From Simple Features to
Sophisticated Evaluation Functions

Michael Buro

NEC Research Institute
4 Independence Way, Princeton NJ 08540, USA

email: micQ@research.nj.nec.com

Abstract

This paper discusses a practical framework for
the semi—automatic construction of evaluation
functions for games. Based on a structured
evaluation function representation, a procedure
for exploring the feature space is presented that
is able to discover new features in a computa-
tional feasible way. Besides the theoretical as-
pects, related practical issues such as the gen-
eration of training examples, feature selection,
and weight fitting in huge linear systems are
discussed. Finally, we present experimental re-
sults for Othello, which demonstrate the poten-
tial of the described approach.

1 Introduction

Many Al systems use evaluation functions for guiding
search tasks. In the context of strategy games they
usually map game positions into the real numbers for
estimating the winning chance for the player to move.
Decades of research has shown how hard a problem eval-
uation function construction is, even when focusing on
particular games. In order to simplify the construction
task, the notion of “evaluation features” was introduced.
The underlying assumption is that there exist reasonable
approximations of the perfect evaluation function in the
forms of combinations of a few distinct numerical prop-
erties of the position — called features. Provided this,
evaluation functions can be constructed in two phases
by 1) selecting features and 2) combining them.
Selecting features is one of the most important and
difficult sub—tasks in the construction of a game play-
ing program. It requires both domain specific knowledge
and programming skills because of the well known trade-
off between speed and knowledge in game—tree search.
A couple of years ago, the authors of the best game
playing programs still picked not only features but also
their weights in course of a tedious optimization pro-
cess. This is somewhat surprising, since already in 1959
Samuel proposed ways for automatically tuning weights.
While selecting features is difficult for a machine, fitting
even a large number of weights given a set of training
examples is not. Research focused on the latter topic

produced TD-Gammon, a world—class backgammon—
program [Tesauro 1994,1995], and contributed to Deep
Blue’s victory over Kasparov in 1997 [Hsu et al. 1990].

In this article we go a step further towards the ul-
timate goal of automatic evaluation function construc-
tion. Based on a structured evaluation function repre-
sentation, a procedure for exploring the feature space
is presented, which allows the automatic discovery of
new important features in a computational efficient way.
Besides the theoretical aspects, related practical issues,
such as the generation of training examples and weight
estimation in huge linear systems, are discussed. Finally,
we show how the presented techniques can be applied to
Othello and discuss the new approach with regard to
related work.

2 Evaluation Model

We first give a formal definition of the evaluation model
we are proposing and discuss its properties. In what
follows, P denotes the finite set of all legal game po-
sitions, and R is the set of real numbers. Let A be
a set of integer valued — so called atomic — features
and Rq == { (f() = k) | f € A, k is an integer} the
set of relations over A that compare feature values with
integer constants. Configurations are conjunctions of re-
lations in R4. For a position p € P and a configuration
c=r1 A... A\r; we define

wlle) = {

1, if r(p) A ... Ar(p) = true
0, otherwise

A configuration c is called active in a position p, iff ¢(p) =
true.

With this notation we can now define the Generalized
Linear Evaluation Model — GLEM(P, A, g) for short. In
it, evaluation functions e have the following form:

e(p) = g(Zwi -val(ci(p))), (1)

where ¢, ..., ¢, are configurations over R4, wy,...,w, €
R are weights, and g : R — R is an increasing and
differentiable link—function.

The weights are subject to the usual least—squares
optimization. That is, given a set of configurations

c1,---,Cn, a link—function g, and a sequence of scored
example positions ((p;,r;) | i =1...N), the weights are
choosen such that the total squared error

N

Bw) = 3 (ri — e(p))*.

i=1

is minimized. This model has several desirable proper-
ties:

e Atomic features are the building blocks of more so-
phisticated ones. This in principle allows the auto-
mated discovery of new important features by sys-
tematic combination.

e If necessary, complex features can be added to A.
Thus, “atomic” is not necessarily a synomym for
“simple”.

e When evaluating a position, features are combined
linearly. This keeps the time overhead low. Actu-
ally, not even a multiplication with the weight is
necessary since val(c;(p)) is either 0 or 1.

e Non-linear effects can be approximated by using
configurations that consist of several relations.

e In order to deal with saturation, the model al-
lows the use of increasing non-linear link—functions,
such as g(z) = 1/(1 + exp(—z)), without intro-
ducing additional run time costs during minimax—
search: there is no need to compute g, because
g(x1) > g(x2) <= 11 > 2.

e The simple linear core of the evaluation function
allows an efficient approximation of optimal weights,
even for huge systems. In the application reported
later, more than one million weights were fitted to a
training set consisting of 11 million scored example
positions in a reasonable period of time.

At this point GLEM should be moved into the right per-
spective: in the stated form it is neither a new revolu-
tionary evaluation approach, nor does it ease the task of
automatic evaluation function exploration. This is be-
cause it basically is built upon well known linear evalua-
tion functions and, in its general form, does not impose
a severe restriction on the structure of functions it in-
cludes, which would simplify the automatic exploration.
E.g., for any atomic feature set A, which is capable of dis-
tinguishing any two different positions (including game
history if the game result depends on it) via conjunctions
over R4, GLEM covers all evaluation functions over P.
A trivial example for such a complete atomic feature set
for board games without position repetition is
Ao {f | fs(p) = contents of square s in position p, }
#1 sis a square ’

where the contents of a square is considered to be an
integer value.

However, GLEM allows one to define a hierarchy of
sub-models in a natural way, which reflects different
levels of computational complexity and the expressive
power of the covered evaluation functions. By restrict-
ing the size of A, the number of configurations, and their
structure, an automated search for new features becomes
feasible. In the application discussed later, evaluation
functions based on GLEM outperformed the best known
functions so far. In this respect, GLEM breakes new
ground.

Good evaluation functions accurately estimate the
winning chances in positions visited during game-tree
search and are optimized for speed. Therefore, when
using scored example positions for tuning configuration
weights, the following topics have to be borne in mind:

e The training positions have to be representative of
the positions that will be evaluated later in actual
game—tree search.

e Training positions must be scored accurately.

e The selected configurations and their combination
must have the expressive power to explain the
data reasonably well while avoiding over-fitting.
Given the flat evaluation function representation in
GLEM, meeting this condition may require a large
number of configurations. Their automatic con-
struction is therefore of great interest.

e Evaluation speed is important.

e While computing weights is an off-line process, its
memory and time consumption should still be sub-
ject to optimization. This is because in the feature
selection phase many evaluation function versions
usually have to be compared, or without optimiza-
tion the current solver can not handle the number
of features one would like to use.

In the following sections these topics are discussed in
detail in the context of GLEM.

3 Example Generation

A theory of how to generate good training sets in the
context of evaluation function tuning has not been de-
veloped yet — and will not be in this section either.
Instead, practical ideas are discussed which may become
the seed for further investigations.

Example positions can be generated and scored in sev-
eral ways. If the considered game has a long tradition
and is quite popular, many previous games may be avail-
able in electronic format. The simplest scoring procedure
would then assign the final game result (depending on
the side to move) to all positions occurring in a game.
Obviously, this straight forward procedure has limita-
tions, since it does not ensure an accurate labelling —

human as well as machine players make mistakes. Select-
ing games between good players alleviates this problem.
But this approach leaves us with high—quality games, in
which hardly any catastrophe takes place, such as losing
material in chess or a corner in Othello without compen-
sation. This is because good players know the important
evaluation features and keep them mostly balanced dur-
ing their games. What we (and machines) can learn from
such games are the finer points of play, which make the
difference between good and the best players. However,
an evaluation function must be aware of the most impor-
tant features. Thus, our training set should also contain
games in which at one point a player makes a serious
mistake that is rigorously exploited by the opponent. In
summary, a reasonable strategy for generating training
examples from a game—database is to select games played
by at least one good player and to score game positions
according to the final game result. This procedure is ef-
ficient and its output can serve as the basis for tuning
the first evaluation function version.

Besides the still present potential mis—scoring prob-
lem, the question arises, whether the so generated ex-
ample set is representative for positions encountered in
game—tree search. This question is of importance, since
the weight—fit for a linear evaluation function is influ-
enced by the correlation among features, which might
be very different in both position sets. The answer ob-
viously depends on the type of game—tree search we are
conducting: in a highly selective search evaluated posi-
tions are in the vicinity of principal variations, whereas
in brute—force searches many ridiculous positions are
evaluated, which one would never encounter in actual
games. It seems natural to let the search algorithm gen-
erate the example position by itself. For instance, start-
ing with root—positions from played games a random
subset of evaluated positions can be saved in a file and
serve as the training set after scoring. In this way, the
generated positions are surely a representative sample
of the positions encountered in game—tree searches. It
remains to assign accurate scores to the positions. This
task can be accomplished again by game-tree searches,
which are supposed to return more reliable results than
the evaluation function itself. In particular, in many
games endgame positions can be evaluated perfectly —
or at least more accurately than mid-game or opening
positions — in a reasonable amount of time. In this case,
a game-stage dependent evaluation function can be im-
proved iteratively by first tuning the endgame weights.
Thereafter, example positions from the previous game
stage are evaluated by a game—tree search, which utilizes
the just tuned evaluation function, and so on. The next
step would then be to generate even positions and those
with a narrow advantage for one side. Similar to con-
sidering games between good players mentioned above,

these examples are useful for tuning weights of minor
features or revealing possible tradeoffs between major
features (e.g. material vs. king safety in chess or corner
possession vs. mobility in Othello).

If example positions are selected randomly during
minimax—based searches, one soon discovers that the
winning chance in such examples is biased towards the
player to move. This phenomenon is easy to explain,
given the fact that in typical positions the majority of
searched moves lose. It has an undesirable effect on fit-
ted weights, since it introduces an artificial bonus for the
player to move. This, in turn, leads to unstable evalua-
tions, which compromise comparing evaluations backed—
up from depths of odd difference during selective search.
Because the proposed generation procedure labels posi-
tions with search-results, a simple cure for this problem
is to add the principal variation successor positions to
the training set after labelling them with the negated
search result.

4 Selecting Configurations

GLEM proposes a new perspective on how to look at
evaluation features. In the classical approach a couple
of complex features are combined linearly. Weights were
mostly hand—tuned. Later, the study of neural networks
opened up a practical way of combining features non—
linearly. Application of the well known gradient descent
procedure (in this context called “back-propagation”)
makes it possible to automatically tune a large number
of network—parameters. A prominent and very success-
ful example is Tesauro’s backgammon—-network which, in
its strongest version, makes use of hand—crafted features
in addition to a raw board representation. GLEM uses
a different approach. Instead of modelling non—linear ef-
fects by applying parameterized analytical functions to
features, GLEM handles non-linearities directly by as-
signing values to boolean feature combinations, called
configurations. In this way, distinct cases can be handled
naturally, without the detour over non-linear analytical
functions. The design of neural networks corresponds
to configuration selection in GLEM, which is the topic
of this section. After stating basic requirements for the
atomic features, we will present an algorithm for gener-
ating configurations by analyzing example positions, and
discuss several optimizations.

4.1 Atomic Features

Atomic features are the building blocks for configura-
tions. As the scope of automatic configuration selection
is limited by its time and space complexity, choosing the
right abstraction level for atomic features is crucial. In
Othello, configurations based upon the raw board repre-
sentation are sufficient for building good evaluation func-
tions — as we shall see later. This is because many rel-
evant features in this game can be expressed by local

board configurations of small cardinality. Other games
may require a greater abstraction level. For instance,
the relation “piece A attacks piece B” in chess has a
long description length when using raw board represen-
tation languages. Since many important features, such
as forks and pins, are based on those attack features,
they certainly should be included in the atomic feature
set. In general, candidates for atomic features are com-
mon parts of relevant features, that — combined in novel
ways — may lead to new important features. Obviously,
this selection task is beyond current program abilities.

Not all atomic features have to be useful for building
other features. Limitations of the configuration genera-
tor may suggest the inclusion of complex features that
can not be expressed or well approximated by restricted
combinations of other members of the atomic feature set.

Moreover, GLEM generalizes the classical use of fea-
tures — w - f(p) — because (w - k) in

w- f(p) =) (w-k)-val(f(p) = k).

k

specializes the weight of val(f(p) = k). This generaliza-
tion is only meaningful if f has a small range. In case
one likes to incorporate a feature f having a large range,
GLEM can be easily extended by allowing summation
terms of the form w - f(p).

4.2 Generating Configurations

In a balanced evaluation function design the number of
features can be increased up to a point where either 1)
adding additional knowledge is compensated for by a
decreased evaluation speed or 2) over—fitting becomes a
problem. Since configurations can be computed quickly,
once the atomic features have been evaluated, GLEM
encourages the use of many configurations rather than
a few complex features. Our chief concern is therefore
over—fitting.

We will first present an algorithm for generating a
configurations set that does not suffer from over—fitting.
Thereafter, we will discuss how to deal with a possibly
unacceptably long run time for the configuration gen-
erator, for weight fitting, or for the configuration—value
look—up during game—tree search.

Configurations have to cover positions that occur in
game—tree search while avoiding over—fitting when opti-
mizing weights. Both requirements can be met by us-
ing a large set of training positions — generated as de-
scribed in the previous section — and selecting config-
urations that match a sufficiently large number of these
positions. Figure 1 shows a straight—forward algorithm
for this task. Given a set of atomic features A, example
positions F, and a minimal match number n, it computes
all walid configurations over A that occur in at least n
positions in E. Beginning with all valid configurations

Function GenConf

atomic feature set A, example position set E,
minimal match count n

Output: configurations over A that are active in at least
n positions of E.

R:={{f() =k} | f € A, k € range(f),
#match({£() = k}, E) > n}

C := R ; collects all valid configurations

N := R ; set of configs. created in prev. iteration

Input:

while N # () do
M :=0 ; set of valid configs. in current iter.
(*) foreachce N, d€ R do
e:=cUd ; specialize configuration ¢
if #match(e, E) > n then
M := M U {e} ; append if valid
endif
endfor
N:=M
C:=CUN
endwhile
return C

; next configs. to specialize
; add valid configs.

Figure 1: Pseudo-code for generating the set of configura-
tions that occur in at least n example positions. The function
iteratively specializes configurations, which are implemented
as sets of relations, until the number of matching examples
(#match(e, E)) drops below n.

of length one, the algorithm iteratively builds larger con-
figurations by specializing previously generated configu-
rations, until the number of matches drops below n. The
algorithm certainly halts, since the set of configurations
is finite. Its correctness can be shown by induction using
the fact, that for k£ > 1, valid configurations of length %
have valid sub—configurations of length k£ — 1.

The run time of the algorithm depends on #A, #FE,
n, and the evaluation time for the atomic features.
The most time—consuming part is computing the match
counts in the inner loop. Since in the beginning the num-
ber of checked configurations grows exponentially in each
iteration, it is crucial to optimize the match computa-
tions, especially if the number of examples is large. The
following optimizations largely decrease the run time of
the presented algorithm:

e Valid configurations of length k£ may have several
valid sub—configurations of length & — 1. This
suggests that we should check whether a given
specialization has been tested before in the cur-
rent iteration, in order to avoid repeated match—
computations. An even better — optimal — so-
lution is to generate specializations in an ordered
fashion by defining a total order over R and replac-
ing line (*) by

foreach c€ N, d € R with d > I;laxd' do
'ec

It is not hard to show that after applying this time—
saving modification the algorithm still generates all
valid configurations.

e The match computation time can be largely re-
duced by preprocessing and parallelizing computa-
tions. The idea is to compute, for each r € R, a
sequence of bits (b,)fj; defined by b; := val(r(p;)),
where p; € E is the i—th example position. After
this preprocessing step, the actual features and po-
sitions are no longer needed and the match count
computation is as simple as and—combining the bit—
sequences of the involved relations and counting set
bits in the result sequence. Modern CPUs allow
a very efficient implementation of the and—part by
handling 32 or even 64 bits in parallel. Iterating
z := x A (z — 1), which clears the rightmost one in
the binary representation of z, allows us to count
set bits quickly.

e Replacing the condition #match(e, E) > n by a
sequential statistical test procedure speeds up the
computation even further. This optimization can
be motivated by an intuitive example: if among the
first 100 randomly selected bits of 1000 there is only
a single one, it is very unlikely that the total num-
ber of ones exceeds 500. More formally, we pro-
pose the following heuristic function, which quickly
checks whether #match(e, E) > n holds with a pre-
scribed likelihood. In a preprocessing step, E is
randomly partitioned into chunks Fi, ..., E,, of size
s (E,, might have less elements). For a given config-

Function MatchHeuristic

configuration e, chunk size s,

random partition E4, ..., E,, of position
set E as described in the text,
confidence level ¢t > 0

Output: true, if #match(e, E) > n is likely
false, otherwise

Input:

= n/#E ; match percentage aimed for
=0 ; number of elements checked
=0 ; current match count

if u > dq +ty/dq(1 — q) then

return true ; #match(e, E) > n is likely

endif
if u < dq —ty/dq(1 — q) then
return false ; #match(e, F) < n is likely
endif
endfor

return u+#match(e, E,) > n

Figure 2: A fast procedure for testing the hypothesis
#match(e, E) > n

uration e, the function then iteratively computes the
match counts for increasing subsets beginning with
FEy. If this count at one point significantly differs
from the expected count in case e would match ex-
actly n—times, the function returns the likely truth—
value of #match(e, E) > n early. The pseudo—code
implementation shown in Figure 2 makes use of the
fact that the expected number of ones in a sequence
of d randomly generated bits is dg, if Prob{1} = ¢,
while its standard deviation is 1/dg(1 — ¢). The be-
haviour of this function is controlled by confidence
level t. For large values of ¢, hardly any condition
will be met — the function will be slow, and almost
always return the correct result. If ¢ is small, the
function is quick, but it also returns unreliable re-
sults. Experiments can tell how to choose ¢ depend-
ing on the speed/reliability one likes to achieve.

4.3 Finding Active Configurations

During weight fitting and position evaluation the set of
active configurations has to be computed quickly for a
large number of positions. For this purpose, we represent
the set of all configurations over R4 by a DAG G. Nodes
in G correspond to configurations, and arcs mark direct
specializations. An example is shown in Figure 3a. The
just described selection algorithm computes all configu-
rations that occur at least n—times in a set of example
positions. This set of valid configurations induces a sub-
DAG G’ of G. Given a position, all active configurations
can be found by a depth-first-search in G' starting at
its root. During search, all visited configurations are
marked as such and their active status is determined.
The search stops in nodes that have been visited be-
fore or have been found inactive. This algorithm quickly
finds all active configurations. However, the only rel-
evant active configurations for evaluation purposes are
those without active specializations, because generaliza-
tions are redundant. It is easy to extend the described
algorithm accordingly.

4.4 Reducing Complexity

So far, our focus has been on efficient ways for generat-
ing configurations and computing active configurations.
Despite the optimization efforts, GenConf may still not
be able to generate all valid configurations due to time or
space limitations. Furthermore, a large number of gen-
erated configurations might prevent an efficient position
evaluation, because too many configurations are active,
or the configuration data needs too much memory.

One solution to these problems is to increase the min-
imal match count n, until the number of generated con-
figurations is manageable. This approach, however, also
narrows the evaluation function’s view by focusing it on
the most common phenomena. A compromise is to gen-
erate all valid configurations choosing n high enough to

z)
) r1,0" I20

ri,o" r2,1

l10n T2z

\

0) N ' !
T (Gem) o
10 1 !
pentt) == 7 ()
S ()2
= =)

| |
) —= (2)10y
| 1 1 ! !
| () 14
paten [, f;] (T2);2 | 5
ffffff N G |
table indices

Figure 3: a) Configuration DAG for two features f1, f» with
range(fi) = {0,1} and range(f2) = {0,1,2}. r; i denotes the
relation fi(-) = k. b) Configurations belonging to patterns
over f1 and fo.

avoid over—fitting (say n > 40), and to reduce the num-
ber of configurations afterwards by determining their
statistical significance with regard to winning chance
prediction.

Another option for reducing the number of configu-
rations is to limit their size or to choose subsets of the
atomic feature set A as the base for generated configu-
rations. Finally, it is worthwhile to consider sets of mu-
tual exclusive configurations, in order to keep the num-
ber of active configurations low and to greatly increase
the evaluation speed. Of special interest are patterns
— complete sets of configurations of maximum length,
which are based on subsets of A. Figure 3b) shows
several examples. When using patterns, both generat-
ing configurations and finding active configurations is
trivial, because data concerning pattern configurations
can be stored in a table and quickly accessed after a
simple index calculation. For instance, the table index
for pattern [f1, fo] with regard to position p is simply
3- fi(p) + f2(p) (Figure 3b). Thus, checking whether a
pattern configuration is valid only requires incrementing
a match—counter stored in a table, whenever a configura-
tion is active in an example position, and comparing the
result with the minimal match count. Detecting whether
a pattern configuration is active during weight fitting or
evaluation is a matter of a fast index computation and

ip —= offsei(iy) data(iin)

offset table

hash-table

Figure 4: Fast sparse data access. Data regarding a config-
uration represented by two indices 41 and é2 can be accessed
quickly in two steps.

one table access. Incremental updates of only those in-
dices which are influenced by moves speeds up game—tree
search further. The flat table is therefore the data struc-
ture of choice for storing information regarding small and
medium-sized pattern configurations. Large patterns re-
quire a more memory efficient representation. In order
to avoid over—fitting, we are still only interested in con-
figurations that match several example positions. Con-
sequently, large patterns are sparse. Figure 4 outlines a
very fast and — to our knowledge — novel technique for
accessing sparse data. It is based on representing valid
configurations as index tuples (i1,42). For a given posi-
tion and pattern, i; and i are computed by splitting the
pattern’s feature set into two parts and performing the
index calculations described above separately for each
subset. Both indices are then used for accessing a hash—
table, in which data regarding configuration (iy,42) is
stored, in two steps. First, an offset is looked—up in a
table using index ;. Then, this offset, incremented by
12, is used to access the hash—table. In order for the al-
gorithm to be correct, 1) unique hash—table entries have
to be assigned to valid index tuples, and 2) invalid in-
dex tuples must be detected. The first condition can be
met by choosing suitable offsets and a sufficiently large
hash—table. In practice, the following greedy algorithm
for constructing collision—free hash—tables has produced
reasonable results: all valid ¢;—values are processed in
decreasing order of their frequency and offsets are as-
signed to them in first—fit manner. The hash—table size
must be greater than the sum of the maximal offset and
maximal possible value of i, in order to avoid accesses
beyond table end.

A simple way for meeting condition 2) is to add the

lock 43 to hash entries for all valid tuples (i1,42) and
to reject tuples (i1,42), for which the lock stored in the
accessed hash entry does not match i;. Locks of unused
hash entries must be initialized with a value different
from any possible i; (e.g. —1). Finally, offsets for all
i1, which are not the first component of any valid index
tuple, can be safely set to 0, since all locks in the hash—
table are different from those i; values.

Patterns may outperform general configurations due
to a much faster generation and evaluation of configu-
rations. However, patterns also have a limited scope,
and especially sparse patterns may miss essential gen-
eralizations which are covered by the general approach.
This observation suggests building a hierarchy of pat-
terns, which, however, also slows down the evaluation.
Thus, since both approaches have pros and cons, experi-
ments have to tell, which is the better model for a given
application.

5 Weight Fitting

The previous sections discussed the generation of scored
example positions and the selection of configurations. In
order to conclude the evaluation function construction,
we must still show how to assign weights to configura-
tions.

If the number of weights is large or non-linear models
are used, direct weight computation is no longer pos-
sible. Instead, iterative methods have to be used for
weight fitting, which are usually based on variations of
the gradient decent procedure. In each step, this pro-
cedure updates the current weight vector in direction of
the negated gradient of the error function. If features
are highly correlated, this simple algorithm is known to
converge slowly. Faster conjugate gradient algorithms
have been developed [Press et al. 1992], that do not suf-
fer from this problem. However, because the basic al-
gorithm works sufficiently well in practice and is easier
to implement, it will be discussed in more detail in the
remainder of this section.

5.1 Basic considerations

In games, the purpose of evaluation functions is to esti-
mate the winning chance for the player to move. This
goal can be accomplished literally by constructing func-
tions that map positions into [0,1]. Alternatively, the
game may provide a numerical scoring of terminal posi-
tions reflecting the win “size.” In this case, a reasonable
evaluation objective is to estimate the final game score.
In either case, experiments should be conducted to find a
suitable link—function g. The most commonly used can-
didates are the identity function and sigmoid functions
of the form g(z) = C/(1 + exp(—=z)). For instance, for
modeling the winning chance an S—shaped link—function
g : R — [0,1] can be used in order to deal with sat-
uration. In this regard, g(z) = 1/(1 + exp(—=z)) is of

special interest, because the weight fitting process bene-
fits from a quickly computable derivative of g, which in
this case is g(z)(1 — g(z)). A straight forward scoring
scheme for terminal positions in this model assigns 0.9
to won positions, 0.5 to draws, and 0.1 to lost positions
for the player to move. It is important to realize that
an optimal weight vector may not exist if the extreme
values — 1.0 and 0.0 — are chosen.

Given a sequence of scored training positions
((pi,m:))X., the objective is to find a weight vector wg
which minimizes the error function

1N
_ 2
E(w) = N E Ag(w)?,

where k=1

Ap(w) == — g(iwihi,k) and h; := val(c;(pr)).

=1

Starting with an initial guess w(%), in each step the basic
gradient descent procedure updates the weight vector
according to

) = —a - (gradyy E)(w®)

a > 0 is the step size and gradqy E is the vector consist-
ing of E’s partial derivatives g—u]i. This update scheme
changes the weights in direction of the error function’s
steepest descent and is widely used for training artificial
neural networks.

In this application, the partial derivatives have a sim-
ple form due to GLEM’s flat evaluation structure:

OB (w)——ii '(fjwh.)Ac@his. (@)
811),' - Nk:19 pa ',k k i,k -

If g is the identity function, this expression reduces to

OF 2 X
B, (w) = -~ ;Ak(w)hi,k.

Thus, steepest descent updates for all weights can be
computed efficiently in a single pass through the training
data. It is worth noting, that the computation of (2)
can be arranged in such a way that its runtime depends
on the number of h;; different from 0, rather than on
N. Especially when using patterns, the savings thus
achieved are significant.

Since the configuration match count may vary by large
factors, the just described update step changes weights
at very different speeds. This is undesirable, because at
one point the iteration process has to be stopped, and

'adding 8- 6%~ — known as “momentum” — can im-
prove the convergence in case of correlated features.

by then, weights of rare but important configurations
might not have reached a proper level yet. A simple way
to deal with this problem is to normalize the updates by
dividing the sum by the number of h;j; # 0 instead of
N.

5.2 Position Type Dependent Weights

The evaluation of configurations may depend on the
game stage or, more generally, on the particular type
of the position. For instance, centralizing the king in
chess openings is considered suicide, whereas his activa-
tion is crucial in many endgames. It may therefore be
worthwhile to partition the training set according to po-
sition type, and to select configurations and fit weights
separately for each set. In order to avoid big evalua-
tion jumps when crossing type boundaries, which can
cause undesired artifacts in game—tree search, it is help-
ful to define fine grained position types and to smooth
evaluations across adjacent types. Fitting weights for
many position types, however, requires a large number
of training positions, provided the minimal match count
is maintained in order to eliminate over—fitting. Glob-
ally lowering the match count is therefore not an option,
but a more local view helps to reduce the number of
needed examples. When fitting weights for a particu-
lar position type, one suggestion is to also consider the
training examples from adjacent types. This method in-
creases the number of examples for any single position
type and weights are smoothed automatically. The sec-
ond option is to fit position type dependent weights in a
more flexible manner. For this purpose, valid configura-
tions are generated by considering all training examples.
The weight fitting process then decides, how to com-
pute the configuration weights separately for each type
of position. For any type, for which the particular con-
figuration match count is sufficiently high (say > 20),
it is safe to fit the according weight as described in the
previous subsection. If the count is small (say < 4),
over—fitting might set in and the configuration should be
treated as if there is no information available, i.e. the
weight is set to 0. Cases in between can be handled by
merging adjacent position types, until the total match
number allows a robust weight fit. Here, the alterna-
tives are to have only a single weight for all involved
types or, if there are enough examples available, to fit
a parameterized weight model. An example for such a
model is w(k) = a-k +b, kg < k < ki, which states a
linear relationship between the weight and the position
type k — coded as an integer — in [kq, ..., k1]. Of course,
this kind of model is only meaningful for position types
that can be totally ordered, such as opening—midgame—
endgame. Incorporating the update of parameters a and
b in the gradient descent procedure is not hard.

This technique allows a flexible and robust fitting of

position type dependent weights. After generating train-
ing examples and selecting configurations, this concludes
the evaluation function construction.

6 Application: Othello

The presented general framework for the construction of
evaluation functions has been inspired by the work on
our Othello program LOGISTELLO. Besides the progress
in selective search and automated opening book con-
struction, the application of the techniques discussed
here played a major role in creating this program, that
is able to beat the best human Othello players handily,
even when running only on an ordinary machine.

Otbhello is a popular Japanese board game, played by
two players on an 8x8-board using 64 two—colored discs.
Moves consist of placing one disc on an empty square
and turning all bracketed opponent’s discs over. Figure
5 shows an example. The game ends when neither player
has a legal move, in which case the player with the most
discs on the board has won.

The details of LOGISTELLO’s evaluation function al-
ready have been discussed in [Buro 1997]. We will there-
fore only give a short overview and concentrate on its re-
cent improvement, which is based on the sparse pattern
approach presented above.

The most important concepts in Othello are disc sta-
bility, mobility, and parity. In particular:

e Stable discs can not be flipped by the opponent and,
therefore, directly contribute to the final score. The
most prominent stable discs are occupied corners,
which can be used as an anchor to create more stable
discs.

e Having fewer move options than the opponent is
dangerous, because it increases the chance of losing
a corner in the near future.

abcdef gh

1
2
3 .
4 -Je Starting position.
2 .Q (Black to move)
7
8
abcdef gh abcdef gh
1 - 1 NNE
2| - @00 2 NeeRE
3 |- 0600 e 3 - @000 - @
1 [00e0ee 4 [-l00e0ee
50 - oeoeede 5 - 000000 ®
6 -l0O0e0ee 6 - 00e0ee
7 o000 |- |® 7 [-1000 |e
8 eee 8 10ee
White to move Position after move bb

Figure 5: Example positions. Legal moves are marked with
a dot.

e Making the last move in an Othello game is advan-
tageous, since it increases one’s own disc count while
decreasing the number of opponent’s discs. Parity
generalizes this observation by considering last move
opportunities for every empty board region.

In [Buro 1997] it has been shown, that all of these fea-
tures can be quickly approximated by pattern configura-
tions built upon a raw board representation. The chosen
patterns are shown in Figure 6. Horizontal, vertical, and
diagonal lines of length > 4 are included for covering mo-
bility. The remaining patterns deal with the important
corner regions and edges. The evaluation function dis-
tinguishes 13 game stages, depending on the number of
discs on the board. Applying the techniques described
in the previous sections, about 11 million scored training
positions were generated to fit approximately 1.5 mil-
lion weights. This figure takes weight sharing among
symmetrical configurations into account. Starting with
w(® = 0, the weight fitting procedure took a Pentium
I1/333 CPU about 30 hours to reach an acceptable accu-
racy level after 250 iterations. Equipped with an evalua-
tion function very similar to that we have just described,
LoOGISTELLO beat the human Othello World—champion
6-0 in August 1997 [Buro 1997b]. After four years of
successful tournament play, LOGISTELLO ended its ca-
reer in October 1997 with a straight 22-win victory in
its last computer—Othello tournament.

Recently, the incorporation of larger patterns has im-
proved the evaluation performance further. In the cur-
rent implementation, configuration weights are repre-
sented as 16 bit integers. Storing weights for 10-square
patterns in 13 flat tables thus requires 3'°-2-13 ~ 1.5 mil-
lion bytes. Using the same approach for storing weights
for much larger patterns is therefore out of question.
The first experiments with several sparse data access

A B C
QORI [CICRIORIOICI] [CIC[QIO[R[CC[Q]
OIQ[Q[O[C[OIO[O] go

O

O

O

O

i QI[O[O[O[O[OO]

Figure 7: Large patterns tested. For each of these patterns
the simplified pattern version of GenConf generated about
88,000 valid configurations (#E = 11 million, n = 75). All
configuration sets fit in hash—tables of size less than 310,000.

schemes based on binary search were disappointing. In-
creasing the program’s knowledge by adding the patterns
shown in Figure 7 could not compensate for a slowdown
of about 45%. The new program version did not play
better than the previous one. Only after figuring out
the fast hash-table access scheme and adding just one
of the three features, the program achieved its best per-
formance so far. Table 1 summarizes the results of all
tournaments that have been played to evaluate each ver-
sion.

The patterns shown in Figure 7 were chosen based on
both game and evaluation speed considerations. Human
players frequently make use of their abilities to evalu-
ate large disc formations which are not covered by the
basic patterns. Of special interest are edge interactions
and 2 x 8—corner configurations, of which some can not
be evaluated properly by only looking at the basic sub—
sets. On the other hand, it is preferable to add patterns
for which the index computation can make use of already
determined indices. The chosen 16—disc patterns meet
this preference. Nevertheless, the results show, that the
combined knowledge coded in the new patterns does not
compensate for the speed drop. This finding indicates
that a significant improvement of a sequential program
may not be possible by adding further patterns based
on the raw board representation. However, a more ef-
fective atomic features might exist which in combination

Figure 6: LOGISTELLO’s previous pattern set. Patterns that
can be obtained by rotating and mirroring the board have
been omitted. Each diamond represents an atomic feature f
with range {0,1,2}. f(p) is defined by the particular square
contents (e.g. white disc — 0, empty — 1, black disc + 2).

ooo ooo ooo ooo outperform the current evaluation function.
o o o 3]
< e e oppon- time/game #nodes opp. results winning
0 ent (minutes) (fraction) wins draws losses perc.
10-10 0.89 213 58 163 55.8
ks B 10-10 0.89 211 60 163 55.5
oo CEEEEEr el AB 10-10 0.83 203 60 171 53.7
o> ORI ABC 10-10 0.8 211 49 174 54.3
00 A 6-10 0.51 172 59 203 46.4
[A 7-10 0.62 183 55 196 48.5
SOOI OIS N A 8-10 0.71 195 63 176 52.2
o L] R 0100

Table 1: Tournament results. LOGISTELLO using the ba-
sic patterns played 434-game tournaments against several
versions that — in addition — employed the large patterns
shown in Figure 7. The results indicate that speed matters.
The strongest versions are those that only use either pattern
A or B. They beat the previous version significantly, al-
though they are 11% slower. When playing at equal strength
the best version only needs to search about 2/3 of the nodes
— as the time-handicap tournaments show.

7 Summary and Discussion

In this paper, a practical framework for the semi—
automatic construction of evaluation functions has been
presented. Based on a generalized linear evaluation
model — called GLEM — efficient procedures have been
developed for generating training positions, exploring
the feature space, and fitting feature weights. Rather
than combining a few features by using complicated
non-linear functions, we propose to construct evaluation
functions by combining many — possibly more than hun-
dred thousand — features, which are boolean combina-
tions of atomic relations. This approach allows to model
non-linear effects directly, without the detour over ana-
lytic functions, and opens up practical ways for generat-
ing features automatically.

We attribute the great success of GLEM in the domain
of Othello to the following two observations:

e The important evaluation features in this game can
be well approximated by medium-sized configura-
tions built on the raw board representation.

o After providing the system with the atomic features
and restricting the configuration sets to patterns,
the construction details — finding relevant configu-
rations and fitting more than a million weights —
have been left to a computer.

GLEM allows the program author to concentrate on the
part of evaluation function construction, where humans
excel: the discovery of fundamental features by reason-
ing about the game. GLEM simplifies this task, because
the exact feature formulation — which is sometimes hard
to find — is no longer needed. The system is able to ap-
proximate complex features by combining atomic frag-
ments. In this way, it is possible for the programmer
to speculate about feature building blocks and to leave
the creation of actually used features as well as assigning
weights to them to the system.

The automatic construction of features has been stud-
ied by several authors. Utgoff (1997) proposes a general
evaluation function learner, called ELF, which combines
the processes of constructing boolean feature combina-
tions and weight fitting. This approach has been shown
to be effective in small artificial problems, but could not
convince in its application to checkers. Using the TD(0)
learning approach [Sutton 1988], more than 300 thou-
sand games were played to build features based on a raw
board representation, and to fit their weights. The rea-
sons for the mediocre performance of the resulting player
are

e the search—depth limitation (1-ply is by far not
enough in such a tactical game),

e the insufficient exploration of the position space,

o the generation of less than 200 features, and

10

e not using more complex atomic features.

The main problem of ELF is its low speed. Taking into
account the large number of features needed for an ad-
equate evaluation in complex domains, and the result-
ing considerable effort for optimizing weights, it seems
hopeless to combine feature construction and weight
fitting. Other approaches for constructing features or
adapting the combination function while fitting weights
(e.g. MORPH [Levinson & Snyder 1991], meiosis networks
[Hanson 1990], node splitting [Wynne-Jones 1992]), face
similar complexity problems. Our solution is to separate
these tasks in order to speed—up the process and to give
many opportunities for optimization.

References

[Buro 1997a] M. Buro. Ezperiments with Multi-ProbCut and
a New High—Quality Evaluation Function for Othello,
NEC Research Institute TR, 97-96.

[Buro 1997b] M. Buro. The Othello Match of the Year:
Takeshi Murakami vs. Logistello, ICCA Journal 20(3),
189-193.

[Hanson 1990] S.J. Hanson. Meiosis Networks, Advances in
Neural Information Processing Systems, 553-541.

[Hsu et al. 1990] F. Hsu, S. Anantharaman, M.S. Campbell,
A. Nowatzyk. Deep Thought, In: T.A. Marsland and
J. Schaeffer (Eds.) — Computer, Chess, and Cognition,
Springer Verlag, 55-78.

[Levinson & Snyder 1991] R.A. Levinson, R. Snyder. Adap-
tive Pattern—Oriented Chess, In: L. Birnbaum and
G. Collins (Eds.) Proceedings of the 8th International
‘Workshop on Machine Learning, 85-89.

[Press et al. 1992] W.H. Press, S.A. Teukolsky, W.T. Vetter-
ling, B.P. Flannery. Numerical Recipes, Cambridge Uni-
versity Press, 2nd edition.

[Samuel 1959] A.L. Samuel. Some Studies in Machine
Learning Using the Game of Checkers, IBM Journal of
Research and Development 3(3), 211-229.

[Sutton 1988] R.S. Sutton. Learning to Predict by the Meth-
ods of Temporal Differences, Machine Learning 3, 9-44.

[Tesauro 1994] G. Tesauro. TD-Gammon, a Self-teaching
Backgammon Program, Reaches Master—Level Play,
Neural Computation 6(20), 215-219.

[Tesauro 1995] G. Tesauro. Temporal Difference Learning
and TD-Gammon, Communications of the ACM 38(3),
58-68.

[Utgoff 1997] P.E. Utgoff. Constructive Function Approzi-
mation, Department of CS, Univ. of Mass., TR 97-4.

[Wynne-Jones 1992] M. Wynne—-Jones. Node Splitting: A
Constructive Algorithm for Feed—Forward Neural Net-
works, Adv. in Neural Inf. Proc. Systems, 1072-1079.

