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Abstract

This paper presents ideas concerning game{tree

evaluation that recently improved the author's

already strong Othello program LOGISTELLO

considerably. Two main ingredients of this pro-

gram have been re�ned: First, a new evalua-

tion function for Othello is described. While it

is still table{based (and therefore fast) like its

predecessors a novel procedure for estimating

the table entries now allows modeling pattern

interactions which leads to much higher eval-

uation quality. Second, Multi{ProbCut is

introduced generalizing the formerly used selec-

tive search procedure ProbCut in that it al-

lows forward cuts at various heights after shal-

low searches of increasing depths.

Keywords: selective game{tree search, ta-

ble based evaluation function, linear regression,

Othello

1 Introduction

The secrets of today's best programs for unsolved perfect

information games like Othello and chess are

� achieving a high raw search speed by means of as-

sembler routines or even very fast parallel/special

hardware that allows deep game{tree searches and

thereby enables to play a strong game even if only

poor evaluation functions are used.

� performing selective searches to follow interesting

variations more deeply or to cut o� probable irrele-

vant lines of play early, without missing many deci-

sive variations.

� using smart evaluation functions which are often

hard to construct or very time consuming.

Ideal for top{level play is the combination of all these

approaches. Unfortunately, there are incompatibilities

among them as well as tradeo�s. For instance, a�ordable

hardware realizations require a simple structure of both

the evaluation function and the selective search mech-

anism. These restrictions may cause a lower playing

strength than expected compared to that of a normal

workstation implementation of a smarter search algo-

rithm coupled with a better evaluation function. On

the other hand, weaker but faster evaluation functions

allow deeper searches which may lead to a better overall

performance than the use of smart but slow functions

in conjunction with shallower searches. Despite these

design problems existing implementations can often be

improved by working on each of the mentioned topics

separately aiming for the right balance. This is very im-

portant, since neglecting one issue can reduce the overall

performance considerably.

LOGISTELLO has been one of the top Othello pro-

grams ever since its tournament debut in October 1993.

It is still a sequential C program running on ordinary

hardware. From the beginning the main focus of devel-

opment has been on deep searches and reasonably good

evaluation functions. In what follows the latest program

improvements are described. First, a new table estima-

tion technique is presented which signi�cantly improved

the evaluation function quality at no additional run time

cost. Then the selective search procedure ProbCut

[Buro 1994] is generalized enabling the program to cut

o� even more variations in advance that probably have

no impact on the move decision.

2 LOGISTELLO's previous evaluation

function

The details of LOGISTELLO's previous evaluation func-

tion recently have been described in [Buro 1997]. In

what follows a brief outline of the techniques used is

given allowing the comparison of the major aspects with

the new method.

The classical approach for constructing evaluation

functions for game{playing programs is to combine win
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correlated evaluation features of the position linearly:

f(p) =

n

X

i=1

w

i

f

i

(p):

This type of evaluation function is chosen very often

since the combination overhead is relatively small com-

pared to the time for computing the features and there

are e�cient methods available for determining the fea-

ture weights. When the relative importance of the fea-

tures or even the feature set varies depending upon the

game stage this simple model can be generalized to:

f(p) =

n

s

X

i=1

w

s;i

f

s;i

(p); where s = stage(p):

LOGISTELLO's previous evaluation features fall into two

classes, namely mobility measures and patterns. These

approximate important concepts in Othello, like striv-

ing for stable discs, maximizing the number of moves,

and parity. Rosenbloom (1982) and Lee & Mahajan

(1990) introduced a table{based evaluation scheme, in

which values of all edge con�gurations were precomputed

by (probabilistic) minimax algorithms and stored in a ta-

ble for a quick evaluation of the edge structure. Further-

more, several local mobility features de�ned on the lines

of the board (horizontals, verticals, and diagonals) were

evaluated by fast table accesses. The pattern approach

introduced in [Buro 1994,1997] generalized this tech-

nique by permitting the automatic evaluation of pattern

con�gurations of any shape. The formerly used evalua-

tion algorithms were tailored for the edge situation and

could not be adapted. The current pattern set is shown

in Figure 1. Using a large set of about three million ex-

ample positions, which were labeled with the particular

game outcomes, the value for each con�guration c was

estimated independently by the following relation:

V (c) =

Y (c) + 0:5

N(c) + 1:0

;

where N(c) = number of positions containing c, and

Y (c) = number of positions containing c which are won

for Black + 0:5 � number of drawn positions containing c.

The additive constants 0.5 and 1.0 assure a neutral eval-

uation (0.5) of pattern instances that do not occur in the

training set. Con�guration values lie in (0; 1) and model

the winning probability for Black conditioned upon the

occurrence of con�gurations on the board.

The second feature subset dealt with mobility and po-

tential mobility. Here, the simplest approach is to count

legal or potential moves which | unfortunately | is

relatively time consuming compared to the time needed

for all other features and making/undoing moves during
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Figure 1: The current pattern set.

the game{tree search. In order to speed up the compu-

tation the globally de�ned mobility measures were ap-

proximated by the sum of mobilities local to the lines of

the board, i.e. the horizontals, verticals, and diagonals.

It turned out that in the opening the quality of these

approximations is only slightly worse than that of the

original mobility measures and later it is almost equal.

Thus, the slow mobility features could be safely replaced

by their much faster approximations.

Pattern tables were estimated for twelve game stages

(disc count 12..15,16..19,...,56..59). Finally, feature

weights for each disc count in [12..59] were determined

by logistic regression. This generalized linear model de-

scribes the winning probability dependent upon the fea-

tures as follows:

Prob(Win(p)) = 1=(1 + exp(�

n

s

X

i=1

w

s;i

f

s;i

(p))):

The weight vectors that maximize the likelihood of the

observed labeled feature vectors can be found by iter-

atively solving systems of nonlinear equations [Buro

1995].

3 A generalization of the classical linear

evaluation model

Two observations led to an improved evaluation scheme.

First, the just described table estimation technique to-

tally ignores the correlation among con�guration values

because each table entry is determined separately and

the tables, as a whole, are weighted afterwards. Sec-

ondly, the question arises whether there are better local

mobility features, which | for example | assign weights

to move squares, or why these mobility features are nec-

essary at all. After all, these approximation features are

only de�ned on the lines of the board for which values

are already estimated and stored in tables.
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Both problems can be solved simultaneously by gen-

eralizing the table{based evaluation approach: Suppose

that an evaluation function is to be constructed by com-

bining n discrete features f

1

::f

n

. As described the clas-

sical approach assigns weights to each feature and the

products are added to form the evaluation function

f(p) =

n

X

i=1

w

i

f

i

(p): (1)

Of course, when dealing with heuristic evaluations, this

simple linear relation is only an approximation in most

cases. But fortunately, the expressiveness of this model

can be increased easily while still permitting e�cient pa-

rameter estimations. Let fv

i;1

; :::; v

i;n

i

g be the image of

f

i

and let f

(j)

i

; j 2 f1::n

i

g be the indicator variables for

feature f

i

, i.e.

f

(j)

i

(p) =

�

1; if f

i

(p) = v

i;j

0; otherwise

:

Then a natural generalization of (1) is given by

f(p) =

m

X

i=1

n

i

X

j=1

w

(j)

i

f

(j)

i

(p) +

n

X

i=m+1

w

i

f

i

(p) (2)

For the �rst m features weights are now separately as-

signed to each feature value rather than to the entire

feature as before. It is easy to see that (1) is a special

case of (2) by setting w

(j)

i

= w

i

v

i;j

for all i and j. The

described pattern features �t nicely into this model be-

cause each pattern con�guration represents an indicator

variable. Since the weights w

(j)

i

and w

i

can still be es-

timated by applying the same techniques as for (1) this

generalization opens up an alternative way for determin-

ing evaluations of pattern con�gurations.

The goal in Othello is to maximize one's own disc

count at the end of the game. Thus, given a position

p one natural evaluation model is to approximate the �-

nal disc di�erence r(p) in view of the side to move after

optimal play by both sides starting with p. In this model

parameters can be estimated by means of linear regres-

sion using a large number of examples given in form of

labeled feature vectors:

(f

1

(p

k

); :::; f

n

(p

k

); r(p

k

)):

For the existence of a unique solution the features must

be linearly independent. When using indicator variables

for more than one feature | say f

i

and f

k

| this condi-

tion is violated because 1 =

P

n

i

j=1

f

(j)

i

=

P

n

k

j=1

f

(j)

k

. By

introducing the constant feature and omitting one indi-

cator variable of each of the �rst m features in (2) linear

independence can be achieved

f(p) = w

0

+

m

X

i=1

n

i

�1

X

j=1

w

(j)

i

f

(j)

i

(p) +

n

X

i=m+1

w

i

f

i

(p): (3)
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Figure 2: angle pattern that is used in the example and

its four occurrences on the board

In order to illustrate the new approach, suppose that

each example position is normalized such that it is

Black's turn to move. A simple evaluation function is to

be constructed by combining the following six features:

f

1

= #empty squares modulo 2

f

2:1::2:4

= pattern features shown in Figure 2

f

3

= #moves for Black � #moves for White

Feature f

1

is a crude approximation of the parity con-

cept in Othello. It tries to model the advantage of the

player to move when there is an odd number of moves

left to make in the game.

1

For simplicity a pattern con-

sisting only of three squares has been chosen. It includes

the very important corner square, occurs four times on

the board, and maps each of the 3

3

= 27 corner{angle

con�gurations to real values. Since the angle pattern is

symmetrical with respect to one main diagonal only 18 of

the 27 con�gurations have to be distinguished. Feature

f

3

measures the mobility advantage of Black.

Modeling f

1

and f

2:i

by means of indicator variables

and using f

3

as is, the evaluation function according to

(3) has the following form:

f(p) = w

0

+ w

(1)

1

f

(1)

1

(p) +

4

X

i=1

17

X

j=1

w

(j)

2:i

f

(j)

2:i

(p) + w

3

f

3

(p)

This representation can be simpli�ed to

f(p) = w

0

+ w

(1)

1

f

(1)

1

(p) +

17

X

j=1

w

(j)

2

f

(j)

2:�

(p) + w

3

f

3

(p)

by setting f

(j)

2:�

= f

(j)

2:1

+f

(j)

2:2

+f

(j)

2:3

+f

(j)

2:4

and w

(j)

2:i

= w

(j)

2

,

where f

(j)

2:�

(p) 2 f0::4g counts the number of occurrences

of pattern con�guration j in position p and w

(j)

2

is its

evaluation. After generating a training set of labeled

feature vectors the weights w

0

; w

(1)

1

; w

(j)

2

; and w

3

can be

estimated by means of linear regression.

4 Dealing with large tables

The most important patterns are those which can quickly

approximate the major Othello concepts: corner{

possession and {threats, mobility, and parity. With re-

gard to this, patterns of length three | like the corner{

angle used in the example | are not expressive enough.

1

This player usually also makes the last move in the game

giving him at least two discs.
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Figure 1 gives an overview of the patterns that are cur-

rently used in LOGISTELLO's evaluation function. These

patterns have been chosen manually taking into account

their evaluation{quality and {speed. The �rst eight pat-

terns deal with features that can be approximated locally

on the lines of the board such as mobility. The three re-

maining patterns cover edge tactics as well as access and

parity issues of small corner regions.

For this set of patterns the total number of variables

in the proposed linear model is about n = 110;000 when

taking symmetries into account. This large number of

variables prevents solving the linear regression by means

of algorithms that perform inversions of (n�n){matrices.

But linear regressions with such a large number of vari-

ables can be solved iteratively by updating the weight

vector in the direction of the negated current gradient

of the sum of squared errors. While there might be

faster methods (such as conjugate gradient algorithms

[Press et al. (1992)]) the procedure described below

| known as \backpropagation" in the arti�cial neural

network community | performs su�ciently well and can

be implemented very quickly.

Let r(p) 2 [�64::64] be the game result in view of

the side to move after optimal play by both players and

fp

k

g

N

k=1

the set of training examples. The objective of

linear regression is to minimize the mean squared error,

i.e. to �nd a weight vector w

0

that minimizes the error

function

E(w) =

1

N

N

X

k=1

�

k

(w)

2

; �

k

(w) = r(p

k

)�

n

X

i=1

w

i

f

i

(p

k

):

Starting with an initial guess w

(0)

for the weights, in

each step the weight vector is updated according to

w

(t+1)

= w

(t)

� � � (grad

w

E)(w

(t)

);

where � > 0 is the learning rate and grad

w

E is the

vector consisting of E's partial derivatives

@E

@w

i

. This

update scheme changes the weights in direction of the

error function's steepest descent and is widely used for

training arti�cial neural networks.

Here, the partial derivatives have a simple form since

E is quadratic in w

i

:

@E

@w

i

(w) =

1

N

N

X

k=1

@�

k

(w)

2

@w

i

= �

2

N

N

X

k=1

�

k

(w)f

i

(p

k

):

Thus, the steepest descent update for the i�th weight is

w

(t+1)

i

= w

(t)

i

+

2�

N

N

X

k=1

�

k

(w

(t)

)f

i

(p

k

);

which can be computed simultaneously for all weights

in one pass through the examples as follows: For

each weight w

i

there is a variable s

i

that holds

P

s

k=1

�

k

(w

(t)

)f

i

(p

k

) for s = 1::N . At example k,

�rst �

k

(w

(t)

) is determined. This usually takes lin-

ear time depending on the number of variables. But

in case of pattern features, for which many values f

i

(p

k

)

are 0, the running time can be reduced to a constant

factor times the number of occurring con�gurations on

the board by adding w

(t)

i

� f

i

(p

k

) only for those i with

f

i

(p

k

) 6= 0 which can be easily found. Analogously there-

after �

k

(w

(t)

)f

i

(p

k

) is only added to s

i

if f

i

(p

k

) 6= 0

holds. After N steps s

i

contains

P

N

k=1

�

k

(w

(t)

)f

i

(p

k

)

and w

i

is updated by 2�s

i

=N .

Since the number of occurrence varies largely among

pattern con�gurations the just described update scheme

changes weights at di�erent speeds. Furthermore, weight

estimates for con�gurations that occur seldomly have

a high variance which may introduce large evalua-

tion errors later in actual game{tree search. The

current implementation deals with these problems by

starting with w

(0)

= 0 and updating weight w

i

by

2� s

i

minf1; N

i

=50g=N

i

, where N

i

is the number of ex-

amples with f

i

(p

k

) 6= 0. Dividing s

i

by N

i

instead

of N normalizes the update speed dependent upon the

number of con�guration occurrences, whereas the factor

minf1; N

i

=50g introduces a controllable estimate mut-

ing for rare con�gurations. It is clear that regardless

these constant factors E will still be minimized in the

limit, since E is convex and the gradient vector still con-

verges to 0. In practice, however, only a relatively small

number of iterations will be performed (due to the large

number of examples used) so that the muting factor is

e�ective.

5 The new evaluation function

As before the new evaluation function is dependent upon

game stage. In Othello the number of discs on the board

is a reasonable measure. Thirteen stages were chosen,

namely 13{16 discs, 17{20 discs, ..., 61{64 discs. For pa-

rameter estimation the same set of examples is used as

before. It consists of ca. three million Othello positions

stemming from about 60,000 games played between early

versions of Igor D

-

urd

-

anovi�c's program KITTY and LO-

GISTELLO and 20,000 additional games that were gener-

ated by LOGISTELLO while extending its opening book.

All positions were labeled by negamaxing the �nal game

results in the tree built from all games. This procedure

labels endgame positions accurately since the example

games are played perfectly in this stage, whereas labels

assigned to opening and middle{game positions are only

approximations.

In addition to the pattern features shown in Figure 1

the phase dependent version of the example's parity fea-

ture f

1

is used. Thus, the new evaluation function has
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the following form:

f(p) = (

[f

d4;s:1

+ :::+ f

d4;s:4

] + [f

d5;s:1

+ :::+ f

d5;s:4

]+

[f

d6;s:1

+ :::+ f

d6;s:4

] + [f

d7;s:1

+ :::+ f

d7;s:4

]+

[f

d8;s:1

+ f

d8;s:2

] + [f

hv2;s:1

+ :::+ f

hv2;s:4

]+

[f

hv3;s:1

+ :::+ f

hv3;s:4

] + [f

hv4;s:1

+ :::+ f

hv4;s:4

]+

[f

edge+2X;s:1

+ :::+ f

edge+2X;s:4

]+

[f

2�5;s:1

+ :::+ f

2�5;s:8

]+

[f

3�3;s:1

+ :::+ f

3�3;s:4

] + f

parity;s

)(p)

where s = stage(p) := maxf0; b(#discs(p) � 13)=4cg 2

f0::12g and f

x;s:i

evaluates the ith occurrence of pattern

x on boards at game stage s.

In order to smooth the parameter estimates among

game stages each example position p does not only con-

tribute to stage s = stage(p) but also to stages s�1; s�2.

Furthermore, in case of insu�cient data parameter esti-

mates are extrapolated resp. interpolated among game

phases as follows: If a con�guration does not occur in the

example positions for stage s, the �rst stages before and

after s are determined for which examples exist. Then

the estimate for stage s is set to the linear interpolation

of the estimates for both end points. If no examples ex-

ist in one direction, 0 is used as the end point parameter

estimate.

Each iteration of the described steepest descent al-

gorithm for parameter estimation needs about four min-

utes of CPU time on a PentiumPro/200 machine. In this
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17-20

21-24

25-28

29-32
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49-52

53-56

57-60

61-64

Figure 3: Average absolute prediction error dependent

on game stage and iteration number

time the entire set of about three million compressed ex-

ample positions is read from disc (ca. 54 MBytes) and

uncompressed. For each position p

k

46 table indices for

the occurring pattern con�gurations are determined, and

�

k

(w

(t)

s

0

) is computed for �ve stages s

0

= s; s� 1; s� 2,

where s = stage(p

k

), for updating the summation vari-

ables of each involved pattern con�guration. After this

scan through all examples, the weights are updated and

the next iteration begins. Figures 3 shows the average

absolute prediction error of the evaluation function de-

pendent on the game stage and the number of iterations

for � = 1. Apparently the prediction quality increases

with the number of discs on the board. Possible causes

for this behavior are the decrease of labeling errors and

the choice of patterns | like 2� 5{ and 3� 3{corner |

which show their best performance in late game stages.

Of course, the good evaluation quality near the end of

the game impacts on much earlier move decisions be-

cause typical selective searches in the middle{game al-

ready visit endgame positions. In Figure 4 graphs of the

maximum and average absolute weight alterations de-

pendent on the number of iterations are shown. The op-

timization process was stopped after 300 iterations and

ca. 20h CPU time where the absolute weight alteration

reached a maximum of 0:07 and its average dropped to

0:008.
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Figure 4: Average and maximum absolute weight alter-

ation in each iteration
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d 1 2 3 4 5 6 7 8 9

+0 33:6 32:1 31:8 35:0 34:3 30:7 26:1 26:4 31:8

+1 58:9 56:1 46:4 56:8 50:4 41:4 44:3 40:4 37:9

+2 82:5 74:6 70:0 62:1 61:4 59:3 47:9 50:7 53:6

Table 1: Results of several tournaments between �xed

depth versions of LOGISTELLO using di�erent evalua-

tion functions and depths. Given are winning percent-

ages of the player using the previous evaluation function

searching at depths d; d+1; and d+2 against the player

with the new function looking d plies ahead.

6 Performance

The performance gained by the novel table estimation

technique was greater than expected. In order to com-

pare the quality of the previous and new evaluation

function several tournaments were played between �xed

depth versions of LOGISTELLO using both evaluation

functions. In the tournaments each game and its re-

turn game with colors reversed were played starting with

70 nearly even opening positions with fourteen discs

selected from LOGISTELLO's opening book. Sixteen

plies before the end of the game all games were solved

perfectly in order to focus on middle{game evaluation

quality which could be spoiled by blunders in tactical

endgames.

2

The results summarized in Table 1 indicate

that the strength increase from using the new evalua-

tion function under tournament conditions is compara-

ble to that of two additional plies of brute{force search

or, equivalently, to a speed{up factor of about 10 which

is otherwise only achievable by parallelization.

One wonders why the playing strength increased dra-

matically since for the construction of the new evalua-

tion function the same patterns and training examples

were used and even the mobility features were omitted

in the new function. The crucial di�erence between the

new and the previous evaluation function is that values

of pattern con�gurations are no longer estimated inde-

pendently. The former evaluation approach neglected

correlations among con�guration values and seemed to

compensate for this in part by assigning considerable

weights to mobility approximations which already could

have been modeled only by means of line patterns. The

new method on the other hand takes correlations into

account and allows for more accurate modeling.

7 ProbCut

Human players are able to �nd good moves without

searching the game{tree in its full width. Using their ex-

perience they are able to prune unpromising variations

2

Today's Othello programs handle endgame positions sep-

arately by calling special endgame solvers in which the heuris-

tic evaluation is only used for move ordering.

in advance. The resulting game{trees are narrow and

might be rather deep. By contrast the original minimax

algorithm searches the entire game{tree up to a certain

depth and even its e�cient improvement | the �� algo-

rithm | is only allowed to prune backwards because it

has to compute the correct minimax value. The selective

search procedure ProbCut presented in [Buro 1995a]

permits pruning of subtrees that are unlikely to a�ect

the minimax value and uses the time saved for analy-

sis of crucial variations. The idea is to take advantage

of the fact that values returned by minimax searches of

di�erent depths are highly correlated. In order to eval-

uate a position at height h, it can �rst be examined

by a shallow search of depth d < h. The result v

d

is

then used for estimating the true value v

h

and to de-

cide with a prescribed likelihood whether v

h

lies outside

the current �� window (Figure 5). If so, the position is

not searched more deeply and the appropriate window

bound is returned. Otherwise, the deep search is per-

formed yielding the true value. Here, a shallow search

has been invested but relative to the deep search the

e�ort involved is negligible.

A natural way to express v

h

by means of v

d

is to use a

linear model of the form v

h

= a � v

d

+ b+ e with a; b 2 IR

and a normally distributed error variable e with mean

0 and variance �

2

. After choosing height h and check

depth d the parameters a; b and � can be estimated us-

ing linear regression applied to a large number of exam-

ples (v

d

(p

i

); v

h

(p

i

)). Now it is possible to test the cut

conditions probabilistically: v

d

� � holds with proba-

bility at least p if and only if (v̂

h

� �)=� � �

�1

(p) is

true, where v̂

h

= a � v

d

+ b and � denotes the distribu-

tion function of a normally distributed random variable

with mean 0 and variance 1. This condition is equivalent

to v

d

� (�

�1

(p) � � + � � b)=a. Analogously, it can be

shown that v

h

� � holds with probability of at least p i�

v

d

� (��

�1

(p) � � + �� b)=a. If one of these conditions

is met during the game{tree search the current position
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Figure 5: Forward cut scenario
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will not be searched to depth h. In this way large sub-

trees can be cut in order to save time for the relevant

lines.

It remains to choose the cut threshold �

�1

(p) suitably.

For this purpose tournaments between the non{selective

and the selective program version can be played using

di�erent thresholds in order to �nd the value that results

in the greatest playing strength.

In the �rst ProbCut implementation of LOGISTELLO

h = 8 and d = 4 were chosen, and a; b, and � were esti-

mated separately for each game phase. When �

�1

(p) =

1:5 the winning percentage of the ProbCut{enhanced

version of LOGISTELLO playing against the brute{force

version was 74:2% in a 70{game tournament.

Recently this selective search procedure has been im-

proved.

8 Generalizations

ProbCut can be generalized in at least four ways by

1. allowing forward pruning at di�erent heights. In

this way bad moves | which exist in almost any

position | or very good refutations can be detected

earlier and more time can be saved for relevant lines.

2. performing several check searches of increasing

depth until a cut condition is met. This procedure

saves time in very unbalanced positions.

3. using di�erent cut thresholds for each game stage.

4. replacing the simple linear model for the deep eval-

uation by a more accurate one that makes use of

additional tactical or positional features for opinion

change prediction. In theory this approach sounds

promising since it should result in a considerable

variance reduction in both quiet and tactical posi-

tions. In practice, however, it turned out that for

Othello and chess quickly computable features for

the more accurate modeling of opinion changes are

hard to �nd. Further investigations in this direction

are necessary.

Experiments showed that by applying generalizations 1.{

3. the playing strength can be increased considerably

even without the ambition to �nd an optimal parameter

setting. Table 5 lists the heights and check depths that

are currently used by LOGISTELLO. They were deter-

mined in four steps. First of all, the ProbCut param-

eters a; b and � were estimated for each disc number,

search height h 2 f2::13g, and all check depths d < h

by linear regression using the brute{force evaluations of

thousands of example positions up to depth 13 which

at that time marked the maximum manageable depth.

Thereafter the �rst check depth sequence was speci�ed.

The di�erence h � d

1

gets larger for increasing heights

which allows pruning larger and larger subtrees. The

h 3 4 5 6 7 8 9 10 11 12 13

d

1

1 2 1 2 3 4 3 4 3 4 5

d

2

� � � � � � 5 6 5 � �

Table 2: Currently used check depths d

1

; d

2

for di�erent

heights h.

maximum search depth reached is now 13� 5 = 8 plies

deeper than the brute{force part of the tree. The orig-

inal ProbCut implementation allowed only 8 � 4 = 4

ply extensions. In the third step, additional check depths

were selected in order to minimize the total running time

of selective searches in a couple of example positions. In

this process it was attempted to use just the evalua-

tion function value as a predictor for deep search values

(i.e. d = 0) | but these attempts failed due to increased

running times.

After determining the check depths for each height

cut thresholds can be speci�ed for di�erent game stages

by the following iterative procedure. Tournaments are

played as before beginning with starting positions se-

lected from late middle{games in order to �nd an opti-

mal cut threshold for this game stage. Thereafter, the re-

maining thresholds are obtained analogously by keeping

the already determined thresholds and optimizing the

next threshold by playing tournaments in which starting

positions of the current game stage are used.

LOGISTELLO currently distinguishes only two game

phases with respect to cut thresholds, namely positions

with < 36 resp. � 36 discs. The cut thresholds were de-

termined by playing two sets of tournaments using start-

ing positions with 26 and 14 discs, respectively. Disc

number 26 was selected because under tournament con-

ditions the brute{force part of the selective search tree,

in which no probability cuts occur, usually reaches at

least depth 10. Optimizing the threshold in increments

of 0:1 the �rst set of tournaments led to an \optimal"

near{endgame value of 1:4. Thereafter, in a second set

of tournaments, 1:0 was determined for the middle{game

cut threshold.

9 Multi{ProbCut: Implementation and

Performance

The just described generalization of ProbCut is called

Multi{ProbCut indicating the more accurate pruning

of more probably irrelevant subtrees by means of addi-

tional checks and cut thresholds. Figure 6 outlines a

straight forward implementation of Multi{ProbCut

which is built upon a negamax version of the ��{

algorithm. Central to this implementation is array para

in which parameter sets for each game phase and search

height are stored. The �rst for loop performs Prob-
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// NUM_TRY ProbCut parameter sets for each disc number

// and each distance to the search horizon

struct Para {

int d; // check depth

float t; // cut threshold

float a, b, s; // slope, offset, std.-dev.

} para[64][MAX_HEIGHT+1][NUM_TRY];

Position pos;

int MultiProbCut(int height, int alpha, int beta)

{

int i, max, val;

PosDelta delta;

if (IsLeaf(pos, height)) return Eval(pos);

// check part:

if (height <= MAX_HEIGHT) {

for (i=0; i < NUM_TRY; i++) {

int bound;

Para pa = para[DiscNum(pos)][height][i];

if (pa.d < 0) break; // end-marker reached?

// is v_height >= beta likely?

bound = round((pa.t*pa.s+beta-pa.b)/pa.a);

if (AlphaBeta(pa.d, bound-1, bound) >= bound)

return beta; // yes => cutoff

// is v_height <= alpha likely?

bound = round((-pa.t*pa.s+alpha-pa.b)/pa.a);

if (AlphaBeta(pa.d, bound, bound+1) <= bound)

return alpha; // yes => cutoff

}

}

// the remainder of the alpha-beta algorithm:

max = alpha;

for (i=0; i < pos.movenum; i++) {

Move(pos, pos.move[i], &delta);

val = -MultiProbCut(height-1, -beta, -max);

Undo(pos, delta);

if (val > max) {

if (val >= beta) return val;

max = val;

}

}

return max;

}

Figure 6: A negamax implementation of Multi{

ProbCut.

Pairing Result

4{8 (t = 1:5) vs. brute{force 68:6%

multi (t = 1:0; 1:4) vs. brute{force 80:0%

multi (t = 1:0; 1:4) vs. 4{8 (t = 1:5) 71:8%

multi (t = 1:0; 1:4) vs. multi (t = 1:1) 55:7%

Table 3: Results of 140 game tournaments between the

brute{force, 4{8{ProbCut, andMulti{ProbCut ver-

sions of LOGISTELLO. t denotes the cut threshold(s)

used. In case of 4{8{ProbCut threshold optimization

again yielded a value of 1:5 like for the previous evalua-

tion function. The results, given in form of the winning

percentage of the �rst player, indicate a considerable

playing strength gain when using Multi{ProbCut.

Moreover, the last result shows that the e�ect of multiple

cut thresholds is measurable but not very signi�cant.

Cut checks of several depths in form of zero window

�� searches until either a cut condition is met or no

more checks are left for the current game stage and node

height. In the check part Multi{ProbCut does not

call itself recursively to avoid a search depth degener-

ation. The original ProbCut implementation did not

have to worry about recursive calls since forward cuts

occurred only in nodes at one speci�c height. On the

other hand the recursive call of MultiProbCut in the

�� part now causes an estimation inaccuracy: If in a

node all checks fail Multi{ProbCut does not neces-

sarily continue with a brute{force search like ProbCut

does. Instead, in the subtree beneath the node cuts may

occur. Thus, estimating the ProbCut parameters a; b,

and � by means of brute{force evaluations of example

positions is no longer accurate. In fact, the underlying

model has changed by allowing cuts at various depth in

that now values of Multi{ProbCut searches have to

be approximated by shallow searches rather than brute{

force values | as before. Exact parameter estimation

in such a general model is no longer feasible because it

has to go hand in hand with cut threshold optimization.

Therefore, it was decided to apply the previous estima-

tion technique | with success as the tournament results

listed in Table 3 show. To increase the performance of

ProbCut based selective search routines even further

future research could focus on more accurate opinion

change models.

10 Conclusion

In this paper considerable improvements of an already

strong Othello program have been presented. Gener-

alizing the previously used evaluation model and selec-

tive search technique caused a playing strength increase

equivalent to a speed{up factor of more than 10. This

amazing result encourages further investigations in these

directions also for other games. It also shows the bene-
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�ts of trying approaches that look extreme in theory but

may be e�ective in practice.
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