
AI System Designs for the First RTS-Game AI Competition

Michael Buro†, James Bergsma†, David Deutscher‡, Timothy Furtak†, Frantisek Sailer†, David Tom†, Nick Wiebe†
†Department of Computing Science

University of Alberta, Edmonton, Alberta, Canada
‡Tel Aviv University, Israel

email: mburo@cs.ualberta.ca

KEYWORDS
Real-time strategy games, ORTS, real-time AI systems

ABSTRACT

Real-time strategy (RTS) games are complex decision
domains which require quick reactions as well as strate-
gic planning. In this paper we describe the first RTS
game AI tournament, which was held in June 2006, and
the programs that participated.

Introduction

Creating smart computer adversaries and teammates for
human players in modern video games is challenging. AI
programmers for such games are faced with limited com-
putational resources (because most CPU cycles are still
devoted to graphics), real-time constraints, huge state
and action spaces, and imperfect information. In addi-
tion, the tight release schedule for video games does not
leave much room for conducting AI research in games
companies. Therefore, a common approach to practi-
cally solving these problems is to create an illusion of
intelligence (Livingstone, 2006) by scripting actions for
nonplayer characters (NPCs) and providing them with
more resources including information that is not avail-
able to human players. This way it is relatively easy
to create NPCs that by having more knowledge of the
game state — or bigger virtual muscles — can reach
the playing level of human players or even outperform
them. There are however problems with this method-
ology. Scripted action sequences are brittle — they of-
ten cannot deal with new situations and are easily de-
featable once known. More advanced variations exist
(Spronck et al., 2006), whereby script parts are executed
probabilistically and probabilities are updated depen-
dent on past performance. But even with such modifi-
cations, opponent AI systems still cannot compete with
strong players unless they are given unfair advantages.

To overcome this problem, several AI researchers
have started to use video games as test applications for
their work in recent years. Conferences are now devoted
to progress in computer entertainment AI, and the inter-
action between computer game companies and academia
has increased. Another particularly effective way of
spuring research in AI is holding competitions. Great
examples are the machine-machine and man-machine

competitions in the 1980s and 1990s which produced
stronger and stronger programs which eventually played
on-par or better than the best human players in chess,
backgammon, checkers, and Othello. Other examples
which have helped to increase the performance of AI
systems considerably include the annual planning com-
petition, SAT competitions, and RoboCup. The goal of
competitions like the one which we are going to describe
here is to repeat the success of classic game AI systems
in the area of more complex video games.

In the remainder of the article we first describe the
game genre we are interested in — Real-Time Strategy
(RTS) games — and the programming framework ORTS
we have developed for it. Then, after presenting the
tournament game categories, we describe the programs
that participated in the first AIIDE RTS game competi-
tion, present their tournament results, and conclude the
paper with ideas on future RTS game AI competitions.

RTS Games and ORTS

Real-time strategy games are typically tactical simula-
tions engaged in by two or more players. These games
are fast-paced and pose several challenging problems
such as incomplete information, the need for long-range
planning, and a continually changing world with limited
time to plan (Buro and Furtak, 2004).

A player can be in control of potentially hundreds
of units, each with several possible actions that may be
taken several times a second. A naive search of the avail-
able action space is clearly intractable. This necessitates
potentially several levels of abstraction, for controlling
individual units and larger armies.

Games typically involve simplified economies consist-
ing of gathering resources which may be used to con-
struct buildings, research new abilities, and train offen-
sive and support units. Resource usage must be bal-
anced to construct an army capable of effectively ex-
ploit opponents’ weaknesses while being able to defend
against potential threats.

Determining an effective strategy often relies on ac-
curate opponent models. Specifically, determining the
types of enemy units that an opponent will likely pro-
duce, and how they will be used to attack, at what time,
and at which location.



ORTS

The Open Real-Time Strategy (ORTS) game engine,
available from www.cs.ualberta.ca/~mburo/orts, pro-
vides a flexible framework for studying AI problems in
the context of RTS games. The ORTS engine is script-
able, which allows for game parameters to be easily
changed, and new types of games, or subsets of existing
games, to be defined.

Unlike most RTS games, ORTS uses a server-client
framework. Instead of each client maintaining a local
copy of the entire game state, each frame the ORTS
server only sends a client the information actually avail-
able to it. This effectively eliminates the ability of
clients to cheat by applying simple map-revealing hacks.

Units in ORTS are simple geometric primitive (cir-
cles, rectangles, and line segments) located on a fine
grid. Objects may travel at an arbitrary heading, with
collisions accurately computed by the server.

Map terrain is specified by a grid of tiles, with each
tile capable of having arbitrary corner heights and be-
ing one of several terrain types. Boundary objects with
various collision masks are automatically created along
discontinuities between tiles.

Unit vision is tile-based, with different units having
a sight range that determines how many tiles away they
can see. When the “fog of war” is enabled, a player only
has up-to-date information about tiles that are currently
seen by an allied unit. The vision model also supports
“cloaked” units which can only be seen by “detectors”.

All ORTS components are open-source. Along with
the server-client framework, this allows users to cre-
ate their own AI components capable of acting au-
tonomously or to augment a human player.

The AIIDE RTS Game Competition

The RTS Game Competition presented at AIIDE ’06
consisted of three separate game categories, arranged
in increasing order of complexity. These categories ad-
dressed the tasks of multi-unit pathfinding, local com-
bat, and dealing with imperfect information, in that or-
der. Effective solutions in one category relied on imple-
mentations from the previous game types.

Game 1: Cooperative Pathfinding

The first game is stated as the task of gathering as many
resources as possible within a given amount of time. The
player begins the game with one base surrounded by
workers. These workers must travel to resource patches
randomly positioned on the game field, spend a short
amount of time to collect those resources, and finally
bring them back to the base.

At the start of the game the entire map and the lo-
cations of all resources are known to the player. To
complicate the task, the map contains both impassi-

Figure 1: Game 1 client display.

ble terrain obstacles, and indestructible mobile “sheep”,
which randomly travel a short distance, stop, then con-
tinue. The entire scenario is perfect information, except
for simultaneous actions on the part of the workers and
the sheep.

Practically, the task is then to effectively coordinate
the motion of the workers to minimize total travel time
between the base and the resource patches. Spending a
long time to compute near-optimal routes may result in
the world having changed to the point where the com-
puted solution is no longer valid.

Game 2: Local Combat

The second game is two-player tank combat, where the
objective is to destroy as many of the opposing player’s
bases as possible within 10 minutes. Each player begins
with 5 bases randomly distributed within the playfield,
and 10 tank surrounding each base. A game ends im-
mediately if all of one player’s bases are destroyed.

As with the first game, each player has full visibility
of the entire map. Plateaus, which are impassable and
block line-of-sight tank attacks, are randomly placed on
the map. Neutral, indestructible sheep also wander ran-
domly.

The focus of this scenario is to effectively engage and
destroy enemy squads. Formations which allow one side
to concentrate fire on a small number of tanks while ex-
posing themselves to few attackers are preferable. An
agent must therefore coordinate the motion of the tanks
to bring about these positions while avoiding collisions
with other tanks (both allied and enemy) and unpre-
dictable sheep.

Game 3: Mini RTS

The third game is a stripped-down version of a “real”
RTS game. Two players begin with one base and several
workers located next to a resource patch. The rest of



Figure 2: Game 2 client display.

the map and the location of the enemy base is initially
unknown. A fog-of-war limits the currently observable
parts of the map to those regions that can be seen by
allied units.

A player is able to spend minerals and use a worker
to construct a barracks and then a factory. Barracks and
factories can then be used to train marines and tanks
respectively. Tanks have more hitpoints, attack power,
and range, but cost more than marines.

The objective of this game is to obtain more points
than the opponent before time runs out. Points are
awarded for gathering resources, constructing buildings,
training units, and for destroying enemy buildings and
units. The game ends early if all of one player’s buildings
are destroyed.

Figure 3: Game 3 client display.

Tournament Setup

All tournament games were played between June 16 and
18, 2006 on 31 undergraduate lab computers in the com-
puting science department at the University of Alberta.
Each machine was equipped with a single Athlon XP
1.5 GHz CPU and 512 MB RAM running Linux 2.4.31
and gcc 4.1.1. Shortly prior to the competition a multi-
threaded ORTS tournament manager was completed by
Krysta Mirzayans. This software greatly simplified run-
ning the tournaments and allowed us to play a large
number of games.

Authors had access to the tournament computers on
which they could upload their programs to test them
in individual protected accounts which were frozen just
before the tournament commenced. Each participant
was asked to send a magic integer to a member of the
independent systems group which also set up the tour-
nament accounts. These numbers were then exclusive-or
combined to form the seed of the random number gener-
ators used for creating all starting positions. This way,
no participant was able to know beforehand what games
would be played. In order to reduce dependency of game
results on starting positions

In what follows we describe all tournament entries in
turn and present the results of the tournaments.

Game 1 Entries
brzo1

Author: Michal Brzozowski, University of Warsaw,
Poland

Michal’s entry used a discrete graph-based terrain rep-
resentation where neighboring vertices are connected
if their connecting edge is traversable. Workers are
guided by a finite state machine (FSM) with the fol-
lowing states: move-to, mine, go-back, drop-resources,
avoid (entered when hitting a moving obstacle. Avoids
obstacles by moving to the left. When it hits a static ob-
stacle, it moves to a random direction), and emergency-
path (when hitting a number of obstacles in the avoid
state, tries to get back to original path). A coordina-
tor assigns workers to resources based on shortest paths.
Each worker picks the closest mineral from its starting
point with less than 2 workers assigned already.

creed1
Author: Michal Szostakiewicz (University of Warsaw,
Poland)

A search graph is built from nodes representing tile cen-
ters. Edge weights depend on mobile objects close by
to prevent collisions. Each worker is assigned a random
mineral patch and is sent to it. Shortest paths are com-
puted by Djikstra’s algorithm. When colliding, workers
move to a random location nearby.

umich1
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)



This entry was implemented in the SOAR architec-
ture using a modified version of the standard ORTS
pathfinding with an added local obstacle avoidance sys-
tem. Workers are guided by a mining manager and a
FSM. If a worker exceeds its estimated travel time, it
requests a new route from the mining manager. The
mining manager learns which routes are bad.

uofa1
Authors: David Deutscher (Tel Aviv University, Israel)
and Nick Wiebe (University of Alberta, Canada)

This entry is based on three modules:

1. A single-unit path planning algorithm using a sim-
ple grid based A* algorithm, which uses a multiple-
resolution world representation, pluggable goal def-
initions (including “touch a target objejct”) which
can handle variable-sized and shaped objects.

2. A path execution system which calculates the nec-
essary motion at each simulation tick to move a unit
along a predetermined path. To do this force fields
are used to attract moving units to a point on the
path in front of them and to repel them from other
objects, buildings, and walls. For each unit travel-
ing along a path, every object, building, and wall
whose distance is below a minimum threshold ex-
erts a force on the unit inversely proportional to the
square of the distance between them. The move-
ment vector for the unit is the sum of the forces
acting on it. This approach solved the problem of
path obstruction by sheep and enemy units, as units
would just roll off the obstruction. It also is used to
give priority to moving units. By calculating and
applying these forces to units that were not moving
along a path, idle units can be pushed out of the
way of moving units. A small randomized vector
is added to this pushing force in order to limit the
distance that units are pushed in a single direction.
Pushing proved to be important for game 2, where
it speeds up large group attacks.

3. Dynamic allocation of minerals to workers, based
on minimizing a weighted (1:1) combination of the
Euclidean distance from the worker’s current posi-
tion and the static path’s length between the min-
eral and the control center (where static means the
shortest path found while considering only static
obstacles — boundaries, other minerals and the
control center itself). Statically-blocked minerals
are not assigned and a single worker per mineral is
preferred, unless no other option is available. Fail-
ures to plan a path or to reach a mineral raises
a limited-time flag preventing its use for a couple
dozen turns.

Game 1 Results

Initially it was planned to play 300 games per entry
lasting 10 minutes each on June 16. But twenty hours
into the tournament the tournament manager exceeded
its disk quota which was set too low. So, to stay on
track, the number of games had to be reduced to 225
per program. The final results were as follows:

rank name score games ratio
1. umich1 1458455 225 6482.0
2. brzo1 1136690 225 (*) 5051.9
3. uofa1 1136790 225 (*) 5052.4
4. creed1 559380 225 2486.1

Program brzo1 was leading over uofa1 almost all the
time. So, team uofa happily conceded 2AD place to
it (*) due to shortening the tournament. Entry creed1
made the server crash several times by referring to fully
mined mineral patches which had vanished.

Game 2 Entries
umaas2

Authors: P. Kerbusch, N. Lemmens, M. Urlings,
V. Vorsteveld (University of Maastricht, The Nether-
lands)

This entry creates 5-tank squads in single-file formation.
The squad leader plans a path to the nearest base and
others follow. When enemy tanks are encountered, a
wedge formation is formed and the weakest of all tanks
within range is attacked. Tanks move towards the weak-
est target while firing at the weakest target within range.
When no more enemy tanks are in sight, the squad re-
sumes its path in file formation. When a base is de-
stroyed, a new base is located and the squad starts mov-
ing towards it. All objects excluding opposing tanks are
considered obstacles and each tank reserves one tile.

umich2
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

This entry is a SOAR agent that attacks tanks be-
fore bases. Tanks are grouped by spatial distance, and
groups of tanks will try to attack enemy tank groups
that are smaller than them. If no such enemy groups ex-
ist, smaller groups will try to regroup into larger groups
and go for their target then. Unfortunately, a bug was
introduced just before the deadline, and most of this
behaviour was not realized in the competition.

uofa2
Authors: K. Anderson, J. Bergsma, D. Demyen, T. Fur-
tak, D. Tom, F. Sailer, N. Wiebe (University of Alberta,
Canada), D. Deutscher (Tel Aviv University, Israel)

The program first finds a suitable meeting location for
all tanks close to the average tank position. Then all



tanks are sent there after joining locally first. When the
join operation is finished, the entire group starts hunting
and attacking the closest enemy tank. When all tanks
are destroyed, bases are attacked. The weakest targets
are attacked first while minimizing overkill.

The task architecture utilized in this tournament en-
try (and also in uofa3) was designed to be simple, yet
powerful. Each task is composed of a list of units as-
signed to it, as well as a list of child tasks, and a current
line number. Each task also has an execute function
which defines the task’s behaviour. A task is defined as
a series of statements to execute, and the navigation be-
tween these statements done by having a variable point-
ing to the current line number. The statements can
range from giving individual units precise orders to cre-
ating subtasks for subsets of units. Finally, each task has
an identical update function, which is executed when-
ever an object belonging to that task has completed an
order or has been killed. If all the units of a task have
completed their orders, the task executes its next state-
ment as defined in the execute function. If the task has
reached the end of its execute function, the task itself
completes and notifies its parent and also gives control
of the units back the the parent. The parent then ex-
ecutes its next statement, and so on. This framework
allows complex strategies to be formulated by creating a
series of subtasks, and combining them into more com-
plex tasks.

Game 2 Results

Four hundred two-game matches were played for each
player pair on June 17. Each game lasted at most 15
minutes. Here are the obtained results:

rank name score matches ratio
1. uofa2 390.0 400 0.975
2. umaas2 210.0 400 0.525
3. umich2 0.0 400 0

Entry uofa2 won almost all of its games. It crashed in
20 games, but only lost 10 matches in total. The strat-
egy of all tanks meeting near the center first and then
hunting tanks with a big group tanks was quite success-
ful. It is also hard to beat in the absence of area effect
weapons. Therefore, in subsequent competitions control
centers will likely be made weaker to make leaving bases
undefended more risky.

Game 3 Entries

umich3
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

After gathering enough minerals and having built
enough marines this SOAR agent sends marines to ex-
plore and attack. Defensive behaviour takes precedence,
and all units are pulled into battle if the base is under
attack.

uofa3
Authors: K. Anderson, J. Bergsma, D. Tom, T. Furtak,
F. Sailer, N. Wiebe (University of Alberta, Canada),
D. Deutscher (Tel Aviv University, Israel)

Using the task framework described earlier, this entry
implemented a so-called turtling strategy which creates
a barracks and enough workers such that each visible
mineral patch is mined. It then produces as many
marines as it can which wait for the opponent to arrive.
The squad combat AI described earlier also controls all
combat actions in this game and an older version of the
mining AI controls gathering minerals.

Game 3 Results

Two hundred two-game matches were played on June 18
— each one lasting for at most 20 minutes. The results
were as follows:

rank name score matches ratio
1. umich3 124.0 200 0.62
2. uofa3 74.0 200 0.37

When watching some replays it becomes apparent that
there is much headroom in terms of increasing playing
strength in game 3. Neither program expanded to other
resource locations, nor did they create tanks in later
game stages.

Conclusion and Outlook

In this paper we have presented the results of the first
RTS game AI competition which was held in June 2006
and described the algorithms used in the tournament
programs. Many areas of improvement have been iden-
tified, including ORTS documentation, program and
server stability, group pathfinding, and high-level AI.
We regard this as a promising beginning of a series of
many future RTS game AI competitions which hope-
fully will help elevating the level of real-time AI to new
heights.

Acknowledgments

Financial support was provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

Buro M. and Furtak T., 2004. RTS Games and Real-Time AI
Research. In Proceedings of the Behavior Representation
in Modeling and Simulation Conference (BRIMS). 63–70.

Livingstone D., 2006. Turing’s test and believable AI in
games. Computers in Entertainment (CIE), Vol. 4(1).

Spronck P.; Ponsen M.; Sprinkhuizen-Kuyper I.; and Postma
E., 2006. Adaptive Game AI with Dynamic Scripting. Ma-
chine Learning, Vol. 63(3), 217–248.


