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In a noncooperative game, a team is a set of players that have identical payoffs.
We investigate zero-sum games where a team of several players plays against a
single adversary. The team is not regarded as a single player because the team
members might not be able to coordinate their actions. In such a game, a certain
equilibrium can be selected naturally: the team-maxmin equilibrium. It assures the
team players the best payoff they can hope for, given their inability to coordinate.
A team-maxmin equilibrium exists, and in a generic game it is unique. Journal of
Economic Literature Classification Number: C72. Q 1997 Academic Press

1. INTRODUCTION

Many interactions involve teams of participants that have coinciding
interests but must act individually. For example, the individuals in a
company work toward a common goal, but often must make their decisions
independently. Coordinating their actions may be impossible or too expen-
sive. Similarly, the performance of a distributed computer system in a
given situation depends on individual actions taken by the processors. In
many situations, it may be useful to have the processors randomly choose
their actions. However, randomization is only efficient if done locally by
each processor. In the game of Bridge, the two players on each team are
forbidden by the rules to coordinate their actions by secret communica-
tion.
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These situations can be modeled as noncooperative games. In such a
game, we define a team as a set of n players with identical payoffs.1 We
are concerned with teams facing a single ad¨ersary, who is another player
in the game. For each outcome of the game, the payoff to the team,
received by every team member, is paid n times by the adversary. That is,
we extend the classical two-person zero-sum game by considering a multi-
person zero-sum game with n team members and the adversary as sepa-

Žrate players. It is not a general multiperson zero-sum game since that
.requires more than one payoff figure per outcome. In a corporate setting,

the adversary might be the outside world, which in a defensive view acts
like a single player. In a distributed system, the adversary may represent a
worst-case assumption on the inputs provided to the system. In Bridge, a
similar situation applies after the bidding round, where a single
player}from the team that won the bid}plays against the opposing team,
which consists of two players.

More formally, we have a noncooperative game with n q 1 players}the
n team members and their adversary. We assume each player has a finite

Ž .number of strategies which by conditional actions, for example incorpo-
rate all communication allowed by the structure of the game. What is a
reasonable way to play such a game? Since the players on the team have
coinciding interests, it is beneficial and reasonable for them to think jointly
about their strategies before the game. For example, in the corporate
setting, we may assume that the employees are all working from the same
corporate operations manual. Hence, we can assume that the players
jointly choose a strategy profile.

As usual, higher payoffs can typically be achieved if the team members
use randomized strategies. However, we do not allow correlated random-
ization since that involves communication beyond the structure of the
game. That is, each team member may use only a separate mixed strategy.
This view is particularly appropriate if the game is played repeatedly and
the team can get together only once to decide on the profile of mixed
strategies it wants to adopt. One may even think that the team members
have only the game description and figure their strategies out by them-

Ž .selves we will see that this works except in certain degenerate cases .
Since this is an adversarial setting, it is reasonable to assume that the

team plays defensively. That is, the team members play such that their
Ž .worst-case payoff with respect to the adversary’s decisions is maximized.

Thus, we assume that the team adopts a team-maxmin strategy profile, that

1 ŽThere is an economic theory of teams Marschak and Radner, 1976; Kim and Roush,
. Ž1987 where the definition of a team agrees with ours. However, the results e.g., Ho and Sun,
.1974 are of a different character since they usually involve distributions on ‘‘states of the

world’’ as information structures.
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is, a mixed strategy for each team member so that the minimal expected
team payoff over all responses of the adversary is maximal. This is
particularly reasonable under a worst-case assumption, since the adversary
may even get to know the team’s profile.

The same defensive approach may be taken by the adversary of the
team. In that case, she uses a minmax strategy by randomizing such that

Ž .the largest expected payoff which is her cost for any strategy profile of
the team is minimal. If the team has only one member, the game is a
two-person zero-sum game where the maxmin payoff is equal to the
minmax cost. In that case, the maxmin strategy of the single team player
and the minmax strategy of the adversary define an equilibrium. If the
team has two or more members, this is generally not the case. Then, the
team-maxmin strategy profile usually leads to a payoff that is lower than
the minmax cost.

What is the cause of this gap? When the adversary is considering her
worst-case scenario, she is assuming that the team chooses its strategy in
response to her choice of strategy. That is, the team members ‘‘get
together’’ after discovering her strategy, and choose the best possible
response to it. In this case, it suffices to consider deterministic responses of
the team members, which do not involve correlated randomization. There-
fore, the adversary’s worst-case assumption does not allow her to take
advantage of the fact that the team members cannot coordinate their
actions, i.e., the fact that each team member can only respond individually
to the adversary’s strategy.

In this paper, we show that the adversary can use the teams’ inability to
coordinate in the following way: If the team members use a team-maxmin
strategy profile, then the adversary has a mixed strategy so that no team
member can increase payoffs by changing his strategy unilaterally. In other
words, any team-maxmin strategy profile is part of an equilibrium of the
game, which we call a team-maxmin equilibrium.

In a two-person zero-sum game, a maxmin and a minmax strategy define
Ž .an equilibrium, and a unique value of the game. Nash 1951 showed that a

general noncooperative game has an equilibrium, where the payoff is
usually not unique. We provide an intermediate result for our special
multi-person zero-sum games. Not all equilibria are team-maxmin equilib-
ria, but a team-maxmin equilibrium has a unique payoff which is the
optimal payoff that separate team players can enforce. Hence, our theo-
rem also provides a way for equilibrium selection for these games: a
team-maxmin equilibrium can be considered as the natural solution of the
game.

In the following section, we give an example that shows that for teams
with more than one player the team-maxmin payoff may be lower than the
minmax payoff, and which illustrates our theorem and related questions.
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Then, we state and prove the theorem formally. We summarize it in the
concluding section and discuss the connection with imperfect recall in
extensive games.

2. TEAM-MAXMIN STRATEGY PROFILES

We consider a game in normal form with n q 1 players. One player is
the adversary of a team formed by the remaining n players. Every player
has finitely many pure strategies. An n-tuple of pure or mixed strategies,
one for each team player, is called a strategy profile of the team. Depending
on the adversary’s strategy and on the team’s strategy profile, the adversary
has a certain cost that is n times the payoff to each team player.

As an illustrating example, we consider a team with two members, each
of whom has two pure strategies. A mixed strategy for the first team player
is specified by the probability p, say, that he chooses one of his pure
strategies, so that 1 y p is the probability for the other pure strategy. The
pure strategies themselves correspond to the cases p s 0 and p s 1.
Similarly, a mixed strategy for the second team player is defined by a
probability q, where again q s 0 and q s 1 denote deterministic choices.
A strategy profile for the team is given by p, q. The adversary has two
strategies, T and B, with the following payoffs to the team resulting from
combinations of pure strategies.

p , q 0, 0 0, 1 1, 0 1, 1
1Ž .T 3 5 2 1

B 3 1 5 0

Suppose first that the team can act as a single player. Then this table
represents a two-person zero-sum game, where the column player, that is,

3the team, has a maxmin strategy where 0, 1 is played with probability and7
4 231, 0 with probability . The resulting expected payoff is , which is the7 7

value of the two-person game. Each column yields at most this expected
payoff if the row player plays her minmax strategy where she chooses T

4 3with probability and B with probability .7 7

However, as we explained in the Introduction, the members of the team
are not allowed to communicate during the course of the game, except as

Žprescribed by its structure in this game in normal form all players move
.simultaneously . Therefore, the team players must randomize indepen-

dently. Let p and q be mixed strategies for team players 1 and 2,
Ž .respectively. For the strategy profile p, q of the team, let C p, q andT
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Ž .C p, q denote the expected payoffs to the team, given byB

C p , q s 3 q 2 q y p y 3 pq,Ž .T

C p , q s 3 y 2 q q 2 p y 3 pq.Ž .B

The team’s goal is to maximize its worst-case payoff, that is, to maximize
the minimum of these two expressions. This minimum is largest if the two

4Ž . Ž .expressions are equal, that is, C p, q s C p, q , or equivalently p s q.T B 3
2 12The resulting payoff 3 q q y 4q has its maximum at q s . The3 12

1team-maxmin strategy profile is thus p, q with p s . The corresponding9
109Ž .team-maxmin payoff for all possible strategies of the adversary is .36

23This payoff is smaller than the value of the two-person game with the7

team as a single player.
109Can the adversary achieve to pay only this lower cost of ? In order to36

do so, the adversary needs a strategy that discourages the players from
deviating from this team-maxmin strategy profile p, q. Of course, if the
team members can coordinate their actions, the adversary cannot guaran-
tee a lower cost than the minmax cost. However, the adversary can take
advantage of the players’ inability to communicate during the game.
Essentially, she needs to find a strategy that, together with p, q, defines an
equilibrium of the original three-person game with the team members as
separate players. If such an equilibrium exists, then neither of the team
players will have an incentive to deviate unilaterally.

Suppose that the team players use their team-maxmin strategy profile
p, q. Then, the strategies T and B yield the same expected payoff, so the
adversary can select both with positive probability. If the mixed strategy of
the second team player is fixed at q, then the expected payoff to the first

19 5team player is a linear function of his strategy p, namely y p for T6 4
17 7and q p for B. Therefore, in order to obtain an equilibrium where the6 4

Ž .best response of the first team player is p s p and not p s 0 or p s 1 ,
7 5the probabilities for T and B have to be and , respectively.12 12

Does this randomized strategy of the adversary define an equilibrium?
That is, has the second team player no incentive to deviate either?
Somewhat surprisingly the answer is yes. If p is fixed, the expected payoff

26 5 29 7to the second team player when he plays q is q q for T and y q9 3 9 3
7 5for B. Indeed, this determines the same probabilities and for T and12 12

B as before so that the second team player is indifferent between his two
pure strategies and q s q is a best response. The main theorem of this
paper shows that this is not an accident, but rather an instance of a
general phenomenon.

Note that the equilibrium strategy of the adversary is different from her
minmax strategy. That minmax strategy guarantees her the lowest cost for

Ž .all columns in 1 . These columns are the pure strategies of the team
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considered as a single player, but they also represent special profiles of
individual strategies for the team players. That is, there is a gap between
the minmax cost and the team-maxmin payoff for all strategy profiles of
the team. The equilibrium property is weaker than the minmax property.
When using her equilibrium strategy, the adversary exploits the fact that
the team players may deviate only unilaterally and achieves a lower cost.

3. TEAM-MAXMIN EQUILIBRIA

We consider now the general case with n team players. We assume that
the game is represented in normal form, where each player has a finite set

Ž Ž .of strategies. As usual, games in extensive form Kuhn, 1953 can be
.converted to the normal form. The mixed strategy of team player k is

denoted by the vector x k of probabilities, with probability x k for his pures
strategy s, that is,

x k s 1 for k s 1, . . . , n 2Ž .Ý s
s

and

x k G 0 for any pure strategy s of any team player k . 3Ž .s

For simplicity, we have not named the number of pure strategies of a team
Ž 1 n. Ž . Ž .member. Any n-tuple x s x , . . . , x of vectors fulfilling 2 and 3

represents a strategy profile of the team. Let m be the number of
strategies of the adversary. For her ith strategy, the expected team payoff

Ž .for the strategy profile x is denoted by C x . A team-maxmin strategyi
profile x with team payoff u is an optimal solution x, u to the problem:

Ž . Ž .maximize u subject to 2 , 3 , and

u F C x for i s 1, . . . , m. 4Ž . Ž .i

A team-maxmin strategy profile exists since the minimum of the expected
Ž .payoffs C x , which is maximized, is a continuous function of x on thei

Ž . Ž .compact domain defined by the constraints 2 and 3 .
In the above example, the adversary has a randomized strategy that,

combined with the given team-maxmin strategy profile, defines an equilib-
rium. This holds generally, as asserted in the following central definition
and theorem of this paper.

DEFINITION. Consider a noncooperative zero-sum game between a
team of n players and an adversary. Then a team-maxmin equilibrium x, y

Ž .is an equilibrium in the n q 1 person game , where y is a mixed strategy
of the adversary and x is a team-maxmin strategy profile.
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THEOREM. Any team-maxmin strategy profile is part of a team-maxmin
equilibrium.

1 nŽ .Proof. Consider a team-maxmin strategy profile x s x , . . . , x with
Ž .payoff u as in 4 . We are looking for a randomized adversary strategy y, a

vector of probabilities y for each i s 1, . . . , m, so that x, y is an equilib-i
rium.

For any fixed team member k and adversary’s strategy i, we consider the
ith expected payoff where only the strategy x k of that team player may
vary. The resulting function of x k is denoted by

k k 1 ky1 k kq1 nD x , x s C x , . . . , x , x , x , . . . , x for k s 1, . . . , n.Ž . Ž .i i

Let e denote the probability vector representing the pure strategy s ofs
team player k. Clearly,

k k k kD x , x s D e , x x , 5Ž . Ž .Ž .Ýi i s s
s

that is, the ith expected payoff is a linear function of x k if the strategies of
the other team members are fixed as in x.

Ž .Consider the following linear program LP : For all strategy profiles
Ž 1 n. Ž . Ž .x s x , . . . , x and reals u, maximize nu subject to 2 , 3 , and

n
k knu y D x , x F 0 for i s 1, . . . , m. 6Ž . Ž .Ý i

ks1

This LP is feasible with x, u s x, u. We claim that this is already the
Ž . Ž . Ž .optimal solution. Suppose otherwise that some x, u fulfill 2 , 3 , and 6 ,

Ž .and u ) u. We show that then 1 y « x q « x is a strategy profile yielding
a larger payoff for all adversary strategies i if « is positive and sufficiently
small, which contradicts the assumption that x is a team-maxmin strategy

Ž 1 n.profile. We repeatedly use the multilinearity of C x , . . . , x in eachi
k Ž .argument x , which is implied by 5 ,

C 1 y « x q « xŽ .Ž .i

1 1 n ns C 1 y « x q « x , . . . , 1 y « x q « xŽ . Ž .Ž .i

1 2 2 n ns 1 y « C x , 1 y « x q « x , . . . , 1 y « x q « xŽ . Ž . Ž .Ž .i

1 2 2 n nq « C x , 1 y « x q « x , . . . , 1 y « x q « xŽ . Ž .Ž .i

s ???
n

n ny1 k k 2s 1 y « C x q « 1 y « D x , x q « E « , x , xŽ . Ž . Ž . Ž . Ž .Ýi i
ks1

n
k k 2s C x y n« C x q « D x , x q « F « , x , x , 7Ž . Ž . Ž . Ž . Ž .Ýi i i

ks1
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Ž . Ž . w xwhere E « , x, x and F « , x, x are bounded expressions for « g 0, 1 . We
Ž .show that the expression in 7 is greater than u for all i s 1, . . . , m if « is

Ž .sufficiently small. This is clearly the case if C x ) u. For strategies i withi
Ž . Ž . Ž .C x s u, 6 implies that the expression in 7 is at least as large asi

Ž Ž ..u q « ynu q nu q « F « , x, x , which is greater than u for small positive
« because u ) u. This is the indicated contradiction. Thus, x, u is indeed
the optimal solution to the above LP.

Ž .Consider the dual of this LP. Corresponding to the n equalities in 2 ,
there are n dual variables z without sign constraints. The m dualk

Ž .variables y corresponding to the inequalities 6 are nonnegative. Withi
Ž . Ž .the vectors z s z , . . . , z and y s y , . . . , y of variables, the dual LP1 n 1 m

says: Minimize Ýn z subject toks1 k

m

y ? n s n 8Ž .Ý i
is1

Ž .and, according to 5 ,
m

kz y y D e , x G 0 9Ž .Ž .Ýk i i s
is1

for any pure strategy s of team player k.
Let z, y be an optimal solution to the dual program. The randomized

strategy we are looking for is y, which is a vector of probabilities since it is
Ž .nonnegative and fulfills 8 . If the adversary uses this strategy and the

strategies of the other team players are fixed, then any pure strategy s of
k Ž .team player k has expected payoff at most z since 9 says

m
k kz G y D e , x . 10Ž .Ž .Ý i i s

ks1

kŽ .We multiply 10 by x and sum over all pure strategies s of team player k.s
Ž . Ž . Ž .By 10 , interchanging sums, 5 , and 4 for x, u, this yields

m m m
k k k k kz s z x G y D e , x x s y C x G y u s u.Ž .Ž .Ý Ý Ý Ý Ýs i i s s i i i

s s is1 is1 is1

Since the dual LP has the same value of the objective function as the
nprimal LP, that is, Ý z s nu, this implies z s u for all k. Therefore,ks1 k k

Ž .according to 10 , any pure strategy s of team player k has expected payoff
at most u if all other team members play as in x and the adversary uses y.

kTeam member k gets only that payoff when he plays x , so this strategy is
his best response. Furthermore, against the team-maxmin strategy profile x
the adversary cannot play better than with y. This shows the equilibrium
property. B
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Ž . Ž .Nash 1951 showed that any finite game has an equilibrium in ran-
domized strategies. For our games, we have proved this independently, by
showing that each game has at least one team-maxmin equilibrium. We
note that our proof uses LP duality and not a fixed point argument, which
might lead to a simpler proof, as suggested by several colleagues; however,
we have not been able to find one.

There may be equilibria which are not team-maxmin equilibria. How-
ever, no equilibrium of the game can be better for the team than a
team-maxmin equilibrium: Let u be the team-maxmin payoff, and let u be
the payoff in some other equilibrium. The team-maxmin payoff u is
defined to be the best payoff that the team can guarantee itself. By playing
the other equilibrium strategy profile, the team guarantees itself a payoff
of u: since it is an equilibrium, the adversary can only hurt herself by
diverging unilaterally, and since the game is zero-sum, that can only help

Žthe team. Note that if we had several adversaries, they might be able to
.benefit by diverging together. It follows that u F u.

COROLLARY. The team-maxmin equilibria are precisely the equilibria of
the game with highest payoff to the team.

It is important to note that the theorem}and our entire approach}de-
pends heavily on the asymmetry of the situation. It cannot be extended to
the case of two opposing teams, since, for example, the corollary is clearly
asymmetric. It is also important to consider the maxmin strategy profile for
the team as a whole: The payoff guaranteed by an indï idual maxmin
strategy of a team player, which assumes the worst possible behavior also
for the other team members, is clearly less than or equal to any equilib-
rium payoff.

The team-maxmin equilibria seem to be the most appropriate solution
of the game, since they give the team players the highest payoff they can
get with uncoordinated strategies.

In general, a game may have more than one team-maxmin equilibrium.
Consider the following game, where the team has two members, each of
which has two pure strategies. Their mixed strategies are given by probabil-
ities p and q, respectively. The game is defined by the following payoffs:

p , q 0, 0 0, 1 1, 0 1, 1
11Ž .T 0 6 4 0

B 0 4 6 0

This game has two team-maxmin strategy profiles: p, q s 1, 0 and p, q s
0, 1, each with team payoff 4. As shown in our theorem, each of these
profiles can be extended to a team-maxmin equilibrium. For the first
profile, one obtains an equilibrium if the adversary selects T , for the
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second if she chooses B. Note that team-maxmin strategy profiles and
equilibrium strategies of the adversary cannot be combined arbitrarily like
in a two-person zero-sum game.

This situation of multiple team-maxmin equilibria can only occur when
the payoff matrix contains special entries. In a generic game where the
payoffs are not known with perfect accuracy, it is unlikely that any two

Ž .equilibria yield the same payoff. For example, one of the payoffs 4 in 11
might be slightly larger, which would make the respective team-maxmin
strategy profile unique, without otherwise changing the equilibria of the
game in an essential way. The team-maxmin equilibrium can thus be
considered as a unique solution of the game except for degenerate cases. It
provides the appropriate equilibrium selection method for our games.

The optimization problem for determining a team-maxmin strategy
Ž . Ž .profile has nonlinear constraints in 4 since the expected payoff C xi

contains products of probabilities. In particular, a team-maxmin strategy
Žprofile may involved irrational numbers see Koller and Megiddo, 1992,

. Ž .p. 537 . We chose the above example 1 with rationals in the team-maxmin
strategy profile for simplicity of exposition. An approach to solving the

Ž .nonlinear optimization problem in 4 are the Karush]Kuhn]Tucker con-
Ž .ditions that characterize locally optimal solutions x, u to 4 and involve

the gradients of the objective function and constraints; for an introduction
Ž .and references see Kuhn 1991 .

The theorem also holds under a weaker assumption. It is fairly easy to
see that the proof goes through if x and u are a locally optimal solution to

Ž .the problem in 4 . This means that any strategy profile of the team where
Žthe worst-case payoff cannot be improved by a local change of the entire

.profile is part of an equilibrium. For example, this applies to both strategy
Ž .profiles 1, 0 and 0, 1 in 11 even if one of the payoffs 4 there is slightly

changed so that only one of these strategy profiles is globally team-maxmin.
On the other hand, if we weaken the assumption in a different way the
theorem no longer holds. A strategy profile for the team that is unilaterally
team-maxmin cannot always be extended to an equilibrium. That is, it does
not suffice to assume that no team player can increase the team’s worst-case
payoff by changing his strategy unilaterally.

Ž .A counterexample is 1 for the strategy profile p, q s 0, 0 where the
payoff for both T and B is 3. When either probability p or q is increased
alone, the worst-case payoff gets smaller. However, no randomized strategy
of the adversary will yield an equilibrium: T would have to be played with

2probability at least so that the first team player has no incentive to3

change his strategy p, and B would have to be played with probability at
1least so that the second team player does not deviate from q s 0, which2

is not possible. Here, a joint change from the strategy profile 0, 0 yields a
larger worst-case payoff, so this strategy profile is not locally team-maxmin.
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4. CONCLUSIONS

We have considered multiperson zero-sum games of a team against an
adversary. These games can model teams in an organization, distributed
computing, or parlor games like Bridge. In these situations, it is assumed

Ž .that the team faces a single and thus rather powerful adversary. The
team members cannot coordinate their randomized actions during play,
but they can decide in advance which profile of mixed strategies they want
to use. Thereby, they use a defensive approach where they get the highest
worst-case payoff. If the team uses such a team-maxmin strategy profile,
then the adversary can exploit this situation by playing so that an equilib-
rium results. That team-maxmin equilibrium is the most reasonable solu-
tion to the game. It is therefore the appropriate method for equilibrium
selection.

The payoff of the team-maxmin equilibrium is unique and can be
considered as the ¨alue of the game. A team-maxmin strategy profile may
not be unique. In that case, the adversary usually must know which profile
is used in order to play such that a team-maxmin equilibrium results. That
is, unlike in a two-person zero-sum game, equilibrium strategies are not
interchangeable. However, this is in line with the defensive approach taken
by the team, where the adversary may possibly learn about the team’s
strategy profile. Furthermore, only special games with nongeneric payoffs
have more than one team-maxmin equilibrium.

As we argued, the team-maxmin payoff is the appropriate value for the
game of a team against an adversary. This value is typically less than the
payoff to the team if the individual team players could coordinate their
actions. Intuitively, the difference between the two payoffs quantifies the
potential value of coordinated action of the team members. It therefore
seems that this new definition of a value for the game can be used to
measure the value of communication within the team. For example, we can
quantify the benefits of changing the information flow within a company. If
we represent the game in extensive form, increasing the information flow
between team members would correspond to refining the information sets
in the game. This will result in a refined strategy space for some of the
players, and typically also a better team-maxmin equilibrium value. The
difference between the old and new values represents the benefit gained
from improving the communication structure in the team. If enough
communication is added between the team members, they will be able to
coordinate all their actions. Then, the team would essentially act as a
single player, and the team-maxmin payoff would be identical to the value
of the game when viewed as a two-player game between the team and the
adversary.
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Finally, we argue that the team-maxmin equilibrium is useful for exten-
sive two-person zero-sum games where one of the players has imperfect

Žrecall. This topic has been of recent interest Piccione and Rubinstein,
.1997 . In an extensive game, a player makes a decision at an information

set. Often, one thinks of an agent of the player making that decision. In
the agent normal form of the game, the agent for each information set is a
separate player. That is, the original player is replaced by a team of agents.
A strategy profile of the team is then a beha¨ior strategy of the player. The
player has perfect recall if each agent is informed about the previous
choices of the other team members. In that case, behavior strategies are as

Ž .powerful as mixed strategies Kuhn, 1953 .
In general, we can always represent a team as a single player with

imperfect recall. Then, a game of the type we have been considering
Žcorresponds to a two-person zero-sum game where one player the adver-

. Ž .sary has perfect recall and the other the team has imperfect recall. The
latter may usually achieve less with a behavior strategy than with a mixed

Ž .strategy. Koller and Megiddo 1992 have argued, however, that a mixed
strategy is not in the spirit of imperfect recall since moves that are
coordinated across information sets require the player to remember previ-
ous moves for the move he is about to make. They argue that, for a
zero-sum game, a maxmin behavior strategy seems to be more appropriate.
This is precisely a team-maxmin strategy profile of the team of agents. If

Žthe adversary has perfect recall and thus loses no power playing as a team
.of her own agents , then our theorem shows that the team-maxmin

behavior strategy is even a reasonable two-sided solution concept since it is
part of an equilibrium of the agent normal form.
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