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ABSTRACT

Planning is an important cognitive process. We are con-
stantly involved in planning even when executing seem-
ingly simple tasks such as driving to school. The ability
to plan becomes essential in unfamiliar environments
where we cannot rely on previously learned action se-
quences, but instead have to generate novel solutions
by considering consequences of action choices on the fly.
Planning in real-world domains poses a big challenge
to current AI systems because of inadequate abstrac-
tion and search mechanisms. Human planning ability is
therefore still considered superior. A good example is
modern video games in which it is apparent that com-
puter characters lack human planning, learning, and rea-
soning abilities. In this paper we approach the real-time
planning problem by considering build-order optimiza-
tion in real-time strategy games. This problem class can
be formulated as a resource accumulation and allocation
problem where an agent has to decide what objects to
produce at what time in order to meet one of two goals:
either maximizing the number of produced objects in a
given time period or producing a certain number of ob-
jects as fast as possible. We identify challenges related
to this planning problem, namely creating and destroy-
ing objects, concurrent action generation and execution,
and present ideas how to address them.

INTRODUCTION

Planning refers to finding an action sequence that
achieves a given goal. People are involved in planning for
a variety of tasks in their everyday lives. Most of the
time we do not realize that we are actually executing
plans, since for most behaviors we use memorized ac-
tion sequences. For example, we may have memorized a
plan to buy groceries which could look as follows: make
a list of what you need to buy, drive to the grocery
store, buy what is on the list, drive home, and unload

the groceries. However, what happens when one of the
links in the above chain is broken? If the car does not
start, we will have to plan how to achieve the goal of
getting the groceries another way. We have many op-
tions of getting to the grocery store, including taking a
bus, walking, fixing the car, and in turn each of those
options requires planning. If a person has never taken
a bus to the store before, he will need to find out about
the bus’s route, schedule, and fare, etc. Thus, in real-life
we become engaged in planning when we are facing new
situations to which we have no immediate solutions.

Today, most video game AI systems are designed as
complex rule-based scripted systems. Specifically, game
designers try to foresee with every possible scenario that
AI characters can encounter and then write a script of
actions for that situation. Such systems are difficult to
maintain and expand. Moreover, it is impossible to pre-
dict and effectively plan for every potential future state.
Most games do not have capabilities to handle unfamil-
iar situations. In such cases the AI behavior is usually
ineffective and predictable. We believe that adding real-
time planning capabilities to computer games will result
in improved AI behavior. Recently, the commercial suc-
cess of the action game F.E.A.R. (Orkin, 2005) shows
the positive effects automated planning can have on the
performance of AI characters. In F.E.A.R., unlike other
action games, the AI system performs real-time plan-
ning that allows computer characters to adapt their be-
havior to the current situation.

The focus of our research is creating AI systems for
real-time strategy (RTS) games such as Starcraft and
Age of Empires. The common objective in RTS games is
to eliminate other players through military superiority.
Players first instruct workers to gather resources, then
use those resources to build more workers and structures
that can create military units. These are then sent to
battle the enemy in real-time.

Research in RTS game AI can be divided into two
branches: higher-level and lower-level AI. Higher-level
AI refers to management of resources, decisions on what
to build, and strategic decisions such as sending units
into battle. Lower-level AI refers to the behaviors of



single units and small groups of units that are given
commands.

Today, most commercial RTS games are designed as
rule-based systems with limited planning capabilities.
However, some AI techniques such as influence maps and
terrain analysis to deal with new maps have been im-
plemented in commercial RTS games (Pottinger, 2000).
Progress has also been made in wall-building (Reid and
Davis, 2006), pathfinding (Sturtevant and Buro, 2005)
(Demyen and Buro, 2006), and local combat (Kovarsky
and Buro, 2005). The improvement of lower-level AI
modules is important because without effective solutions
in this area, research on higher-level reasoning and plan-
ning cannot proceed. Currently, because of the signif-
icant advances in lower-level AI the missing link for a
complete RTS game AI system is a higher-level AI mod-
ule responsible for global planning.

Such module could be looked at as an “all knowing”
general that makes decisions affecting all global aspects
of an RTS game, including resource collection, build-
ing decisions, and military expansion. Those general
decisions and commands are then passed to lower-level
modules which are responsible for the implementation
details.

Our focus is build-order optimization in RTS games.
We aim to optimize the gathering of resources and the
creation of buildings and units in the initial stage of RTS
games. In this research we only consider actions of our
units, since in the initial game phase there is no or little
interaction with the opponent. Our planning domain is
defined by a technology tree that specifies the relation-
ships between units, buildings, and resources. For exam-
ple, in order to build a factory we require a worker, bar-
racks, and sufficient resources. We consider two types of
optimization problems: minimizing the time to achieve
a certain goal, such as creating 2 tanks and 5 marines,
or maximizing the amount of a resource or unit type in
a specified time, e.g. gathering the maximum amount of
iron within 10 minutes).

The build-order optimization problem presents sev-
eral challenges that have not been addressed previously
in planning research. One problem is the creation of
new objects which can act in the world. Another is the
concurrent execution of actions in RTS games, which
leads to problems such as determining whether a given
set of actions is executable concurrently and efficiently
generating concurrent action sets.

In the remainder of the paper we first formulate
a build-order optimization problem in the planning
domain definition language (PDDL, (McDermott and
Committee, 1998)). We then discuss the limitations
of PDDL with regard to our planning domain. Subse-
quently, we describe the new challenges we face in build-
order optimization in RTS games and then we discuss
several approaches to address the unique challenges of
RTS games.

(define (domain build-order)
(:types worker building)
(:predicates

(canProduceWorkers ?b - building)
(canProduceMarines ?b - building)
(activatedW ?x - worker)
(busyW ?x - worker) )

(:functions
(amount-of-resources)
(num-marines) )

(:durative-action create-worker
:parameters (?x - worker ?b - building)
:duration (= ?duration 1)
:condition (and (at start (>= (amount-of-resources) 50))

(at start (canProduceWorkers ?b))
(over all (canProduceWorkers ?b))
(at end (canProduceWorkers ?b)))

:effect (and (at start (decrease (amount-of-resources) 50))
(at end (activatedW ?x))

(:durative-action create-marine
:parameters (?b - building)
:duration (= ?duration 2)
:condition (and (at start (>= (amount-of-resources) 100))

(at start (canProduceMarines ?b))
(over all (canProduceMarines ?b))
(at end (canProduceMarines ?b)))

:effect (and (at start (decrease (amount-of-resources) 100))
(at end (increase (num-marines) 1))

(:durative-action gather-resource
:parameters (?x - worker)
:duration (= ?duration 5)
:condition ((at start (at ?x ?l))

(at start (not (busyW ?x)))
:effect ((at end (increase (amount-of-resources) 100))

(at start (busyW ?x))
(at end (not (busyW ?x)))))

Figure 1: Simple build-order domain Specification in
PDDL with three actions: create-worker, create-marine,
and gather-resource.

BUILD-ORDER OPTIMIZATION AND PDDL

Research on automated planning has mostly concen-
trated on classical planning, which in short can be sum-
marized as planning without regard to time. In such
planners a plan is an ordered sequence of actions, ac-
tions are instantaneous and do not interact with each
other. However, in real life very few domains adhere to
such restrictions. Therefore, in recent years temporal
planning has gained attention. Temporal planners take
time into account. Each action requires a certain time
to execute and in certain situations several actions are
allowed to execute concurrently.

The development of PDDL and subsequently the
PDDL 2.1 (Fox and Long, 2003) extension, that incor-
porates time in its semantics, have further facilitated
the research for creating temporal planners. However,
the PDDL 2.1 semantics is still too restrictive for our
RTS domain. But since PDDL has become a standard
in the planning research community, we would like to
stay compatible with PDDL.

PDDL was developed to standardize planning do-
main and problem description in order to enable differ-
ent planners to compete against one another in interna-



(define (problem SimpleBuildOrder)

(:domain build-order)

(:objects

commandCentre barracks - building

worker1 worker2 worker3 worker4 - worker )

(:init

(not (activated worker1))

(not (activated worker2))

(not (activated worker3))

(not (activated worker4))

(canBuildMarines barracks)

(canProduceWorkers commandCentre)

(= (num-marines) 0)

(= (amount-of-resources) 700) )

(:goal (and (>= (num-marines) 5)))

(:metric minimize (total-time)))

Figure 2: Build-order problem specification in PDDL.
Starting with two buildings, the goal is to create 5
marines as fast as possible using at most four workers.

tional planning competitions. PDDL supports the syn-
tax of STRIPS, ADL, and some other previously used
planning languages. A PDDL definition of a planning
problem consists of two parts: the domain definition
and the problem definition. The domain definition file
is where the types, predicates, functions and actions are
defined, while the problem definition file is where the
objects of types defined in the domain files are declared,
the predicates and functions acting on objects are ini-
tialized, and the goal conditions for the plans are spec-
ified. The following example shows a simplified PDDL
RTS domain and problem files.

In the domain file in Figure 1 there are two types
(worker and building), four predicates, and two numeri-
cal functions. Functions in this context are used to store
numerical fluents such as resource amounts. The two ac-
tions are temporal actions for which the duration clause
specifies the number of steps required for the action to
complete. In the condition clause the preconditions for
triggering the action are specified. The “at start”, “over
all” and “at end” expressions specify when a given con-
dition has to hold (i.e. at the beginning of action execu-
tion, during, or at the end, respectively). In the effect
clause, the effects of a given action are specified. The
effect on functions is a numerical change of functions
values (increase or decrease), while the effect on pred-
icates is Boolean, i.e. a predicate for a given object or
objects can be set to true (e.g. ActivatedW ?x), or to
false (not (ActivatedW ?x).

The first action in Figure 1 is create-worker. In order
for this action to execute the amount-of-resources value
has to be at least 50 and the building has to be able
to produce workers (i.e. CanProduceWorkers is true).
The effect of this action is a reduction in resources and
the activation of a worker (i.e. activatedW is true). The
second action in Figure 1 is create-marine. Similarly, in
order for it to execute there must be sufficient resources
and the building has to be able to produce marines. The

effect is a reduction in resources and numerical increase
in the number of marines. Unlike workers, marines are
not objects. They are modeled numerically, like re-
sources. We do not have to model them as objects since
in the domain in Figure 1 they are not involved in any
actions. Workers have to be created as objects since
workers are involved in the gather-resource action.

In the problem specification in Figure 2 two objects
of type building (i.e. commandCentre and barracks) and
four objects of type worker are declared. These objects
as well as functions are initialized in the :init clause. The
worker type objects are set to not activated (since they
are not built yet) and the barracks and commandCen-
tre objects are enabled to build marines and workers,
respectively. The goal (:goal) of this plan specification
is to increase the number of marines to 5 and to do so
in a minimal possible time (:metric).

PLANNING IN RTS ENVIRONMENTS

PDDL is quickly becoming the standard input language
for planners (Kautz and Selman, 1999) (Hsu et al.,
2006). The International Planning Competition (IPC)
is an annual event, which is run in conjunction with the
ICAPS conference. Currently, IPC is the key test-bed
for both classical and temporal planners. However, even
the newest extension of PDDL fails to address some of
the challenges present in RTS games. First, we divide
the issues arising in build-order optimization into two
parts: object creation and destruction and concurrent
action execution. We then discuss each of the problems,
describe the restrictions of the PDDL semantics with re-
spect to each problem and propose ways to relax these
restrictions.

Object Creation and Destruction

The typical problems that PDDL aims to address and
that are used in the international planning competition
are so called closed problems in which the number of
objects in the world remains constant. Even the most
recent version of PDDL does not allow for the creation
or deletion of objects. In RTS games, however, creating
objects is key. A typical game starts with a small num-
ber of units and a limited amount of resources. Then,
those units can create structures that can produce new
units, mine resources, or perform other functions. An-
other important aspect of RTS games is combat. As the
RTS game progresses, military units start fighting with
their opponents. As a result some units or structures
can be destroyed. Currently, PDDL does not provide
means for object destruction. Even though no explicit
mechanisms for the creation and the destruction of ob-
jects exist there is a way to implicitly simulate object
creation and destruction in PDDL. All objects that can
potentially be created in the future have to be specified
in advance in the problem file. Creation and destruction



of an object in this setting means switching this object
on and off by using a predicate (for example activate
(object name)). Refer to Figure 1, where a worker is
created by activating (activatedW ?x) a previously de-
fined (Figure 2) object (e.g. worker1) from the problem
definition file. This approach is computationally ineffi-
cient and awkward to implement. Since all objects have
to be specified in advance, at every point the planner has
to examine each of the objects when generating possi-
ble actions. This examination is inefficient, since in the
beginning of the planning process most of the objects
are not active. Furthermore, in some scenarios it is dif-
ficult to predict the maximum number of objects that
are needed in advance. Pre-declaring a large number
of objects will lead to the above-mentioned inefficiency,
while declaring too few objects might result in a short-
age of objects (and possibly in an inability to achieve
a given goal). The problem of object creation and de-
struction should be straightforward to address. We can
add an explicit object CREATE and DESTROY capa-
bility to PDDL. This can be done by adding a new effect
to any given action that will create or destroy a certain
object by adding or removing that object from the list
of objects. For example, in the domain specification in
Figure 1 instead of activatedW worker, we would have a
new object create clause. In Figure 2 we will no longer
have to specify the worker objects in advance.

Concurrent Action Execution

RTS games are inherently concurrent environments. In
many situations objects can execute their actions simul-
taneously. Thus, when we have a set of actions, we need
to determine whether such a set is executable concur-
rently. Concurrent executability depends on interdepen-
dence among actions. If all actions in a set are indepen-
dent of each other, then they all can be executed con-
currently. Sometimes, however, actions in RTS games
are dependent. For example, building actions usually
require resources, while resource gathering actions pro-
duce resources (e.g. create-marine and gather-resource,
respectively). Whether a set consisting of resource pro-
ducing and consuming actions is executable simultane-
ously depends on the accumulated resource amount, the
amount currently produced, and the amount being con-
sumed. Such computation is non-trivial in general. In
recent years, some progress has been made on concur-
rently executing actions with shared resources (or nu-
meric fluents) (Lee and Lifschitz, 2001) (Erdem and Ga-
baldon, 2005). This research has concentrated on for-
malizing the semantics for such actions, without much
emphasis on the computational effort of generating con-
current action sets and determining concurrent action
executability. Another challenge is generating all sets of
concurrent actions efficiently given all actions that can
be executed individually.

To understand the computational effort required for

determining whether a set of concurrent actions is exe-
cutable, first we need to make a distinction. Two types
of concurrent actions are possible: serializable and non-
serializable. By serializable we refer to the sets of ac-
tions, which when executed serially, one after another,
have the same result as when executed concurrently.
Non-serializable actions produce different effects. For
example, two units may be required to lift an object
or two actions are interlocked in such a way that both
preconditions require the effect of the other action to
be true. For typical RTS game build-order optimization
problems considering serializable actions is sufficient.

A second distinction relates to the action execution
environment. In the first case one could demand that
for any chosen execution sequence the preconditions of
all actions in the sequence is met. Alternatively, a set
could be called serializable if only one such sequence
exists. This approach can lead to faster plans, since
more sequences will be declared serializable. However,
the first condition is more robust, since in some envi-
ronments there is no way to ensure that a set of actions
will be executed in a given order. This is especially true
for RTS game engines.

PDDL only allows for limited concurrency. No two
or more actions can simultaneously use a given resource
if at least one of the actions is changing its value. In
PDDL actions can be executed concurrently as long as
they are independent from each other. This is the so-
called “no moving targets” rule which is very conserva-
tive and will prevent resource related actions from being
executed simultaneously in our RTS game environment.
For instance, in Figure 1, actions create-worker and
create-marine consume the same type of resource. As-
suming that their preconditions are satisfied (i.e. there
are enough resources to create both unit types), these
two actions will not be allowed to execute concurrently
in PDDL because they both modify the same resource.
Thus, in order for PDDL to work properly in our domain
we need to remove the “no moving targets” restriction.
This relaxation allows for dependent concurrent actions
but also increases the computational effort for checking
concurrent executability of an action set and for gener-
ating concurrent sets of actions.

Checking Concurrent Executability
One way of reducing the computational effort of plan-
ning in RTS environments is through examining the
types of actions required (i.e. the expressiveness of their
preconditions and effects) for a typical problem specifi-
cation. By restricting the complexity of preconditions
and effects we can greatly improve the runtime speed of
determining whether a given set of actions is executable
concurrently. We have started to look at constructing
a hierarchy of precondition and effect restrictions with
growing expressiveness that still allows us to decide ro-
bust serializability quickly. The first level of the hierar-
chy is when all actions are independent of each other.



Therefore, all actions can be executed concurrently if all
the preconditions hold. At the second level the actions
are no longer independent of each other. In the RTS do-
main this means that two or more actions can increase
and decrease the value of a single resource. At this level
we restrict the preconditions to having only logical oper-
ators (i.e. no arithmetic operators) and effects to having
only commutative operations (i.e. increase and decrease
but not set). Here the runtime effort will partly de-
pend on the available amount of the shared resource.
At level three of the hierarchy we will allow for a num-
ber of resources to be shared between actions. At the
next level we will increase the expressiveness once more
by allowing preconditions to contain arithmetic opera-
tors. Finally, we will examine the general case in which
effects are not commutative.

Generation of Action Sets

Another challenge is to generate all possible sets of con-
current actions efficiently. Given the set of actions exe-
cutable at a certain time point, we need to generate po-
tential sets of such actions efficiently. We should aim to-
wards complexity that is linear with respect to the num-
ber of generated sets of actions. In general, given n pos-
sible actions there are 2n ways to choose sets of actions
of arbitrary length. Such computation is infeasible in a
real-time environment. Thus, suitable approximations
need to be found. We could allow objects to execute at
most one action at a time. The number of generated ac-
tion sets will then be reduced since actions performed by
the same object can be grouped together and will be left
out from further consideration once a single action from
that group is selected in a potential action set. Another
way to decrease the number of potential action sets is
through abstraction. The main challenge for planning
in RTS games is that the game is unbounded — mean-
ing the number of units (i.e. workers, buildings, military
units) generally grows as the game progresses. As the
number of units reaches a certain point, generating all
potential action sets will become infeasible in real-time.
In most RTS games, however, several units are often as-
signed to perform similar tasks. Thus, one reasonable
approach is to group units by their type into groups,
which will be treated as “super-units” and only execute
identical tasks during the planning process. Such groups
can be flexible. That is, new objects can be added and
removed to groups and groups themselves can be merged
to form larger groups, or split into smaller groups. How
to do such grouping to maximize the use of available
computational resources is an interesting research issue
by itself. Yet another way of decreasing the number of
actions is forcing units to perform a given task for a cer-
tain minimum number of time steps. Again this will re-
sult in a lower number of units available at a given time
and will reduce the number of potential action sets, at
the cost of optimality.

CONCLUSION

In this paper we have introduced the build-order opti-
mization problem for real-time strategy games and dis-
cussed the following core challenges for creating an au-
tomated planning system for this domain: how to deal
with object creation and destruction in PDDL, how to
decide what actions can be executed simultaneously, and
how to generate action sequences efficiently? We have
presented initial research ideas on how to tackle these
problems. Our hope is that these become the seed for a
high-performance RTS game planning system that can
be used to aid human players and to improve the playing
strength of computer opponents.
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