
Using Payoff-Similarity to Speed Up Search

Timothy Furtak and Michael Buro
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
ffurtakjmburog@cs.ualberta.ca

Abstract
Transposition tables are a powerful tool in search
domains for avoiding duplicate effort and for guid-
ing node expansions. Traditionally, however, they
have only been applicable when the current state is
exactly the same as a previously explored state. We
consider a generalized transposition table, whereby
a similarity metric that exploits local structure is
used to compare the current state with a neigh-
bourhood of previously seen states. We illustrate
this concept and forward pruning based on func-
tion approximation in the domain of Skat, and show
that we can achieve speedups of 16+ over standard
methods.

1 Introduction
In the past 20 years there have been great successes for AI
in popular abstract games. For example, we now have pro-
grams running on personal computers that can defeat the best
humans at chess, checkers, Scrabble, Othello, and backgam-
mon; computer Go has been revolutionized by Monte Carlo
tree search; and computer poker has advanced to the point
where humans no longer dominate. In most perfect informa-
tion games the �-� algorithm and its various enhancements
have been instrumental to these achievements. One impor-
tant idea is to use transposition tables that store information
about previous search results to improve move sorting in sub-
sequent search iterations and to avoid repeating computations
in case a state is reached via different move sequences.

In this paper we first introduce a more general concept of
sharing data between search trees — payoff-similarity — that
can save search effort in game domains in which encountered
subtrees may be identical but player payoffs can be different.
We then show how payoff-similarity can be used in a popular
card game to speed up double dummy solver (DDS) compu-
tations by almost an order of magnitude. Finally, we discuss
further search reductions based on approximating DDS val-
ues and forward pruning, and conclude the paper with ideas
for future work.

2 Payoff-Similarity
By definition, a transposition table is used to detect when
search reaches a state that is identical to one that has previ-

ously been explored, usually via a different path (i.e. a trans-
position). However the functional benefit of a transposition
table lies in how it relates the value of a previously seen state
p to the value of the current state c. Namely, if c = p then
V (c) = V (p). More generally, one may consider only the
portions of c and p that affect whether their values differ.

This idea leads to a further generalization that if we can
compute a bound on the difference between the values of two
(arbitrary) states, then we could potentially extract informa-
tion about the value of the current state from all previously
seen states. Practically this is infeasible, but in certain do-
mains it is possible to exploit local structure to attain non-
trivial bounds relating the values of states within a neighbour-
hood of each other.

Consider a two-player zero-sum perfect information game
in which we want to relate the minimax values V (p) and V (c)
of two states p and c, with subtrees Tp and Tc. If p = c and
V (p) has already been determined and stored in a transposi-
tion table, then when reaching c we can use this information
and return V (c) = V (p) immediately, without searching Tc.
If we have not encountered c before, Tc needs to be searched.

Now suppose c 6= p but Tc and Tp are similar. Then we
may be able to bound jV (c)�V (p)j, and knowledge of V (p),
or a bound on V (p), could produce � or � cuts and save work.

While finding bounds for jV (c) � V (p)j small enough to
create cuts may be hard in general, for particular types of trees
this goal is attainable. Suppose, for instance, that Tc and Tp
are structurally equivalent, i.e. there is an isomorphism be-
tween Tc and Tp that respects which player is to move. The
payoffs in corresponding leaves may be different. We call
such states c and p payoff-similar and can prove the follow-
ing statement:
Theorem 1. Let states s and s0 be payoff-similar and jV (li)�
V (l0i)j � � for all corresponding leaf pairs (li; l

0
i) in sub-

trees T and T 0 rooted in s and s0, respectively. Then
jV (s)� V (s0)j � �.
Proof. Because s and s0 are payoff-similar, T and T 0 are struc-
turally equivalent. We proceed by induction on the height of
corresponding nodes in T and T 0. For corresponding leaves
l and l0 we know jV (li) � V (l0i)j � �. Now suppose the
claim is true for all corresponding node pairs of height � h.
Consider corresponding states s and s0 with height h + 1.
W.l.o.g. let s and s0 be states with max to move and succes-
sors s1; : : : ; sk and s01; : : : ; s

0
k. Then, applying the induction

hypothesis yields:

V (s0) = max
i

(V (s0i)) � max
i

(V (si) + �)

= (max
i

(V (si))) + � = V (s) + �

and analogously V (s0) � V (s) � �, and therefore jV (s) �
V (s0)j � �. 2

2.1 Seeding the Transposition Table
In a manner similar to building an endgame database, we may
pre-populate the transposition table with a selection of states
for which we have computed their exact value (or possibly
just lower and upper bounds). If our domain is sufficiently
amenable then search need not directly encounter any of these
“seeded” positions, as long as it gets close enough to make
use of their values via the similarity bounds. This can allow
for a standard endgame database to be replaced by a transpo-
sition table of equivalent efficacy but with significantly fewer
entries. Thus we can pay a one-time cost to compute TT en-
tries and then use those results for all future searches.

2.2 Application Domains and Related Work
The payoff-similarity property occurs often in trick-taking
card games such as Hearts, Bridge, Sheepshead, and Skat. In
these domains certain cards may become “power-equivalent”,
in terms of their ability to win tricks. For example, if one
player is holding �78, then (from a perfect-information per-
spective) playing �7 is equivalent to playing �8. Less obvi-
ously, we may transpose into a state where the relative ranks
of each card are the same as in a previously seen state. In
games such as Bridge where only the number of tricks made
is important, positions may be converted into a “canonical”
form, by relabelling card ranks.

The Partition Search algorithm as described in [Ginsberg,
1996] takes such a canonical representation a step further, by
storing sets of states with the same value. For example, the
value of a given position may not depend upon which players
hold certain low spades — those states can then be merged
into one set, even though they have different canonical repre-
sentations since the card ownership is different. Without go-
ing into detail, partition search backs up a set of equivalently-
valued states based on whether a winning set is reachable or
whether the current player is constrained to reach a losing set.

Our framework is more analogous to nearest-neighbour
classification in that, instead of constructing an explicit rep-
resentation of the sets, we implicitly define them in terms of
previously seen states. Rather than attempting to hand-craft
complicated partitioning functions (as with partition search)
we require only a similarity metric, which may be signifi-
cantly easier to construct. We leave the problem of combining
the two approaches as future work.

3 Application to Skat
Unlike in Bridge, where the value of a position depends only
on how many tricks each player can make (and thus all states
with the same canonical representation have the same value),
the value of a Skat position also depends on the value of those

cards. We can say that Skat and related card-games such as
Sheepshead and Pinochle have the payoff-similar property in
the non-trivial sense, where � may be greater than 0.

3.1 Skat Rules
The following description is adapted from [Buro et al., 2009].
Skat is a trick-taking card game for 3 players. It uses a short
32-card playing deck, similar to the standard 52-card deck
except that cards with rank 2 through 6 have been removed.
A hand begins with each of the 3 players being dealt 10 cards,
with the remaining 2 cards (the skat) dealt face-down.

After an initial bidding phase, one player is designated the
soloist and the other two players (the defenders) form a tem-
porary coalition. The soloist then announces the game type,
which will determine the trump suit and how many points the
soloist will earn if she wins the game. There is one game type
for each of the four suits (}~�|), in which the named suit
and the four jacks form the trump suit. These four types are
referred to as suit games. Another game types is grand, in
which only the 4 jacks are trump.

Once the soloist announces the game type, card-play be-
gins. This phase consists of 10 tricks, which are played in a
manner similar to bridge and other trick-taking card games.
The soloist’s objective is to take 61 or more of the 120 avail-
able card points. Each card in the game is worth a fixed
amount: Aces are worth 11 points and Tens are worth 10.
Kings, Queens, and Jacks are worth 4, 3, and 2 points re-
spectively. 7s, 8s, and 9s are not worth any points. We have
omitted many of Skat’s more detailed rules from this sum-
mary; for a more thorough treatment, the interested reader is
referred to www.pagat.com/schafk/skat.html.

3.2 Computer Skat
At present, the strongest known card-play technique for Skat
programs is perfect information Monte Carlo (PIMC) search,
which is capable of achieving expert-class playing strength
[Buro et al., 2009]. This consists of generating perfect infor-
mation worlds that are consistent with observed actions (pos-
sibly incorporating some form of inference to bias or weight
the likelihood of each world) and computing the value of each
move. The move that has the best value, averaged over all
sampled worlds, is then taken.

The strength of this technique tends to increase monotoni-
cally with the number of worlds sampled, albeit with dimin-
ishing returns for each additional world. As such, any tech-
nique that allows for significantly faster open-handed posi-
tion solving will tend to result in stronger play. This is es-
pecially true in the early game, where positions take signif-
icantly longer to solve, and diminishing returns have not yet
set in. Very fast solving techniques also open the door to ex-
pensive search-driven inference, such as asking: “having seen
another player’s action, in which worlds would I have made
the same action?”

3.3 Payoff-Similarity in Skat
In this section we will refer to the value of Skat positions
in terms of the number of card points achievable by the max
player (the soloist) minus the card points achievable by the
min players (the defenders), assuming perfect information

and that all players act optimally. Let V (�) be the correspond-
ing state evaluation function.
Theorem 2. Let s be a Skat position with card values
v1; : : : ; vk. Let s0 be the same position, except with card val-
ues v0i = vi + � for some i, and v0j = vj for j 6= i. Then
jV (s0)� V (s)j � j�j.
Proof. Consider the game trees T and T 0 rooted in s and s0.
Then T and T 0 are structurally equivalent, because cards have
only changed in value, not rank. For each corresponding leaf
pair (li; l0i) in T and T 0, V (l0i) = V (li) � �, where the �
depends on which team won the card with changed value. It
follows that s and s0 are payoff-similar and thus by Theo-
rem 1, jV (s)� V (s0)j � j�j. 2

Corollary 3. Let s be a Skat position with card values
v1; : : : ; vk, and let s0 be the same position with arbitrary card
values v01; : : : ; v

0
k. Then jV (s)� V (s0)j �

Pk

i=1 jvi � v0ij.
Proof. This follows immediately from Theorem 2 by applying
it to each card value. 2

We may use these results to construct a more generalized
transposition table, indexed only by the canonical represen-
tation. That is, within each suit, we only care about which
player owns the most powerful card, the next most powerful,
etc., and not the values of those cards.

Like a standard transposition table, the entries store lower
and upper bounds for the value of a given position. Unlike a
standard transposition table we may have multiple entries for
each index, with each entry annotated with the card values
that were used to produce those bounds. A transposition ta-
ble lookup then consists of converting the current state into a
canonical form, computing the corresponding index, and then
looping over all entries with that index.

This gives us a range h��; ��i within which the true value
of the state provably lies, with �� = maxi(�i � �i), and
�� = mini(�i + �i), for each entry i. If this range is outside
the current search window (�� � � or � � ��) then we
may immediately prune the state. Otherwise we can use it
to tighten our �-� search window. If we ever encounter the
exact same state (including card values) then �i = 0 and the
transposition table operates in the standard manner.

As an aside, if we can determine when the team that ac-
quires a particular card i does not change, then we can add
�i to V (s) directly, rather than just increasing the � bound.
In Skat, this can be seen to occur for the highest remaining
trump card, and all subsequent (in rank) uninterrupted trump
owned by the same team.

3.4 Seeding the Transposition Table
Because there are relatively few canonical hand indices it
becomes practical to precompute transposition table entries
ahead of time, so that they may be used for all future searches.
The effectiveness of this precomputation is ultimately deter-
mined by whether the reduction in search nodes is enough to
offset the additional time required to query the extra transpo-
sition table entries. The reduction in search nodes is affected
by two factors: the distribution of � errors, which affects the
tightness of the returned bounds; and the height within the
search tree at which the entries occur.

Table 1: The number of canonical indices for suit and grand
games is equal to “# of suit splits” � “ownership”.

of cards # of suit splits ownership
�

3

i;i;i

�
per hand suit game grand

1 7 7 6
2 23 25 90
3 50 56 1,680
4 79 92 34,650
5 97 113 756,756
6 93 109 17,153,136
7 70 80 399,072,960
8 40 45 9,465,511,770
9 16 17 227,873,431,500

10 4 4 5,550,996,791,340

Thus, we would like to find an optimal balance between
storing entries sufficiently high in the search tree, and having
a sufficiently diverse collection of associated card values so
that the returned bounds are non-trivial. In the interest of
compactness we will store the precomputed entries using an
implicit indexing scheme, such that the canonical index and
the card value assignment do not need to be included in the
table. This gives us less flexibility as to which entries and card
values we can use to populate the table, but it also allows us
to use only one byte per table entry (the actual DDS value).

Table 1 presents one possible implicit indexing scheme.
The first component listed is the number of “suit splits” (after
reducing by suit isomorphisms). Each split can be thought of
as the number of cards remaining in each suit, without regard
to which player holds those cards. The second component is
the actual ownership assignment of those cards.

By inspecting Table 1, we can see that storing 5-card hands
is the most we can practically achieve with current commod-
ity systems. This corresponds to 0.72MB for each card val-
uation — we will want hundreds or thousands of entries (to
cover the space of values), and we will need one table for each
player to move (3) and game type (grand and suit game). We
could construct larger tables on disk, but the increased access
times would likely overshadow any decreases in node counts.

Optimizing TT Entries
Note that the maximum error, �, of any canonical TT lookup
is independent of the “ownership” index component (which
is of the motivations for choosing this decomposition). Thus
we need only select (and store) one set of card-value repre-
sentatives for each of the possible suit splits. We may also
note that � is decomposable into the errors from each suit (i.e.
� = �}+�~+��+�|). Thus, for any particular suit split, we
can attempt to maximize the TT value coverage (minimizing
the expected error) within each suit independently. The set
of representatives for a given suit split is then the cross prod-
uct of the representatives for each suit. Consider the possible
card valuations for a non-trump suit of size 2:
fh0; 0i; h0; 3i; h0; 4i; h0; 10i; h0; 11i; h3; 4i;

h3; 10i; h3; 11i; h4; 10i; h4; 11i; h10; 11ig

If we had a budget of, say, 3 representatives from that suit
then we might choose fh0; 3i; h4; 10i; h10; 11ig. Note that
there is no technical reason forcing us to select our represen-
tatives from the set of possible card values — we could even
choose card values from the real numbers.

30 25 20 15 10 5

0.
0

0.
4

0.
8

1.
2

Root Node Height

F
ra

ct
io

n
of

 B
as

el
in

e
T

im
e

suit
grand

Figure 1: Skat DDS search times using payoff-similarity.

Once we have found an optimal (or near optimal) set of
representatives for each per-suit budget (k cards, n represen-
tatives), our task is to allocate our total budget amongst each
suit split, so as to minimize the (possibly weighted) sum of
expected � values over all splits. E.g., for each a-b-c-d suit
split, how many representatives should suit a have? Suit b?
Etc. (Grand games have an additional suit e that represents
Jacks, but these cards are all the same value.) This is ac-
complished via a relatively straightforward dynamic program,
given a total memory budget. As a practical matter, the goal
of this optimization is not entirely clear. One may attempt
to optimize the worst-case � error, optimize for the expected
distribution of card values, or something else. We optimized
against an unweighted distribution of all possible card values,
as this produced the best results seen.

3.5 Experimental Results
To illustrate the effectiveness of payoff-similarity, we incor-
porated the described canonical indexing into a C++ MTD(f)
solver that computes the exact card-point score of an open-
handed position. This baseline solver is a high-performance
program that uses hand-tuned move-ordering heuristics sim-
ilar to those described in [Buro et al., 2009], but generally
cannot collapse card ranks into a canonical form due to the
differing values of cards within a suit.

Figure 1 shows the results of adding payoff-similarity to
the baseline solver, with each data point averaged over 10000
positions. Suit and grand games see a wallclock time reduc-
tion of 85% and 77% respectively, for positions at height 30,
the hardest positions to solve. The payoff-similarity overhead
does not outweigh the corresponding gains until the positions
become essentially trivial (hands with 4 cards or fewer).

The payoff-similarity solver then became our new baseline
player for examining the effectiveness of using precomputed
TT entries. That is, the next results are over and above any
gains from canonical indexing.

The results of using precomputed TT entries are shown in
Figure 2. Budgets of 500, 1000, 3000, and 5000 valuations
per table corresponds to memory requirements of 1.1, 2.2,
6.5, and 10.8 gigabytes per game type. Node and CPU-cycle
reductions are relative to our exact solver with no precom-
puted TT entries, with all solvers exploiting payoff-similarity.
The same 10000 positions were used within each game type.

Overhead from having to examine multiple table entries for
each lookup means that the reduction in time does not match
the reduction in nodes, and we can see a crossover for suit

30 25 20 15

0.
40

0.
50

0.
60

0.
70

Grand

Root Node Height

F
ra

ct
io

n
of

 B
as

el
in

e

30 25 20 15

0.
60

0.
70

0.
80

Suit (6+ Trump)

Root Node Height

F
ra

ct
io

n
of

 B
as

el
in

e

cycles 500
nodes 500

cycles 1000
nodes 1000

cycles 3000
nodes 3000

cycles 5000
nodes 5000

Figure 2: Reduction in nodes and CPU-cycles using precom-
puted transposition tables of various sizes.

games, where the largest table is (slightly) slower than the
second largest at height 30. Additionally there are diminish-
ing returns in terms of reducing � with larger tables, and the
subsequent reduction in nodes expanded.

With the largest table sizes we achieve time reductions
of 25% for suit games and 48% for grand games at a root
height of 30. The greater improvement for Grand games is
due to the monotonic ordering of card values within each suit
— the trump suit for suit games includes Jacks, which are
stronger than Aces but worth fewer points. This greater num-
ber of possible valuations means our representatives are fur-
ther apart in the suit game tables.

4 Estimating DDS Results
Although computing a single DDS result is a relatively fast
operation, there are a number of inference techniques which
would benefit from being able to compute more results than
are currently practical with a modest number of commodity
processors. To this end, there exists a time-accuracy trade-
off, where a fast estimator may be used to replace either an
entire DDS search, or, more generally, some subtree(s) within
a search. If the estimated values are not too far from the exact
values, then the value at the root node of the search must also
necessarily be close to the true value. Since search is usually
only needed to distinguish the relative quality of the possible
moves, exact values are only necessary insofar as they can do
so. Recall that for PIMC we need to compute the value of
each successor state from the current position.

In our framework, value estimation can be viewed as a
probabilistic analogue of bounded similarity. Instead of com-
paring our current state against a previously searched TT po-
sition, we have some function that tries to generalize across
all positions (usually involving local features from a training
set), and an associated empirical error distribution.

For highly tactical positions we expect that selecting moves
using the values returned from DDS searches is in some sense
the “right” thing to do. However this also assumes a level of
coordination between players which is usually not the case
in most situations. If the estimated search values more ac-
curately reflect the real imperfect information values, then
the move selection process could be both faster and stronger
when using estimated or heuristic values.

4.1 Static Analysis
Before going into detail on our methods for estimating the
DDS value of a position, we wish to first make note of meth-
ods for quickly bounding the exact DDS value. Given that
teams cannot lose the points that they have already won, we
are only trying to determine how the remaining card points
are partitioned between the two teams.

We shall refer to any method which bounds the true DDS
value and involves at most a small amount of search (prefer-
ably zero) as static analysis. Our best static analysis method
involves the use of card- and trick-counting arguments at the
start of a trick to produce upper and lower bounds on the
number of points that the current player can make. For in-
stance, if the declarer is to act and he were to “play from the
top” in all safe suits, while the defenders threw off their least-
valuable cards, how many points would the declarer make?
Using static analysis within search decreases the amount of
time required by about 13% (or 3% if a defender is to move
at the root) for suit games, and 24% for grand games.

4.2 Linear Approximators
To estimate the result of a DDS search we trained several
feature-based linear approximators, one for each combination
of: game type (suit, grand), player to move (we assume that
the soloist is in a fixed seat), and number of cards in hand.
Because positions with small numbers of cards are already
fast to solve, we only constructed estimators for start-of-trick
positions where all players have 6, 7, 8, 9, or 10 cards in their
hand. Mid-trick positions have more variables to consider and
would require additional memory, disk space, and training.

Each approximator works in the standard manner: given
a collection of feature functions � = f�1; : : : ; �kg, the es-
timated value of a state s is

Pk

i=1 �i[�i(s)], where each �i

returns an index (effectively partitioning the states), and �i[]
is an array of learned values.

The � values are trained using least-squares linear regres-
sion, with the training set being hundreds of millions of ran-
domly generated states, labeled with exactly computed DDS
values. To avoid overfitting, we generated at least 20 posi-
tions corresponding to each �i entry. That is, we sampled 20
positions from each ��1i (j). Due to overlap and different par-
tition sizes, � entries may have more than 20 training points.

Features
The majority of the features used are so-called “constellation”
features — given a list of cards (rank and suit), a constellation
feature tracks the location of each card. Each card may be
in one of 4 locations: the hand of player 1, 2, or 3, or out.
Since we are only trying to predict the number of points yet
to be made by the declarer, we do not need to keep track of
which team won each of the out cards. For example, we use
the following (plus some other) constellation features for suit
games: Jacks + Aces; Aces + Tens; Top 2 Jacks + non-trump
Aces and Tens; each non-trump suit; low cards (789s); trump
between all pairs of players. Plus counting features such as:
of low cards each player has; # of trump each player has.

These features were chosen by hand, to fit within our mem-
ory budget and hopefully be reasonably predictive — we cer-
tainly do not claim that they are optimal.

Table 2: Linear regression estimator statistics — one estima-
tor per: game type, number of tricks played, and player to
move. Two measures of accuracy are listed: the average ab-
solute error and the standard deviation (in parentheses).

suit game grand
NT P LR LR+SA LRbdd+SA LR LR+SA LRbdd+SA
0 S 2.2 (3.1) 2.0 (3.0) 1.8 (2.9) 2.8 (3.9) 2.3 (3.6) 1.9 (3.3)
0 D1 3.5 (4.7) 3.2 (4.5) 2.9 (4.3) 4.1 (5.4) 3.7 (5.1) 3.2 (4.8)
0 D2 3.6 (4.7) 3.2 (4.5) 2.9 (4.3) 4.1 (5.7) 3.7 (6.0) 3.2 (5.8)
1 S 2.4 (3.4) 2.1 (3.3) 1.9 (3.1) 2.7 (3.8) 2.2 (3.5) 1.7 (3.1)
1 D1 3.7 (4.9) 3.3 (4.7) 3.0 (4.4) 4.0 (5.3) 3.6 (5.0) 3.0 (4.6)
1 D2 3.7 (4.8) 3.3 (4.6) 2.9 (4.3) 4.0 (5.3) 3.5 (5.0) 3.0 (4.5)
2 S 2.5 (3.5) 2.1 (3.3) 1.9 (3.1) 2.8 (3.9) 2.3 (3.6) 1.8 (3.3)
2 D1 3.7 (4.9) 3.3 (4.7) 2.9 (4.3) 4.1 (5.5) 3.7 (5.2) 3.1 (4.7)
2 D2 3.6 (4.8) 3.2 (4.6) 2.8 (4.2) 4.1 (5.4) 3.6 (5.2) 3.0 (4.7)
3 S 2.6 (3.6) 2.2 (3.3) 1.8 (3.0) 2.9 (4.1) 2.3 (3.6) 1.8 (3.3)
3 D1 3.4 (4.5) 3.0 (4.3) 2.5 (3.9) 4.1 (5.5) 3.6 (5.3) 3.0 (4.7)
3 D2 3.3 (4.4) 2.9 (4.2) 2.5 (3.9) 4.1 (5.5) 3.6 (5.3) 3.0 (4.7)
4 S 2.5 (3.4) 2.0 (3.1) 1.6 (2.9) 3.0 (4.2) 2.3 (3.7) 1.7 (3.3)
4 D1 3.0 (4.0) 2.6 (3.8) 2.3 (3.6) 3.9 (5.3) 3.3 (5.0) 2.8 (4.6)
4 D2 2.9 (4.0) 2.6 (3.8) 2.2 (3.6) 3.9 (5.3) 3.4 (5.0) 2.8 (4.5)

Accuracy
Due to our aforementioned static analysis function we can
(and do) check if the value returned by our linear estimator is
wildly inaccurate. We can also cap the approximation error
of each data point during the linear regression, instead of just
using ŷ � y. Thus, we can help prevent the regression from
“chasing” a data point where the estimate is very inaccurate.

Because our linear regression is performed via gradient de-
scent, capping the error of a training point does not produce a
plateau where we don’t care about better approximating that
point — rather, it caps the contribution of that data point to
the slope of the regression. The regression will still attempt
to correct for these errors, but it won’t try as hard.

Table 2 shows the training error for several data sets, with
and without using error capping during regression (LRbdd

and LR, respectively). We can see that using this method re-
sults in a significantly lower average absolute error and stan-
dard deviation. Although not shown, the errors for LRbdd

(without static analysis) are significantly greater than for LR.

4.3 Pruning
The ProbCut algorithm as described in [Buro, 1995] works
by correlating the result of a shallow search with the value
returned by a deeper search. That is, we can experimentally
determine the expected value and variance of vshallow�vdeep.
Then, by performing a shallow search, we can form a window
of arbitrary confidence within which we expect the value of
a deep search to lie. If this window is outside the current �-
� bounds then we can immediately prune, saving the effort
of a deep search for the price of a small probability of error.
If time permits, one may re-search a position with a wider
window to increase confidence in the result.

This technique was applied successfully to Othello, where
solving positions exactly is intractable. However in our
regime the cost of exactly solving a position is much lower.
So much so that sophisticated incremental search techniques
have not received much attention, largely due to effective
pruning and move ordering heuristics that reduce the effec-
tive average branching factor to less than 1.65. A result of

this low branching factor is that the overhead of incremental
search techniques such as iterative deepening tends to out-
weigh any gains. Moreover, since we are using the PIMC al-
gorithm there are many open-handed positions that we wish
to solve, rather than solving one position with increasing con-
fidence. That said, we may still select a ProbCut-style confi-
dence threshold a priori, to use for searching many worlds.

Indeed, by taking the empirical standard deviation com-
puted during the linear regression and combining it with our
confidence threshold, we can form a window around the val-
ues returned by our estimators, within which we expect the
true position value to lie. We do not use this window to
tighten our the current �-� bounds (although we could), we
only check if it is outside our cutoff bounds — if it is outside
then we cut, otherwise we continue searching as normal.

4.4 Experimental Results
Our baseline DDS solver for examining our linear approxi-
mators is our payoff-similarity player with no precomputed
TT entries. Table 3 lists the amount of time needed by the
estimation player as a fraction of the baseline player, for var-
ious pcut confidence thresholds. There is a clear trade-off in
terms of search time vs. evaluation error at the root node.

Corresponding to the trend in Table 2, results for Grand
games aren’t as good as for suit games, presumably due to in-
adequate features. To explore the effect of approximation er-
ror on real card-play, we ran a tournament with two “Kermit”
PIMC players from [Buro et al., 2009], where we replaced
the Java DDS solver with our C++ solver, with and without
approximation.

We played 2000 close human-bid suit games with our ap-
proximation player using various pcut values, with the results
shown in Table 4. The number of worlds each player exam-
ined was a function of game stage, so that each player solved
the same number of DDS positions. The same 2000 deals
were used in all matches, but the DDS positions drawn by
PIMC varied across matches.

Although this was an exploratory experiment and the tour-
nament scores are close, the results seen match our intuition,
with very aggressive pruning doing worse in general. Sur-
prisingly it seems that an appropriate pcut value may result in
a PIMC player that is both stronger and faster. We speculate
that this is due to the estimators undervaluing positions where
tactical card-play requiring perfect knowledge is needed to
achieve the optimal score.

5 Conclusions and Future Work
In this paper we have introduced the concept of payoff-
similarity of game states which can be used to find exact
bounds for minimax values of related states. Incorporating
this technique into an already fast exact double dummy solver
for Skat in conjunction with pre-computing transposition ta-
ble values has shown speed-up factors of 8 and more in the be-
ginning of the game. In a second step, we equipped our solver
with a linear state value predictor to prune likely irrelevant
parts of the search tree using a method similar to ProbCut.
This addition increased the speed by another factor of 2 with-
out losing playing strength, which is remarkable and worth

Table 3: DDS search with linear estimation at height 30.
(P: player to move; pcut: probability of sound cut; r: cor-
relation coefficient; �: standard deviation of search error)

suit game grand

P pcut
Avg. time

r �
Avg. time

r �fraction fraction
S 0.1 0.115 1.00 3.0 0.001 0.98 3.9
S 0.3 0.183 0.99 2.7 0.001 0.98 3.7
S 0.5 0.265 0.99 2.4 0.002 0.98 3.6
S 0.7 0.421 0.99 2.0 0.027 0.98 3.4
S 0.9 0.590 1.00 1.6 0.134 0.99 3.1

D1 0.1 0.124 0.98 3.4 0.001 0.96 5.3
D1 0.3 0.185 0.99 3.1 0.001 0.96 5.2
D1 0.5 0.257 0.99 2.8 0.002 0.97 5.1
D1 0.7 0.387 0.99 2.3 0.057 0.97 4.7
D1 0.9 0.547 0.99 1.9 0.194 0.98 4.0
D2 0.1 0.125 0.98 3.6 0.001 0.96 5.4
D2 0.3 0.191 0.99 3.2 0.001 0.96 5.4
D2 0.5 0.268 0.99 2.9 0.002 0.96 5.2
D2 0.7 0.403 0.99 2.5 0.066 0.97 4.8
D2 0.9 0.569 0.99 2.0 0.216 0.98 4.0

Table 4: Tournament results for the baseline player against
an estimation player with various pcut thresholds. The same
2000 initial deals (close human-bid suit games) were played
twice with roles reversed. The number of worlds considered
by both PIMC players was fixed, and increased with the trick
number. The baseline player spent 15s on average per game.

pcut
Average score Win % Speedupdiff. per game

0.1 -0.67 49.6 2.21
0.2 -0.88 49.5 2.07
0.3 -0.79 49.5 1.94
0.4 +0.47 50.2 1.91
0.5 +0.80 50.4 1.71
0.6 +1.29 50.6 1.68
0.7 +1.01 50.6 1.50
0.8 +0.09 50.1 1.52
0.9 +0.84 50.4 1.39

future investigations into how forward-pruning for perfect in-
formation games performs in imperfect information games
when using PIMC search. Moreover, with a total speed-up
of 16+, state inference based on PIMC search is now becom-
ing feasible in Skat. With this we expect the playing strength
of Skat programs to increase substantially.

The concept of payoff-similarity may also be applicable to
single-agent domains with changing operator costs, in which
we could try to increase the value of search heuristics by
querying values of related states.

Acknowledgments
Financial support was provided by NSERC.

References
[Buro et al., 2009] M. Buro, J.R. Long, T. Furtak, and N. Sturte-

vant. Improving state evaluation, inference, and search in trick-
based card games. In Proceedings of IJCAI, 2009.

[Buro, 1995] M. Buro. ProbCut: An effective selective extension
of the alpha-beta algorithm. ICCA Journal, 18(2):71–76, 1995.

[Ginsberg, 1996] Matthew L. Ginsberg. Partition search. In Pro-
ceedings of AAAI-96, pages 228–233. AAAI Press, 1996.

