to decide the maximum number of iterations

that will be used in MCTS. For this experiment, we used the 106 starting sce-

narios for Network 1 whose generations are described in Section 4.3.2. Fig. 5.1

and Fig. 5.2 show two examples of these scenarios. We performed 9 sets of

experiments in which the number of iterations was varied from 50 to 800. In

addition, the exploration constant, C was set to 2 and the uniform random

rollout policy was used. Each scenario was simulated for 10 minutes and the

total distance traveled in the network was calculated. We used total distance

for comparison because it was our objective function and it has a positive re-

lationship with the other performance metrics. For example, higher distance

traveled means vehicles are less likely to sit at intersections for a long time.

This means less total delay, less number of stops. The results for comparing

the different number of iterations are shown in Table 5.1.

Figure 5.1: The first of the 106 starting scenario with the top-middle intersec-
tion zoomed

40

Figure 5.2: The second of the 106 starting scenario with the top-middle inter-
section zoomed

Table 5.1: Total distance traveled in the network for different MCTS iterations
and the random baseline policy

Iterations Avg. Total Distance (m) Standard Error

50 3.131 · 105 3.20 · 103

100 3.156 · 105 3.20 · 103

200 3.191 · 105 3.20 · 103

300 3.203 · 105 3.30 · 103

400 3.208 · 105 3.20 · 103

500 3.212 · 105 3.30 · 103

600 3.216 · 105 3.30 · 103

700 3.215 · 105 3.20 · 103

800 3.215 · 105 3.20 · 103

Random 2.447 · 105 2.40 · 104

We used a statistical significance test to decide whether the results are

significantly different or not. A popular parametric test for performance com-

parisons is the paired t-test [16], which helps to decide whether there is a

significant difference between the mean of two populations. A null hypoth-

esis states that parameters of population, such as the mean or the standard

41

deviation are equal to a hypothesized value, whereas the alternative Hypoth-

esis states the opposite. There are a few assumptions that a dataset needs to

meet for the paired t-test to be viable. The average value pair differences are

normally distributed and the data are observed independently. Because we

only use 106 samples, we opted to use Wilcoxon signed-rank test [9], which is

a non-parametric test that can be used as an alternative to the paired t-test

which is more robust since it works with medians rather than averages. When

the Wilcoxon test is performed on the results between any two number of

iterations, it returns a p-value. If the p-value is less than 0.05, i.e. the 5% sig-

nificance level, then we accept the alternate hypothesis, or else we accept the

null hypothesis. We used 0.05 because it is the most commonly used default

cutoff value [46].

Using the Wilcoxon test on the above results showed that there is a sig-

nificant difference between the results except if the number of iterations is

between 600 and 700. It is to be noted that the graph in Fig. 5.3 does not in-

dicate statistical significance but is mainly used to illustrate graphically trends

in the data and that the paired tests are more powerful because they consider

result pairs.

Figure 5.3: Total distance traveled in the network for different iterations

42

The orange bars in the graph represent the measured standard errors. From

the graph, we can observe that the total distance traveled increases with more

iterations. After 600 iterations the graph levels out. Since the highest result

was achieved using 600 iterations which is marked in red in Table 5.1 and

increasing the number of iterations further would result in a diminishing re-

turn, we decided to use 600 as the number of iterations for MCTS for the

following experiments. In addition, we can also observe that for any number

of iterations, MCTS defeats the random move selector.

5.2 Optimizing the Exploration Constant for

MCTS

The second set of experiments were performed to find an optimal value for

the exploration constant C that is used in the PUCT selection step. The

objective function that was maximized was the total distance traveled by all

vehicles in the network. There were 600 iterations performed by MCTS with

10 minutes of game time allocated to each iteration. We used Network 1 and

the traffic policy described in Sec. 4.3.2. The value of C ranges from 0 to 11.

The average result of the 106 experiments for each C is shown in Table 5.2.

We found that there was a significant difference between the results of C = 9

and C = 10. After performing the Wilcoxon test on the results obtained from

using C values 9 and 10, the p-value was 0.0011. Hence, there is a significant

difference between the mean values for these cases. Since the mean value of

C = 9 is the highest in comparison with all other C values as shown in Fig. 5.4,

we fixed C = 9 for our subsequent experiments.

43

Figure 5.4: Average total distance traveled in the network for different C
values

Table 5.2: Total distance traveled in the network for different C values together
with their standard errors

C Avg. Total Distance (m) Standard Error

0 2.880 · 105 3.20 · 103

1 3.191 · 105 5.20 · 103

2 3.199 · 105 5.20 · 103

3 3.199 · 105 5.20 · 103

4 3.203 · 105 5.20 · 103

5 3.204 · 105 5.20 · 103

6 3.205 · 105 5.20 · 103

7 3.202 · 105 5.30 · 103

8 3.205 · 105 5.30 · 103

9 3.208 · 105 5.20 · 103

10 3.202 · 105 5.10 · 103

11 3.207 · 105 5.10 · 103

Random 2.447 · 105 2.40 · 104

44

5.3 Selecting a Rollout Policy for MCTS

To decide which rollout policy would give the best result for MCTS, we exper-

imented with 5 different rollout policies on the 106 different starting scenarios

of Network 1 with the same setting as mentioned in Sec. 4.3.2.

1. Random Rollout Policy: In this policy, the actions or timings are

selected randomly from [10, 15, 20, 25]. All actions have an equal chance

of being chosen.

2. Psychic with Sloping Distribution Rollout Policy: In this policy,

the actions are ordered according to the flow of traffic and the direction of

the green phase. The pseudo-code for Psychic with Sloping Distribution

Policy is shown in Alg. 4. For example, if there is heavy traffic from the

north direction and the next phase is green for the north direction then

the timing order for the green phase is [25, 20, 15, 10], and the probability

distribution will be {25 : 0.4, 20 : 0.3, 15 : 0.2, 10 : 0.1}. The reason

behind calling the policy Psychic with Sloping Distribution Policy is that

the policy knows about the traffic flow and the probability distribution

decreases monotonically.

3. Psychic with Step Distribution Rollout Policy: Similar to Psychic

with Sloping Distribution Policy, here the timings are sorted accordingly

Algorithm 4 Pseudo-code for Psychic with Sloping Distribution Policy

function slope rollout policy(move list)
if move list.length = 1 then

return move list[0]
end if
if traffic flow direction = direction of green phase then

sort move list in descending order
else

sort move list in ascending order
end if
return random.choice(move list, [0.4,0.3,0.2,0.1])

end function

45

to the flow of traffic and the direction of the green phase. But the

probability distribution is set in the following manner, {25 : 0.35, 20 :

0.35, 15 : 0.15, 10 : 0.15}. The reason we called it Psychic with Step

Distribution Policy is that if the probability distribution is plotted then

it will give us a step graph. The pseudo-code for Psychic with Step

Distribution Policy is shown in Alg. 5.

4. Psychic with Best-Two Rollout Policy: Again, the timings are

sorted according to the flow of traffic and the direction of the green phase

but only the top two timings are used. The pseudo-code for Psychic with

Best-Two Distribution Policy is shown in Alg. 6. For example, if the

sorted timings were, [25, 20, 15, 10] then one of the top two best timings

is chosen randomly, i.e., random.choice([25, 20]). The reason for using

the best two timings instead of just the best timing is to give MCTS the

ability to create offsets among adjacent traffic signals to achieve a green

wave.

Algorithm 5 Pseudo-code for Psychic with Step Distribution Policy

function step rollout policy(move list)
if move list.length = 1 then

return move list[0]
end if
if traffic flow direction = direction of green phase then

sort move list in descending order
else

sort move list in ascending order
end if
return random.choice(move list, [0.35,0.35,0.15,0.15])

end function

46

Algorithm 6 Pseudo-code for Psychic with Best-two Distribution Policy

function best rollout policy(move list)
if move list.length = 1 then

return move list[0]
end if
if traffic flow direction = direction of green phase then

sort move list in descending order
else

sort move list in ascending order
end if
return random.choice(move list[0:2])

end function

5. Handwritten Rollout Policy: Our handwritten policy tries to create

a green wave along the major traffic flow direction as quickly as pos-

sible. To create our handwritten timing schedule, we had to observe

several simulations and try out different timing combinations until we

were able to maximize our objective function. Our handwritten policies

surpass random move selectors in all networks we considered. In the real

world, engineers would do something similar: they would observe traffic

patterns through an intersection and decide which timing combinations

would provide better traffic flow. This process of handcrafting timing

schedules is quite a time intensive. The pseudo-code for the handwritten

policies for each road network will be illustrated in Secs. 5.4.1..3.

At first, we wanted to observe how the policies perform by themselves, without

using MCTS. Each policy was run on the 106 different starting scenarios of

Network 1 for 10 minutes and different performance metrics were recorded,

such as total distance traveled, the total number of stops, total number of trips

completed, and total delay in the network. The results in Table 5.3 show that

the handwritten policy outperforms all other policies. Moreover, combining

MCTS with all the policies improved their performances by at least 26%. As

for MCTS, we used 600 iterations and the value of C was 9. For each policy, the

performance values are shown in Table 5.4. Please note that the standard

errors are shown in parenthesis. We can observe that the informed policies

performed worse than the random policy, which is odd. In [22], the authors

47

Table 5.3: Comparison between different Rollout Policies without MCTS with
standard errors in parentheses

Policies Total Distance (m) Stops Trips Delays (s)

Random 2.447 · 105 (2.38 · 104) 488 389 5.03 · 105

Sloping 2.456 · 105 (3.44 · 103) 487 392 5.05 · 105

Step 2.448 · 105 (3.87 · 103) 488 385 5.07 · 105

Best-Two 2.460 · 105 (4.53 · 103) 484 398 5.08 · 105

Handwritten 2.495 · 105 (3.20 · 103) 478 456 4.69 · 103

Table 5.4: Comparison between different Rollout Policies with MCTS with
standard errors in parentheses

Policies Total Distance (m) Stops Trips Delays (s)

Random 3.222 · 105 (3.21 · 103) 311 486 3.49 · 105

Sloping 3.209 · 105 (3.20 · 103) 304 484 3.58 · 105

Step 3.218 · 105 (3.21 · 103) 314 485 3.54 · 105

Best-Two 3.208 · 105 (3.20 · 103) 299 484 3.64 · 105

Handwritten 3.136 · 105 (3.20 · 103) 352 470 3.92 · 105

encountered something similar, in which their heavily informed policies for

UCT performed worse than the default policy of MoGo. They theorized that

each policy might be biased in its way, which can lead to a different distribution

of simulations in MCTS. If these distributions are skewed towards different

outcomes then these policies can worsen the performance of the search. The

authors of [27], investigated this phenomenon by plotting the expected values

of random, biased, and inversely-biased policies while optimizing an objective

function. Their plots showed that random rollouts were able to better represent

the objective function when compared to the other policies.

After performing the Wilcoxon-signed-rank test on the total distance trav-

eled results, we found that all performance values are significantly different

from one another except for the Psychic with Sloping Distribution and the

Psychic with Best-Two policies. Those policies are similar to one another. In

the Psychic with Best-Two rollout policy, there is an equal chance of choosing

the first timing and in the Psychic with Sloping Distribution, the first timing

has the highest probability of being chosen. Therefore, both policies might be

48

choosing the first available timing frequently. The Random Policy has done

better than the other policies according to the total distance traveled, the

number of trips, and the total delays. The reason behind this could be that

choosing timings randomly encourages more exploration because at the end of

every MCTS iteration the result of the rollout is backpropagated. Therefore,

if the move selection for rollout only varies between two actions then the end

result will not differ by much. This means it might be harder for MCTS to

distinguish between a good move and a bad move during the selection process.

As for the handwritten policy, we speculate that the reason why it did not

perform well is that it only focuses on the main traffic flow direction. Accord-

ing to the results shown in Table 5.4, we used the Random Rollout Policy for

our experiments.

5.4 MCTS vs. Handwritten Time Schedules

5.4.1 Interconnected Intersections

After establishing the number of iterations, the C value, and the rollout policy,

we want to compare how MCTS does against a handcrafted policy, Alg. 7, on

Network 1. The handwritten policy starts by assigning a timing and a phase

to each intersection. Since there is heavy traffic flow from north to south, an

offset (offset 1) is used to calculate the time when the north traffic signals will

be turning green. As the vehicles approach the signals, they turn green and

stay green for as long as possible. The south traffic signals turn green when

these sets of cars are approaching it. The timing that the south-side traffic

signals need to turn green can be calculated by adding another offset (offset 2)

to the timing of the north signal’s green phase. The offset value was found

out by dividing the distance of the road by the speed of the vehicles. As for

MCTS, we used the C value of 9 and the Random Rollout Policy with 600

iterations. The goal of MCTS was to maximize the objective function which

is the total distance traveled in the network. Again, each iteration was given

10 minutes of (in-game time) simulation time. The average results of the 106

experiments are shown in Table 5.5.

49

Table 5.5: Comparison between MCTS and Handwritten Policy on Network 1
with standard errors in parentheses

Methods Total Distance (m) Stops Trips Delays (s)

MCTS 3.223 · 105 (3.22 · 103) 311 486 0.349 · 106

Handwritten 2.495 · 105 (3.20 · 103) 478 456 0.469 · 106

Algorithm 7 Pseudo-code for Handwritten Policy for Network 1

function handwritten policy(junc to change, move list)
juncID ← junc to change.id
if juncID is a north junction then

if green phase for major traffic flow then
return max(move list) + offset 1

else if red phase for major traffic flow then
return min(move list)

end if
else if juncID is a south junction then

if green phase for major traffic flow then
time ← north junction’s green phase timing
return time + offset 2

else if red phase for major traffic flow then
return min(move list)

end if
end if

end function

We can observe from Table 5.5 that MCTS was able to beat out handwrit-

ten policy in total distance, number of stops, number of trips, and total delay

by 29%, 37%, 45% and 39%, respectively. One reason why the handwritten

policy did not perform well is that it tries to achieve green waves only in the

major traffic flow (north to south), whereas MCTS might be able to discover

better timing combinations that allow it to achieve green waves not only in

the north-south direction but also in the east-west direction. To further in-

vestigate this, we calculated the total number of times the cars stopped in

the east-west direction for both MCTS and the handwritten policy. For our

handwritten policy, the total number of stops in the east-west directions was

169 and for MCTS it was 99. This indicates that just using MCTS with a

random policy yields a better result than studying traffic patterns to come

50

up with a simple timing schedule that only focuses on the major traffic flow

direction.

5.4.2 Long Corridor of Intersections

We also wanted to see how MCTS performs if there is a sudden change in

traffic. For this, we are considering a real-world rush hour scenario in which

at a certain time of the day there is more traffic in one direction, and then

after some time the flow changes in the other direction. For example, in the

morning there is more traffic flowing towards downtown and in the evening the

traffic flows away from downtown. To model such a scenario, we used Network

2 shown in Fig. 4.3. In this network, heavy traffic starts from the north and

travels down towards the south. After some time, the flow is reversed with

more traffic coming from the south and traveling towards the north. The time

interval for switching the direction of heavy flow is not constant. We change

the direction of the heavy flow by adding more cars in that opposite direction.

The reason for using non-constant time intervals is to observe whether MCTS

is using simulations to detect changes in traffic flow and choose the current

signal phase length in such a way that it will be easier to accommodate future

traffic changes. Through this experiment, we are trying to find out whether

MCTS just prioritizes the major traffic flow or it also takes other minor (east-

west) traffic flows into consideration. Again, we designed a handwritten policy

that tries to align the green wave in the north and south directions depending

on the traffic flow, according to the pseudo-code shown in Alg. 8. We ran

MCTS to maximize the total distance traveled.

51

Algorithm 8 Pseudo-code for Handwritten Policy for Network 2

function handwritten policy(junc to change)
juncID ← junc to change.id
junctions are number from top to bottom
if heavy traffic flow from north to south then

move list ← get north bound timings(juncID)
offsets ← get north bound offsets(juncID)

else if heavy traffic flow from south to north then
move list ← get south bound timings(juncID)
offsets ← get south bound offsets(juncID)

end if
if green phase for major traffic flow then

return max(move list) + offset
else if red phase for major traffic flow then

return min(move list)
end if

end function

function get north bound timings(junction)
return pre-defined set of timing for junction

end function

function get south bound timings(junction)
return pre-defined set of timing for junction

end function

function get north offsets(junction)
return pre-defined offset for junction

end function

function get south offsets(junction)
return pre-defined offset for junction

end function

52

The results are listed in Table 5.6, which shows that MCTS was able to

perform better than our handwritten policy but only by 2% in terms of total

distance driven. If we look at the other performance metrics, MCTS was able

to increase the number of trips by 3% and reduce the total delay in the network

by 7%. But MCTS failed to reduce the total number of stops in the network.

This can indicate that MCTS was able to achieve a higher total distance

traveled by allowing more cars to travel in the east-west direction. This also

explains why MCTS was able to achieve more trips and reduced delays since

the routes in the east-west directions are shorter. But this number is not large

since the difference in the number of trips is only 3%. Therefore, this reinforces

our previous claim that rather than spending time and resources to handcraft

traffic schedules, we can use MCTS instead to achieve better or similarly good

performance.

5.4.3 Real World Intersections with Railway Crossings

In our final experiment, we wanted to measure the performance of MCTS

with respect to a timing schedule used at a complex real-world intersection

that contains LRT tracks. In this experiment, MCTS can exploit the infor-

mation about the LRT’s timing schedule through simulations, whereas it can

be hard to incorporate this information in the handwritten policy. The in-

tersection we choose corresponds to 111 street near Southgate LRT station

in Edmonton. The road network for this particular intersection is shown in

Fig. 4.4 in Sec. 4.3.4. This intersection contains 4 traffic signals with a rail

track between two major traffic roads. There are two railway crossings that

are controlled by LRT traffic. To acquire the timing schedules of these traffic

signals, we observed the intersections for half an hour and recorded the phase

Table 5.6: Comparison between MCTS and Handwritten Policy on Network 2

Methods Total Distance (m) Stops Trips Delays (s)

MCTS 1.186 · 105 (2.30 · 103) 579 609 0.810 · 106

Handwritten 1.161 · 105 (2.12 · 103) 509 591 0.871 · 106

Random 1.045 · 105 (2.26 · 104) 683 531 1.243 · 106

53

sequences and their corresponding lengths. We noticed that the top right and

the bottom left intersections had the same phase sequences and phase lengths.

We will refer to both of these intersections as Group A. Similarly, the top left

and the bottom right had the same phase lengths and sequences and they will

be referred to as Group B.

Group A has three main green phases, in which the first phase is for the

main arterial traffic in the north-south directions. The second phase controls

traffic in the east-west directions, and finally, these intersections have a ded-

icated phase for left turns from the north-south directions. As for Group B,

it has two green phases, one for the north-south directions and the other for

the east-west directions. The timings used for Group A are 60 seconds for

the first phase, 40 seconds for the second phase, and 15 seconds for the third

phase. For Group B, the timings are 45 seconds and 20 seconds for the first

and second phases, respectively. Whenever the LRT gates are closed, the first

phase of the two groups is active. As soon as the LRT leaves, the dedicated

left-turn phase of Group A and the second phase of Group B are activated.

After that, the third phase of Group A is activated and the cycle repeats. We

recreated the scenario in SUMO and scheduled the LRT to pass the intersec-

tions at irregular intervals. We simulated for 15 minutes (in-game time) with

two different sets of possible timings. One set contains the timings obtained

from the field research, and the other set of timings ranged from 10 to 25

seconds. The results obtained from all three experiments are shown in Table

5.7.

As we can see, MCTS in both cases performs better than the city’s timing

Table 5.7: Comparison between MCTS and Handwritten Policy on Network 3

Schemes Methods Total Distance (m) Stops Trips Delays (s)

City’s timings
MCTS 1.101 · 105 (3.12 · 103) 593 720 2.505 · 106

City’s schedule 0.927 · 103 (2.93 · 103) 493 601 6.117 · 106

Random 0.911 · 105 (3.81 · 104) 509 589 3.573 · 106

Our timings
MCTS 1.266 · 105 (3.20 · 103) 627 828 1.424 · 106

City’s schedule 1.196 · 105 (3.07 · 103) 697 780 2.127 · 106

Random 0.976 · 105 (6.17 · 104) 622 632 2.194 · 106

54

schedules. MCTS (with our set of timings) was successful at increasing the

total distance traveled and the number of completed trips by 6%, compared to

the city’s timing schedules, and reducing the number of stops and delays in the

network by 15% and 33%, respectively. Although MCTS (with the city’s set

of timings) did not perform as well as the city’s timing schedules in terms of

the number of stops, it did significantly improve the total distance by 18%, the

number of trips by 22% and the delay by 59%. All in all, MCTS performed

considerably better in comparison with the timing schedules obtained from

the field research. This indicates that even in real-world scenarios we can use

MCTS to obtain a timing schedule without having to study traffic patterns

extensively. Also, MCTS helps to experiment with different sets of timings

easily. Thus, cities can use MCTS as a guideline to optimize traffic signal

timings and handcraft high-performance traffic signal policies faster, or control

complex intersections with MCTS directly.

55

Chapter 6

Conclusion and Future Work

In this thesis, we investigated a novel approach to define the whole network

traffic signal optimization problem as a single-player game. MCTS was used

along with the simulator SUMO to perform a heuristic search (using the PUCT

values of each action) to approximate the optimal traffic signal timings. The

results of MCTS were compared to that of handwritten policies across three

different types of road networks, which represented different real-world scenar-

ios. The results of our experiments show that MCTS performs well in all road

networks we considered. In the first network, that models interconnected inter-

sections of a city, MCTS performed significantly better than our handwritten

policy across all the performance metrics. Moreover, in the second network

which models a long corridor of intersections, MCTS performed equally better

when compared to our handwritten policy. The third network has LRT rail

crossings and MCTS was able to outperform the city’s timing schedules that

we obtained by observing traffic. This is quite impressive since MCTS was

able to use the LRT’s timing schedules to plan better before the LRT arrived.

This shows that MCTS is capable of producing better timing schedules with

currently available data on traffic. Therefore, for any intersection, new or old,

we can deploy MCTS to achieve good timings quickly rather than spending a

considerable amount of time constructing timing policies manually. Even in

the scenarios in which MCTS performs equally well to a handwritten timing

schedule, it is still better to use MCTS, as it does not require any prior knowl-

edge of the intersections. It will be faster to deploy MCTS than to analyze

56

different traffic patterns and come up with an optimum timing schedule. Ad-

ditionally, MCTS is not dependent on the design of an intersection as it can

work with any kind of intersection. Thus, using MCTS on newly constructed

intersections can be beneficial. There have been many scenarios in which ar-

tificial intelligent models help experts in their domains, such as Procedural

Content Generation, Github’s Copilot, etc. Similarly, MCTS along with a

simulator can help traffic experts to approximate good traffic signal timings

effectively.

This preliminary research was done to see how viable MCTS is in the traffic

optimization domain. Possible future research could focus on the following:

1. Simulator: Since SUMO is slow, we can try to build a simulator that

would not require TCP connections to control simulations, but rather

gives MCTS direct access to state variables. Also, instead of using XML

files, we can use JSON to store and read information about the network.

JSON data are much faster to read and write especially when there is a

lot of information. Creating a simulator with these features would help

us achieve real-time performance.

2. Parallel MCTS: Implementing parallel MCTS would help us to perform

more number of iterations, thus, giving us better timing schedules. It

would also help us increase the horizon time and allow MCTS to get

observe further into future traffic development.

3. Accurate Simulations: Our model relies on simulations to approxi-

mate optimal traffic signal timings. However, in Section 4.3.3, we dis-

cussed that there can be situations in which the simulations are inac-

curate. A possible improvement would be to augment search trees with

chance nodes that model several likely traffic developments and then use

MCTS tailored to such trees for optimization.

4. Better Policies: By spending more time on creating better rollout

policies, we can try to decrease the number of nodes that MCTS has

to explore to achieve the same performance. In addition, we can create

57

a system similar to AlphaZero by training a policy network to predict

the in-tree PUCT action probabilities and training a state evaluator for

non-terminal nodes. With the policy network and the state evaluation

network we can cut down rollouts and increase the performance consid-

erably, similar to AlphaGo. Using a lookup table can be costly in terms

of memory as there can be a vast number of traffic states.

58

Bibliography

[1] B. Abramson, “Expected-outcome: A general model of static evalua-
tion,” IEEE transactions on pattern analysis and machine intelligence,
vol. 12, no. 2, pp. 182–193, 1990.

[2] V. Astarita, V. P. Giofrè, G. Guido, and A. Vitale, “The use of adaptive
traffic signal systems based on floating car data,” Wireless Communica-
tions and Mobile Computing, vol. 2017, 2017.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[4] B. Beak, K. L. Head, and Y. Feng, “Adaptive coordination based on con-
nected vehicle technology,” Transportation Research Record, vol. 2619,
no. 1, pp. 1–12, 2017.

[5] L. Bieker-Walz and M. Behrisch, “Modelling green waves for emergency
vehicles using connected traffic data,” EPiC Series in Computing, vol. 62,
pp. 10–20, 2019, issn: 23987340. doi: 10.29007/sj1m.

[6] D. Bretherton, K. Wood, and N. Raha, “Traffic monitoring and conges-
tion management in the scoot urban traffic control system,” Transporta-
tion research record, vol. 1634, no. 1, pp. 118–122, 1998.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[8] B. Brügmann, “Monte Carlo Go,” Citeseer, Tech. Rep., 1993.

[9] S. Carolina, “Wilcoxon signed-rank test,” no. 7, pp. 7–9, 2008.

[10] S. A. Celtek, A. Durdu, and M. E. M. Alı, “Real-time traffic signal
control with swarm optimization methods,” Measurement: Journal of
the International Measurement Confederation, vol. 166, p. 108 206, 2020,
issn: 02632241. doi: 10.1016/j.measurement.2020.108206. [Online].
Available: https://doi.org/10.1016/j.measurement.2020.108206.

59

https://doi.org/10.29007/sj1m
https://doi.org/10.1016/j.measurement.2020.108206
https://doi.org/10.1016/j.measurement.2020.108206

[11] T.-H. Chang and G.-Y. Sun, “Modeling and optimization of an oversatu-
rated signalized network,” Transportation Research Part B: Methodolog-
ical, vol. 38, no. 8, pp. 687–707, 2004.

[12] G. M.-B. Chaslot, M. H. Winands, and H. J. van Den Herik, “Parallel
Monte-Carlo tree search,” in International Conference on Computers
and Games, Springer, 2008, pp. 60–71.

[13] Y. Cheng, X. Hu, Q. Tang, H. Qi, and H. Yang, “Monte Carlo tree
search-based mixed traffic flow control algorithm for arterial intersec-
tions,” Transportation research record, vol. 2674, no. 8, pp. 167–178,
2020.

[14] S.-B. Cools, C. Gershenson, and B. D’Hooghe, “Self-organizing traffic
lights: A realistic simulation,” in Advances in applied self-organizing sys-
tems, Springer, 2013, pp. 45–55.

[15] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proceedings of International conference on computers
and games, Springer, 2006, pp. 72–83.

[16] B. Efron, “Student’s t-Test under Symmetry Conditions,” Journal of the
American Statistical Association, vol. 64, no. 328, pp. 1278–1302, 1969.
doi: 10.1080/01621459.1969.10501056.

[17] Y. Feng, M. Zamanipour, K. L. Head, and S. Khoshmagham, “Connected
vehicle–based adaptive signal control and applications,” Transportation
Research Record, vol. 2558, no. 1, pp. 11–19, 2016.

[18] J. Garcia-Nieto, A. C. Olivera, and E. Alba, “Optimal cycle program of
traffic lights with particle swarm optimization,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 6, pp. 823–839, 2013.

[19] N. H. Gartner, S. F. Assman, F. Lasaga, and D. L. Hou, “A multi-band
approach to arterial traffic signal optimization,” Transportation Research
Part B: Methodological, vol. 25, no. 1, pp. 55–74, 1991.

[20] N. H. Gartner, J. D. Little, and H. Gabbay, “Optimization of traffic
signal settings by mixed-integer linear programming: Part I: The network
coordination problem,” Transportation Science, vol. 9, no. 4, pp. 321–
343, 1975.

[21] N. H. Gartner, F. J. Pooran, and C. M. Andrews, “Optimized policies
for adaptive control strategy in real-time traffic adaptive control systems:
Implementation and field testing,” Transportation Research Record, vol. 1811,
no. 1, pp. 148–156, 2002.

[22] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” pp. 273–280, 2007.

[23] ——, “Monte-Carlo tree search and rapid action value estimation in
computer Go,” Artificial Intelligence, vol. 175, no. 11, pp. 1856–1875,
2011.

60

https://doi.org/10.1080/01621459.1969.10501056

[24] A. Hajbabaie and R. F. Benekohal, “Traffic signal timing optimiza-
tion,” Transportation Research Record, no. 2355, pp. 10–19, 2013, issn:
03611981. doi: 10.3141/2355-02.

[25] A. Hajbabaie, J. C. Medina, R. F. Benekohal, et al., “Traffic signal coor-
dination and queue management in oversaturated intersections,” NEX-
TRANS Center (US), Tech. Rep., 2011.

[26] H. Han, L. Peng, A. Teng, C. Wang, and T. Z. Qiu, “Evaluation of
freeway travel speed estimation using anonymous cellphones as probes:
A field study in china,” Canadian Journal of Civil Engineering, vol. 48,
no. 7, pp. 859–867, 2021. doi: 10.1139/cjce-2019-0628.

[27] S. James, B. S. Rosman, and G. Konidaris, “An investigation into the
effectiveness of heavy rollouts in UCT,” 2016.

[28] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
European conference on machine learning, Springer, 2006, pp. 282–293.

[29] P. Koonce and L. Rodegerdts, “Traffic signal timing manual.,” United
States. Federal Highway Administration, Tech. Rep., 2008.

[30] E. Korkmaz and A. P. AKGÜNGÖR, “Delay estimation models for sig-
nalized intersections using differential evolution algorithm,” Journal of
Engineering Research, vol. 5, no. 3, 2017.

[31] P. Krecl, C. Johansson, A. C. Targino, J. Ström, and L. Burman, “Trends
in black carbon and size-resolved particle number concentrations and
vehicle emission factors under real-world conditions,” Atmospheric En-
vironment, vol. 165, pp. 155–168, 2017.

[32] S. L̊angström and E. Fridsäll, Optimizing traffic flow on congested roads,
2019.

[33] F. Lian, B. Chen, K. Zhang, L. Miao, J. Wu, and S. Luan, “Adaptive
traffic signal control algorithms based on probe vehicle data,” Journal
of Intelligent Transportation Systems: Technology, Planning, and Oper-
ations, vol. 25, no. 1, pp. 41–57, 2021, issn: 15472442. doi: 10.1080/
15472450.2020.1750384. [Online]. Available: https://doi.org/10.
1080/15472450.2020.1750384.

[34] J. D. Little, “The synchronization of traffic signals by mixed-integer
linear programming,” Operations Research, vol. 14, no. 4, pp. 568–594,
1966.

[35] J. D. Little, M. D. Kelson, and N. H. Gartner, “MAXBAND: A versatile
program for setting signals on arteries and triangular networks,” 1981.

[36] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Micro-
scopic Traffic Simulation using SUMO,” in Proceedings of IEEE Inter-
national Conference on Intelligent Transportation Systems, IEEE, 2018.
[Online]. Available: https://elib.dlr.de/124092/.

61

https://doi.org/10.3141/2355-02
https://doi.org/10.1139/cjce-2019-0628
https://doi.org/10.1080/15472450.2020.1750384
https://doi.org/10.1080/15472450.2020.1750384
https://doi.org/10.1080/15472450.2020.1750384
https://doi.org/10.1080/15472450.2020.1750384
https://elib.dlr.de/124092/

[37] D. E. Lucas, P. B. Mirchandani, and K. Larry Head, “Remote simulation
to evaluate real-time traffic control strategies,” Transportation Research
Record, vol. 1727, no. 1, pp. 95–100, 2000.

[38] X. Ma, X. Hu, T. Weber, and D. Schramm, “Evaluation of Accuracy
of Traffic Flow Generation in SUMO,” Applied Sciences, vol. 11, no. 6,
p. 2584, 2021.

[39] K. Ma lecki, P. Pietruszka, and S. Iwan, “Comparative Analysis of Se-
lected Algorithms in the Process of Optimization of Traffic Lights,” Feb.
2017, isbn: 978-3-319-54429-8. doi: 10.1007/978-3-319-54430-4_48.

[40] P. Mirchandani and L. Head, “A real-time traffic signal control system:
architecture, algorithms, and analysis,” Transportation Research Part C:
Emerging Technologies, vol. 9, no. 6, pp. 415–432, 2001.

[41] S. G.-Y. W.-R. Munos and O. Teytaud, “Modification of UCT with
patterns in Monte-Carlo Go,” Technical Report RR-6062, vol. 32, 2006.

[42] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Bandits all the way
down: UCB1 as a simulation policy in Monte Carlo Tree Search,” in
Proceedings IEEE Conference on Computational Inteligence in Games
(CIG), IEEE, 2013, pp. 1–8.

[43] R. Putha and L. Quadrifoglio, “Using ant colony optimization for solving
traffic signal coordination in oversaturated networks,” Transportation
Research Board 89th Annual Meeting, 2010.

[44] H. Qi and X. Hu, “Monte carlo tree search-based intersection signal
optimization model with channelized section spillover,” Transportation
Research Part C: Emerging Technologies, vol. 106, pp. 281–302, 2019.

[45] F. Qiao, X. Tan, and F. A. Tobi, “Optimization of bidirectional green
wave of traffic systems on urban arterial road,” The 9th International
Conference on Modelling, Identification and Control, no. Icmic, 2017.

[46] K. Rasmussen, Encyclopedia of measurement and statistics. Sage, 2007,
vol. 1.

[47] D. I. Robertson, “TRANSYT: a traffic network study tool,” 1969.

[48] C. D. Rosin, “Multi-Armed Bandits with episode context,” Annals of
Mathematics and Artificial Intelligence, vol. 61, no. 3, pp. 203–230, 2011.

[49] A. Santos, P. Santos, and F. Melo, “Monte Carlo tree search experiments
in hearthstone,” Aug. 2017, pp. 272–279. doi: 10.1109/CIG.2017.

8080446.

[50] M. P. Schadd, M. H. Winands, M. J. Tak, and J. W. Uiterwijk, “Single-
player Monte-Carlo tree search for SameGame,” Knowledge-Based Sys-
tems, vol. 34, pp. 3–11, 2012.

[51] A. Seify, “Single-agent optimization with monte-carlo tree search and
deep reinforcement learning,” 2020.

62

https://doi.org/10.1007/978-3-319-54430-4_48
https://doi.org/10.1109/CIG.2017.8080446
https://doi.org/10.1109/CIG.2017.8080446

[52] Y. Shi, J. Li, Q. Han, and L. Lv, “A Coordination Algorithm for Sig-
nalized Multi-Intersection to Maximize Green Wave Band in V2X Net-
work,” IEEE Access, vol. 8, pp. 213 706–213 717, 2020.

[53] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, et al., “Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[54] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering Chess and
Shogi by Self-Play with a General Reinforcement Learning Algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[55] ——, “A general reinforcement learning algorithm that masters Chess,
Shogi, and Go through self-play,” Science, vol. 362, no. 6419, pp. 1140–
1144, 2018.

[56] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the
game of Go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[57] A. G. Sims and K. W. Dobinson, “The Sydney coordinated adaptive
traffic (SCAT) system philosophy and benefits,” IEEE Transactions on
vehicular technology, vol. 29, no. 2, pp. 130–137, 1980.

[58] D. Sun, R. F. Benekohal, and S. T. Waller, “Bi-level programming for-
mulation and heuristic solution approach for dynamic traffic signal opti-
mization,” Computer-Aided Civil and Infrastructure Engineering, vol. 21,
no. 5, pp. 321–333, 2006.

[59] M. Świechowski, J. Mańdziuk, and Y. S. Ong, “Specialization of a UCT-
based general game playing program to single-player games,” IEEE Trans-
actions on Computational Intelligence and AI in Games, vol. 8, no. 3,
pp. 218–228, 2015.

[60] Z. Tian, T. Urbanik, C. Messer, K. Balke, and P. Koonce, “A system
partition approach to improve signal timing,” in Transportation Research
Board, 2003.

[61] T. Urbanik, A. Tanaka, B. Lozner, E. Lindstrom, K. Lee, S. Quayle,
S. Beaird, S. Tsoi, P. Ryus, D. Gettman, et al., Signal timing manual.
Transportation Research Board Washington, DC, 2015, vol. 1.

[62] R. T. Van Katwijk, “Multi-agent look-ahead traffic-adaptive control,”
2008.

[63] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal control
methods,” arXiv preprint arXiv:1904.08117, 2019.

[64] S. Weinzierl, “Introduction to Monte Carlo methods,” arXiv preprint
hep-ph/0006269, 2000.

63

[65] L. Zhang, Y. Yin, and Y. Lou, “Robust signal timing for arterials under
day-to-day demand variations,” Transportation Research Record, vol. 2192,
no. 1, pp. 156–166, 2010.

[66] P. Zhou, Z. Fang, H. Dong, J. Liu, and S. Pan, “Data analysis with
multi-objective optimization algorithm: A study in smart traffic signal
system,” 2017 IEEE 15th International Conference on Software Engi-
neering Research, Management and Applications (SERA), pp. 307–310,
2017. doi: 10.1109/SERA.2017.7965743.

64

https://doi.org/10.1109/SERA.2017.7965743

	Introduction
	Background
	Terminology
	Traffic Signal Optimization
	Fixed Timing Systems
	Responsive Timing Systems
	Different Types of Objective Functions

	Monte Carlo Tree Search
	Selection
	Expansion
	Rollouts
	Backpropagation

	MCTS and Traffic Optimization

	Signal Optimization via Heuristic Search and Traffic Simulation
	Formulating the Traffic Signal Optimization Problem as a Single-player Game
	Combining MCTS with SUMO

	Experimental Setup
	MCTS Setup for Experiments
	SUMO
	Configuring SUMO
	Computing Objective Function and Performance Metrics
	Driving Policies in SUMO
	Incorporating MCTS with SUMO
	Parallel MCTS with SUMO
	Speeding up SUMO Simulations

	Road Networks in SUMO
	Real World Implementation
	Interconnected Intersections
	Long Corridor of Intersections
	Real World Intersections with Railway Crossings

	Experimental Results
	Optimizing the Number of Iterations for MCTS
	Optimizing the Exploration Constant for MCTS
	Selecting a Rollout Policy for MCTS
	MCTS vs. Handwritten Time Schedules
	Interconnected Intersections
	Long Corridor of Intersections
	Real World Intersections with Railway Crossings

	Conclusion and Future Work
	Bibliography

