
ON THE DEVELOPMENT OF A FREE RTS GAME ENGINE

Michael Buro and Timothy Furtak
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
email: {mburo,furtak}@cs.ualberta.ca

KEYWORDS
Real-time strategy game, server-client architecture, scripting

ABSTRACT

The genre of real-time strategy (RTS) video games is very
popular and poses numerous challenges to AI researchers
who want to create systems that play autonomously or aid
human players. One obstacle for AI progress in this area
is closed commercial software which restricts game access
to inflexible graphical user interfaces. In this article we de-
scribe the current state of the free RTS game engine ORTS
which allows users to define RTS games in form of scripts
and to connect arbitrary game client software — ranging
from 3d GUIs to distributed AI systems. This flexibility
opens up new avenues for RTS game competitions and AI
research, of which some are discussed here as well.

BACKGROUND

Real-time strategy (RTS) games such as Starcrafttm and Age
of Empirestm are fast-paced war simulations which have be-
come quite popular in recent years. Constructing AI sys-
tems that play these games well is challenging because of
incomplete information, real-time aspects, and the require-
ment of long-range planning. Many commercial RTS games
feature AI scripts that can win against novice players by be-
ing favored in various ways. Examples range from giving AI
components access to normally hidden information (such as
opponents’ unit locations), over executing actions faster, to
increasing the influx of resources. While this approach may
result in challenging single-player missions for beginners, it
is not applicable in fair competitions. Furthermore, it does
not tackle the real AI issues such as reasoning, abstract plan-
ning, learning, and opponent-modeling. Machines are still
inferior to humans in these areas, which is obvious when
watching machines play each other repeatedly.

To improve the performance of RTS game AI we made
the case for studying real-time AI problems in the context of
RTS games in (Buro 2002; Buro & Furtak 2003; Buro 2004;
Buro & Furtak 2004). There we also described the design ra-
tionales and components of the free RTS game engine ORTS
(Open Real-Time Strategy). Table 1 summarizes the ma-
jor differences between ORTS and current commercial RTS
games.

Commercial RTS games software is closed and not ex-
pandable. This prevents researchers and hobbyists from tai-

Feature Commercial
RTS Games ORTS

Cost ≈US$ 55 US$ 0
License closed software free software

(GPL)
Game Specification fixed user-definable

Network Mode peer-to-peer server-client
Prone to Map-

Revealing Hacks yes no
Communication

Protocol veiled open
Network Data Rate low low to medium

Unit Control high-level,
sequential

low-level,
parallel

Game Interface fixed GUI user-definable

Table 1: How ORTS relates to commercial RTS games

loring RTS games to their needs and from connecting re-
mote AI modules in order to gauge their playing strength.
ORTS, by contrast, is a free software RTS game engine
which means that its source code and artwork are available
free of charge and users can specify their own RTS games.

Furthermore, commercial RTS games as well as the free
RTS game engine (Stratagus 2005) utilize peer-to-peer as
opposed to server-client technology to reduce network traf-
fic. In peer-to-peer mode the complete game state is main-
tained on each player’s computer – by means of broadcasting
all player actions – and the software just hides the invisible
part of the game state from the players. By tampering with
the client software it is possible to reveal the entire state and
thereby gain an unfair advantage. So-called map-revealing
hacks are wide-spread and pose a serious problem for on-
line tournaments. We feel that this is unacceptable for play-
ing fair games on the internet. Therefore, we implemented a
server-client architecture in ORTS. The entire game state is
maintained in the server which repeatedly sends out individ-
ual player views, receives player actions, and executes them.
(Buro 2002) claims that the resulting system is “client-hack-
free” in the sense that client software changes will not bene-
fit attackers. Of course, a truly fair setup also requires trusted
servers and trusted communication.

Another advantage of open server-client game architec-
tures is that users can connect whatever client software they
like. This openness leads to new and interesting possibil-
ities ranging from fair on-line tournaments of autonomous

AI players to gauge their playing strength to hybrid systems
in which human players use sophisticated GUIs which let
them delegate laborious or repetitive tasks to AI helper mod-
ules. Examples include smart group pathfinding, computing
efficient build orders, and small-group combat tactics.

One downside of the server-client operation compared
to peer-to-peer implementations is increased network data
rates, especially for the server which uploads views to the
clients. In ORTS the data requirements are lowered by send-
ing out compressed incremental view updates (Buro 2002),
which is sufficient to play games with 1000 visible moving
objects at a data rate of 2.5 KB per game tick.

The ORTS source code is mainly written in C++ with the
exception of game specifications and GUI customization for
which we developed a simple scripting language. Scripting
allows us 1) to change settings without triggering compila-
tion and 2) to use the same executables for different game
types. The C++ code uses the following libraries which are
available for many systems: SDL, SDL net, Qt, OpenGL,
GLUT, and GLEW. ORTS is being developed under Linux
and Cygwin using gcc, but it now also natively builds un-
der Windows and Mac OS X. In addition to the C++ source
code, a sample game is provided in the distribution including
game specification scripts, a set of 3d models, and user inter-
face customization scripts for the GUI. ORTS software, art-
work, and documentation can be downloaded from (ORTS
2005)

In the following sections we give a high-level overview
of the major ORTS components with emphasis on the latest
developments and scripting. We conclude the paper with a
brief discussion of the project’s future.

SERVER

The ORTS server is responsible for simulating unit actions
and determining what each player is allowed to know about
the current state of the world.

Every cycle players can send an action for each unit they
control. The server applies these actions in a random or-
der, removing any units that have died. Then the posi-
tions of moving objects are updated and colliding objects
are stopped. Finally, the region visible to each player is com-
puted and any changed or newly visible tiles are sent along
with visible units.

To simplify the description of the world, the terrain is tile-
based. Each corner of a tile may be set to an integer height,
allowing tiles to be sloped in various ways. Boundaries are
automatically generated where two adjacent tiles do not line
up or are different types e.g. a land tile next to a water tile.
To help make the terrain less blocky we support half-tiles,
where a tile is split along the diagonal into two different
types and/or the heights on one side of the diagonal do not
line up with the heights on the other. The two sides of half-
tiles are independent of each other with regard to computing
vision; a unit on the lower half may not be able to see a
unit on the higher half of the same tile. The default terrain
generation produces cliff tiles to ease the transition between
different height levels, but this is not required.

Motion

Objects are simple geometric shapes – mobile units are usu-
ally circles, buildings are rectangles, and boundaries are line
segments. Although object positions are restricted to a fixed
grid, collisions for moving objects are computed exactly at a
higher resolution, so fast-moving objects won’t pass through
each other.

Which units can collide with each other is determined by
a collision bitmask for each object, set by default to the ob-
ject’s z-category (on land, flying, underwater, etc.). Excep-
tions to this may be specified in another bitmask, so that spe-
cial objects can pass through each other without needlessly
complicating the default collision rules.

Vision

Visibility is computed in terms of which tiles can be seen
from the center of the tile an object is on. If the center of
the tile can be seen then that tile is entirely visible and any
objects that intersect the tile can be seen. If only a portion
of the tile is visible, say a corner or a side, then the type of
tile is known but not any units on that tile.

Local visibility for each tile and for the entire map is
stored as a bitmap. At the expense of caching the bitmap for
each tile after the initial computation, determining visible
tiles is quickly done via boolean operations on the bitmaps.
A separate visibility computation is performed for cloaked
units and the detector units that can see them.

SCRIPTING

The scripting engine performs the interesting game-specific
logic and allows for flexible game definitions and client in-
terfaces. High performance tasks common across a large
number of possible RTS games such as accurate unit motion
and unit vision in the presence of terrain are handled sepa-
rately by the server. Everything else, such as weapons and
special abilities, is scripted as part of the game definition.

The scripting language was designed to provide a con-
venient way to define unit types and actions. Unit defini-
tions are given in the form of blueprints which list named
(usually) integer attributes and actions. The blueprints use a
loose multiple inheritance system, allowing them to be com-
bined and nested. New unit types can easily be constructed
from functional components. In the client the object cre-
ation system is used to create GUI widgets such as buttons
and status windows.

When the client receives the game description, which in-
cludes unit blueprints, it can locally extend those blueprints
by adding extra attributes, sub-objects, or actions. The client
can use this functionality to write wrappers for complex ac-
tions, add simple background AI, or add event handlers for
when an attribute changes. By adding a 3d model sub-object
the client specifies how an object will be represented in the
world and allows for context sensitive animations.

The client extends the scripting language functionality by
registering special functions that allow access to OpenGL
commands for drawing bitmaps and then simply calling

blueprint marine

include a set of common attributes and default values

is generic_unit

create a sub-object of type "kevlar" named "armor"

class kevlar armor

the rifle sub-object has already been defined and

has a "shoot" action defined

class rifle weapon

make zcat constant and assign it the enum ON_LAND

setf zcat ON_LAND

setf max_hp 100

set hp 100

setf sight 6

setf radius 5

set max_speed 3

end

Figure 1: Marine blueprint

those functions within the script. Mouse and keyboard
events received by the client are transferred to the script
by calling the actions of a special root GUI object, passing
the event information as parameters. This object recursively
calls the interface actions of its children until it is handled.

Since the scripting language was designed to be able to
perform reasonably complicated game logic, eventually er-
rors will occur that cannot be simply debugged by inspec-
tion. At this point it becomes invaluable to have some way
for the script to write information to the console or to in-
spect the current state. As a compiler option the interpreter
can maintain a stack trace of the current execution with a
printout of line numbers and the statement being evaluated
at each step. This trace is automatically printed when a trap-
pable error occurs in the script, and can be printed manually
from inside a debugger such as gdb.

Because it is relatively trivial to extend the scripting lan-
guage by adding external C functions it is tempting to do
so whenever additional functionality is needed. This can
quickly lead to numerous special purpose functions and
bloated syntax. Consider the problem of implementing an
STL-like vector container. One option is to try to force the
language to do something it was never intended to, perhaps
by implementing a complicated linked list. Another is to add
a C function that returns a pointer to an actual STL vector,
with additional functions for adding to it, sorting, etc.

To help make the scripting language extensible, objects
in the script are all derived from a common base class, with
game objects being only one possible option. To address
the previous concern, wrappers have been written for STL
vectors and sets, allowing them to be created in the same
manner as classes described by blueprints. By modifying
the new objects’ incremental update functions the container
can be used as a sub-object within game units. The graph-
ical client uses derived classes for 3d models and particle
systems to attach these things to objects in the game.

Script actions take generic script variables as parameters,
which may be object pointers, integers, or something else.

blueprint missile

has core_attr

has movement

setf shape CIRCLE

setf radius 3

setf max_speed 20

set speed 0

setf zcat IN_AIR

setf targetable 0

setf invincible 1

var hidden det_range 3

var hidden blast_range 20

var hidden min_dmg 200

var hidden max_dmg 350

set the collision mask to ignore all other objects

var collides 0

this action takes one object as a parameter, no

integer variables, and no hidden variables.

action track_obj(targ;;) {

gob e;

int dmg, damage_type;

damage_type = this.damage_type;

if (targ.targetable < 1) break;

if (distance(this,targ) <= this.det_range) {

"-1" -> not owned by any player

e = create("explosion", -1);

e.x = this.x;

e.y = this.y;

e.zcat = targ.zcat;

e.radius = this.blast_range;

e.damage_type = EXPLOSIVE;

add the "boom" action to the action queue and

execute it sometime in the current tick

e.boom(;this.min_dmg, this.max_dmg, 0;) in 0;

mark the missile as dead - it can still act,

but cannot queue any more actions, and will

be deleted at the end of the current tick

kill(this);

} else {

move events are handled after script actions.

the object isn’t teleported, it walks/flies to

the target location at its speed

move(this; targ.x, targ.y);

accelerate the missile - applies to above command

this.speed += 4;

if (this.speed > this.max_speed)

this.speed = this.max_speed;

execute this action again in 1 tick

without "in 1" action would be called immediately

this.track_obj(targ;;) in 1;

}

}

end

Figure 2: Missile blueprint

When evaluating scripts in the client, actions that are part of
the original game description are not evaluated locally, but
are automatically placed in the outgoing action list to be sent
to the server.

The game simulation is tick-based, and a large num-
ber of object actions naturally depend on time constraints
e.g. weapon cool-down, construction times. To better sup-
port time in the scripts the language is able to specify that ac-
tions are to occur some number of ticks in the future. These
actions are stored in a priority queue until they need to be
evaluated. A small amount of bookkeeping is required to
ensure that dead objects still referenced by a pending ac-
tion are not deleted until they are no longer pointed to. A
dead object can no longer perform actions, but functions can
check if it is still alive.

CLIENT SOFTWARE

Unlike commercial RTS games, ORTS players can connect
whatever client software they like and can issue commands
to all of their units in each game tick (usually more than
8 times a second). Consequently, ORTS clients have much
more control over game objects which greatly impacts game
design. Consider default unit-behavior. In Starcrafttm for ex-
ample, tanks automatically fire on enemy units within range.
But very powerful spells like “lock-down” and “psionic
storm” have to be cast manually by the player, thus limiting
their effectiveness. In ORTS, all units can become so-called
auto-casters by letting client AI modules decide when and
where an object acts without having to wait for slow-paced
player instructions. Thus, the cost of ORTS game objects
has to be balanced in light of ubiquitous auto-casting.

The ORTS software currently provides basic client func-
tionality such as communication with the server, maintain-
ing the game state, a GUI, and some low-level AI mod-
ules, which are discussed below. The main focus of future
client software additions will be on making AI components
smarter to allow players to concentrate more on high-level
strategic decisions, and eventually let the AI play games au-
tonomously.

Maintaining the Game State

Because the ORTS server sends out incremental and com-
pressed view updates and receives compressed action se-
quences, it is helpful to encapsulate the game state and com-
munication in classes for everybody to use. Another ad-
vantage is that the communication protocol and compres-
sion can be changed without breaking client code. Server
and client share the same Game class. In clients, this class
represents the current game state in view of the player,
and provides access to tiles and visible game objects. The
Game class is part of GameStateModule, which communi-
cates with the server, updates the state, and informs regis-
tered users about server messages by invoking event han-
dlers. Each game object has an action member which can be
set either by AI modules or the GUI as a result of user ac-
tions. In each game tick, actions for all objects under player

control are sent to the server by invoking a function in the
GameStateModule class.

Graphical User Interface

For interacting with human players and AI demonstration
purposes a graphical user interface is essential. We have im-
plemented a client component (class GfxModule) that uses
OpenGL to render arbitrary 3d views of the current game
state in a window together with a minimap, an information
panel, and action button panel (Fig. 3). Moreover, rectangu-
lar overlays can be created to display additional information
such as pathfinding results and influence maps. The widget
layout, keyboard command shortcuts, and actions attached
to buttons are scriptable. The graphics module communi-
cates with the server through GameStateModule.

Low-Level AI Components

The server does not provide any default high-level func-
tionality, so any tasks involving multiple low-level actions
must be coordinated by the client. Basic gameplay tasks
such as pathfinding, gathering resources, and automated de-
fenses are implemented client-side via pluggable C++ mod-
ules. These components communicate with the GUI and
with each other via a simple message passing system. When
a user sends a unit to a location a pathfinding event is gener-
ated. The pathfinding module then plans a route to the target
and babysits the unit, sending move commands for each leg
of the path. As the world is explored the pathfinding module
receives messages notifying it of new obstacles and units,
letting it update its map of the world. The resource gath-
ering module, once initiated by the client, works with the
pathfinding module. It broadcasts a pathfinding message to
send a unit to a given resource, receives confirmation of ar-
rival, and then orders the unit to start mining. Similarly for
returning resources to the base once collected.

Figure 3: GUI screenshot

ORTS.NET

A recent addition to ORTS is the ORTS.net internet game
service where players can meet and initiate ORTS games
by communicating through a generic game server (GGS).
ORTS.net is comprised of three programs:
netservice: ORTS.net game manager. Stores player data

such as buddy lists and ratings. Also maintains a list of
networkers, sets up games, and assigns networkers to host
them.

netclient: Graphical (Qt) front-end of the ORTS.net service
featuring log-on and chat dialogs and more. Communi-
cates with netservice and players via GGS.

networker: ORTS server controlled by netservice. It hosts
ORTS.net games and clients, such as ortsg, connect to it
directly.

Figure 4 shows how these programs are connected. Cen-
tral to ORTS.net is GGS, a message passing server which
can be downloaded from www.cs.ualberta.ca/˜mburo .
GGS allows connected parties to exchange messages using
a simple text-based protocol. Before an ORTS game can be
initiated, netservice and one or more networkers have to be
connected to GGS. Networkers register themselves with net-
service to indicate that they are available for hosting ORTS
games. After players connect to GGS using netclient, they
can chat with each other and arrange ORTS games by send-
ing messages to netservice. When netservice creates a game
it selects an available networker and sends its IP address
to the netclients along with a one-time password. The net-
clients then launch ortsg which connects to the networker to
start the game. Finally, when the game is over, the networker
sends the result back to netservice, disconnects the clients,
and becomes available for hosting another game.

netclient Bnetclient A

ortsg A ortsg B

netservice GGS

networker n

networker 1

launch

Figure 4: ORTS.net network topology

OUTLOOK

With all major components now functional, the ORTS soft-
ware has reached the point where it can be used as plat-
form for real-time AI research, the development of new RTS
games, and on-line competitions.

ORTS can still be improved in various ways. For instance,
the game state currently cannot be saved, GUI customiza-
tion is incomplete, the graphics performance needs to be im-

proved. Moreover, work on RTS game AI that is executed in
ORTS clients has just begun.

Currently our research group is looking at pathfinding,
small scale combat, optimizing build orders, and high-level
planning based on Monte Carlo simulations. We hope that
the availability of a (hack-) free RTS game engine sparks
more interest in RTS game AI and competition among re-
searchers, students, and hobbyists. (Molineaux 2005) re-
ports that work already has begun to interface ORTS with
(TIELT 2005), a testbed for integrating and evaluating learn-
ing techniques in real-time games.

ACKNOWLEDGMENTS

We thank Keith Yerex and Sami Wagia-alla for their numer-
ous contributions to the ORTS project. Financial support
was provided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

REFERENCES

Buro, M., and Furtak, T. 2003. RTS games as test-bed for real-
time research. In Proceedings of the JCIS Workshop on Game
AI, extended version at www.cs.ualberta.ca/˜mburo/
orts , 481–484.
Buro, M., and Furtak, T. 2004. RTS games and real-time AI
research. In Proceedings of the Behavior Representation in Mod-
eling and Simulation Conference (BRIMS), 63–70.
Buro, M. 2002. ORTS: A hack-free RTS game environment. In
Proceedings of the Third International Conference on Computers
and Games, 156–161.
Buro, M. 2004. Call for AI research in RTS games. In Proceed-
ings of the AAAI Workshop on AI in Games, 139–141.
Molineaux, M. 2005. NRL (Washington D.C.) personal commu-
nication.
ORTS. 2005. Free Server-Client RTS Game Engine at http:
//www.cs.ualberta.ca/˜mburo/orts .
Stratagus. 2005. Free Peer-to-Peer RTS Game Engine at http:
//stratagus.sourceforge.net .
TIELT. 2005. Test-bed for integrating and evaluating machine
learning techniques in real-time games at http://nrlsat.
ittid.com .

MICHAEL BURO is an associate professor for computer
science at the University of Alberta. After receiving his
Ph.D. in Germany he worked as a scientist at the NEC
Research Institute in Princeton for seven years before he
moved to Edmonton in 2002. His main research interests are
heuristic search and planning in AI and machine learning
applied to games. He is the author of LOGISTELLO — a
learning Othello program that in 1997 defeated the human
World-champion 6–0.

TIMOTHY FURTAK is entering the masters program at
the University of Alberta’s computing science department.
He has spent the last two years developing the ORTS game
engine at the University of Alberta and is interested in ap-
plying machine learning to games.

