1

Minimum Proof Graphs and Fastest-Cut-First Search Heuristics

Timothy Furtak and Michael Buro
Department of Computing Science, University of Alberta, Bdton, Canada.
email: {furtak,mburg @cs.ualberta.ca

Abstract

Alpha-Beta is the most common game tree
search algorithm, due to its high-performance and
straightforward implementation. In practice one
must find the best trade-off between heuristic eval-
uation time and bringing the subset of nodes ex-
plored closer to a minimum proof graph. In this
paper we present a series of structural properties of
minimum proof graphs that help us to prove that
finding such graphs is NP-hard for arbitrary DAG
inputs, but can be done in linear time for trees. We
then introduce the class of fastest-cut-first search
heuristics that aim to approximate minimum proof
graphs by sorting moves based on approximations
of sub-DAG valuesaindsizes. To explore how var-
ious aspects of the game tree (such as branching
factor and distribution of move values) affect the
performance of Alpha-Beta we introduce the class
of “Prefix Value Game Trees” that allows us to la-
bel interior nodes with true minimax values on the
fly without search. Using these trees we show that
by explicitly attempting to approximate a minimum
game tree we are able to achieve performance gains
over Alpha-Beta with common extensions.

Introduction

to achieve a scores ¢, and the second player tries to
prevent this.

(i) What is the minimax value of the game? This assumes
both players seek to maximize their numerical score.

[Knuth and Moore, 1975answered question (ii) above in the
context of homogeneous trees with constant branchingrfacto
b and depthd: searchingy!%/?1 4 pl4/2] — 1 leaves is nec-
essary and sufficient for establishing the minimax value of
such trees. But a¥laatet al., 19963 note, trees are rarely
homogeneous in practice, and in fact, inputs usually are not
even trees, but DAGs. For the purpose of judging how close
programs for popular games — such as chess, checkers, and
Othello — come to searching minimum proof graphs, they in-
troduce the concepts of Left-First-, Real-, and Approxenat
Real-Minimal-Graphs, and estimate upper bounds on mini-
mal proof graphs from game data.

In this paper we approach the problem more formally by
first proving some fundamental properties of proof graphs.
We then proceed to show that computing minimum proof
graphs for DAGs is NP-hard and minimum proof trees for
trees can be constructed in linear time. In the second half of
the paper we will describe fastest-cut-first search hecsist
which we evaluate using a novel synthetic game tree model.

2 Proof Graph Definitions
We shall assume throughout th@t= (V, E) is a DAG with

Alpha-Beta[Knuth and Moore, 1975search is the classic yertex seti’ = {vg, vy, ..., v,_1} corresponding to states in

heuristic search algorithm for two-player games with petrfe he original game, and directed edge Betorresponding to

information. In past decades Al researchers have found Nyaga| moves from each state. Lietlefine the player function

merous enhancements that, for instance, enable todaygs ch&yhich maps vertices i’ to {white,black, and letf be the

programs to defeat human World-champions at chess runningore function which maps terminal vertices to an integer.

on ordinary computers. Alpha-Beta improvements usually _corresponding to the two properties being proven, we de-

aim at decreasing the search effort given a fixed task such g e two classes of decision problems. The first class is @tupl

searching up to a certain depth, or shaping the search tree 10; p. £, s,t) which asks whether a proof graph exists using at

reduce heuristic evaluation errors. In this paper we fotus o yosts nodes to prove that the first player can achieve a score

the Minimum Proof Graptproblem that asks, given a DAG of gt |eastt. The second class is a tuplé, p, f, s) which

G corresponding to the states in a 2-player zero-sum gameks whether a proof graph exists using at mosbdes to

a player labeling for each state denoting which player is tqyrgve the minimax value of the game. To clarify which type

act, and a score function for each terminal state, what is thgf proof graph we are referring to, we shall use the tetans

minimum number of vertices needed in a subgraph- G get proof graphandminimax proof graplrespectively.

in order to prove one of the following properties: In both cases we require that accepted instances of the de-
(i) Can the first player achieve a score of at I¢agr some cision problems satisfy the condition that only one vertéx o

integert? This assumes that the first player only seeks=, which we shall call the root, has in-degree 0. Without

loss of generality we shall assume thatis the root and that (i) v; € H is a leaf, or
p(vo) = white, such thatwhite is the first player, and that (i) 3o, a permutation of(v;), such that v either:

the player to move alternates. 1<5<]e(vs)]
For convenience we introduce the indicator function (H)
) (@) oj € H, H_p _a_)(aj) = true oOf
(vsv;) = {71 TP = plvy), (b) Tk < j such that < ay
© —1 : otherwise. ., - . .
These conditions correspond to having an ordering to ex-

We also denote the children of a vertex usirig;) = {v; : plore a node’s children such that the3 bounds at any point
(vi,v) € E}. are sufficient to prove the next child’s minimax value using

Note that the minimax value may be computed recursivelythe vertices inH, or for the bounds to short-circuit further
in time linear in the size of7. As such, we extend to be child evaluations by causing a cutoff, which occurs wheabet
defined over all vertices, rather than only the leaves, wliere < alpha indicating that the values of a parent’s remaining
is now the negamax value of a vertex. Due to the zero-sunghildren will provably not affect the game’s minimax value.
nature of the problem we may simplify our analysis by usingA subgraphH C G is a valid minimax proof graph if and
a negamax perspective (where score is given w.r.t. the play%my if vy € H a”dNEHio oo)(UO) — true.

to move) rather than minimax. Specificallycifv;) # 0 then o])]
f(v;) = max I(v;,v;)- f(v;). For brevity we will use Definition 2. MinProofGraph-2 is a set of succinct encod-

v; €c(vi) _ ings of(G, p, f, s) where there exists a subgraph C G cor-
fu(v) == I(u,v) - f(v) to refer to the value of a vertexwith responding to a valid minimax proof graph such thét < s.
respect to some other vertexusuallyv's parent.
3 Minimum Proof Graph Properties

We will now proceed to make some observations which will
simplify the computation of a minimax proof graph, assum-
ing that we know the true values of each vertex.

2.1 Target Proof Graphs

A subgraphH C G is a valid target proof graph if and only
if all the following hold:

*weH Theorem 3.1. For an Alpha-Beta examination of a vertex
e (v; € H andp(v;) = p(vo) ande(v;) # 0) = with o < 8 < f(v) or f(v) < o < (3, the size of the
Jv; € ¢(v;) such thav; € H minimum proof tree rooted atis independent of and 3.

o (vi € Handp(vi) # p(vo)) = c(v:) C H Proof. We proceed by induction on the heightwofthe max-

For a given target proof grapH, let imum path length starting from. Clearly the observation
) s if v; is a leaf holds for a height of), wherev is a leaf and has no children.

) (vy) = { max —fH(v;) : otherwise. Now assume the observation holds for all heights less than or

vj€c(vi)NH ! equal to some, and thaty has height: + 1 (clearly all ofv's

This function corresponds to the proven value of each vertexchildren have height n).

Definition 1. MinProofGraph-1 is a set of succinct encod- First consider the case whesie< 3 < f(v). The exami-
ings of (G, p, f,s,t) where there exists a subgrapti C nation ofv must end with a cutoff Wher_e a c_hlld is proven to
G corresponding to a valid target proof graph such that have avalue of at leagt Call such a chilctutting Note that

U (vg) > t, and such thatH| < s. examining a child with value: 5 (so as to improve the alpha
o bound) cannot reduce the effort required to prove a cutting
2.2 Minimax Proof Graphs child w. To see this observe that< g < f,(w) < f(v) and

The evaluation of a minimax proof graph is slightly more in- SOw Will be examined withf (w) < -8 < —a, wherea is
volved than for a target proof graph as it depends on the corsome (potentially) improved alpha bound. o
cept of Alpha-Beta pruning. Specifically, the order in which ~ BY the induction hypothesis, in neither case does the mini-
a vertex's children are evaluated can affect the size of theimum proof graph size fow depend onv. As such, the min-
proof graphs. This is due to more effective search cutoffs a§num proof graph for will consist of examining only one
the range of potential values for a node (and thus its ance§utting node, and therefore also does not dependl.on
tors) is reduced. It should be noted that verifying a minimax Now consider the case wheffgv) < o < 3. Since no
proof graph can be done in polynomial time even without ex-child can have a value greater thafv), the alpha bound can
plicitly giving the order in which to evaluate a node’s chil- never be improved, and all children must be examined. The
dren. This follows from results which will be presented in argument that the induction property holds fox- 1 is the
Sec. 3, specifically that an optimal traversal will only exam same as in the first case, except now- a.
ine vertices using one of three possib].e/j pairs_ Thus, by induction, the observation holds forsmall

For concreteness we will now define an indicator function O
to specify whether, for a vertex in a given minimax proof pya40m 32 For an Alpha-Beta examination of a vertex
graph, the proof is accepted. First, for a vertex sequence the following properties hold:
of children, letw; be the highest possible alpha bound result- '
ing from examining the first nodes inv, given the (potential) () a < f(v) < 3 = the MPG size does not depend@n

proof graphH C G. Now Ietugf)ﬁ)(ui) = true iff: (i) a < f(v) < B = the MPG size does not depend®n

(i) a < f(v) < B,a < B = JFw € c(v) to examine first
which minimizes the proof graph size afidw) = f(v).

Proof. We again proceed by induction on the heightpfor
which the listed properties clearly hold for a heightafe., v

MinProofGraph-1 or to determining the inclusion of an el-
ement in MinProofGraph-2.

Sahni has shown that computing a minimum proof for an
AND/OR tree (which is equivalent to MinProofGraph-1) is
NP-CompletgSahni, 197% To help illustrate the source of

being a leaf. Now assume the properties holds for all heightthe complexity we present a slightly different reduction.

less than or equal to some and thaty has height: + 1.
Property (i Since f(v) < g all children ofv must be
examined. Note that can never become larger thgitw) so
the initial constraint thatr < f(v) < § holds at each step.
For any childw € ¢(v) we have thatf,(w) < f(v). Now,
either f,(w) < a < fora < f,(w) < . In the first case
the MPG size is independent 6fby Theorem 3.1. In the

To see that MinProofGraph-1 is in NP, observe that a valid
proof graphH C G is a sufficient certificate H is clearly
polynomial in the size of the original input, and all consita
listed in Section 2 corresponding fd being valid are easily
checked in polynomial time along with computirig) (vo).

By a similar argument MinProofGraph-2 is in NP.
In preparation for proving that all problems in NP

second case the induction hypothesis gives the desirel, resucan be polynomial-time reduced to MinProofGraph-1 and

using either (i) or (ii) depending on jf(v) = p(w).

MinProofGraph-2 we introduce the following definition for

Property (i) If we can show that the MPG size to examine the Minimum Set Cover problem:

any childw with f,(w) = f(v) does not depend on the initial
value ofa (as long asyx < f(v)) then we are done, since

all other nodes can be examined afterwards, and the tight%ru
bound can only decrease the size of those nodes’ MPG. Lef 4 — |,

w € c(v) be such thatf,(w) = f(v) anda < f(v), which
impliesa < f,(w) < 8. By the induction hypothesis (part
(i) or (ii), depending on ownership) the MPG sizewfdoes
not depend om.

Property (iii): The preconditions of property (iii) match

those of (i) or (ii) (or both). In the case of (i), as noted in

Definition 3. MinSetCover is a set of succinct encodings
of (X, S, k) whereX is a finite set, and>' is a collection of
bsets ofX such that there exists’ C S where|S’| < k

TeS’

Theorem 4.1. MinSetCover<,, MinProofGraph-1 and Min-
SetCover<,, MinProofGraph-2.

Corollary 4.2. MinProofGraph-1 and MinProofGraph-2 are
NP-complete.

its proof, the child ordering does not affect the MPG size, sQoo0f. We describe a functiofe that maps arbitrary code

simply takew to havef,(w) = f(v), as at least one sueh

wordsw into the encoding of an associated MinProofGraph-1

exists. In the case of (i) it is never suboptimal to examingjnsiance with the following properties:

such aw first, and as at least one child must minimize the
proof graph, takev to be that one. Hence (iii) holds. Thus,

by induction, the properties hold for all
O

Based on Theorem 3.2 we may assume that the initial path
from the root to a leaf follows an optimal line of play, the

principle variation(PV), such that all nodes along the path
have valuef,,(w) = f(vo). Clearly this initial path will be
explored using bound&y, 5) = (0o, —oo). There may be

() If w encodes a MinSetCover tupleX, S, k), then
(X,S,k) € MinSetCover if and only ifF(w) €
MinProofGraph-1.

(i) Otherwise, F(w) encodes a fixed tuple not in
MinProofGraph-1.

(iii) There exists a Turing machin® and a polynomialp
such that for all, F started on inputv computesF (w)
in at mostp(|w|) steps.

many optimal lines of play, but for clarity we shall assume Given an element of Minimum Set Covex, S, k) consist-

that the PV refers to some fixed initial path in an MPG.

Theorem 3.3. For an Alpha-Beta examination of a DAG
that minimizes the proof graph size, it will be the case tbat f
eachv € G not on the PV, with initial bounds and 5:

() (a,B) € {{£f(vo),00), (—00, +f(v0))}

(i) (. B)=(-00, f(vo)) = [f(v)> [(vo)
(i) (a,B) = (—00,~f(w0)) = [f(v)>—f(vo)
(v) (. B)=(f(vo), o) = [f(v)< [f(vo)
V) (a,B)=(=f(vo), o0) = [f(v)<—f(vo)

ing of X = {xg,...,z,—1} and setsS = {So,...,Sm—_1},

let 7((X, S, k)) = (G,p, [, s, t). F constructs a graph with
four levels corresponding to the root notjea dummy node
u, the elements ofX (vg,...,v,—1), and the elements of

S (wg,..., wy—1), a@s in Figure 1. Let the edge set be
{(t,u), (u,v;) : 0 < i < n}U{(v,w;) : z; € S;}. Let
p(t) = p(vi) = white andp(u) = p(w;) = black, with

white nodes having value 1 adack nodes having value -1.
Finally, lett = 1ands =2 +n + k.
We now show thatG, p, f, s, t) is accepted if and only if

The proof is omitted for space, but is a straight-forwarceeas (X, S, k) is accepted. Any solution to the MinProofGraph-1
based analysis which proceeds by induction on the maximurtitstance will include the first three levels and some fourth

distancen, from the principle variation that a vertex may be.

4 NP-Completeness Results

level nodes. By definition the minimum number of fourth
level nodes will be included, and as each third leyehode
has at least one associated fourth lewglnode, the fourth
level nodes chosen correspond to a subset which forms

In this section we show that determining the inclusion ofa minimum set cover ok.
an element in MinSetCover, which is NP-complete, can The proof for MinProofGraph-2 being NP-complete is al-
be reduced to determining the inclusion of an element irmost identical, except that two new vertices are required as

Function MPT_si ze(v, a, /3)

Data: subtree root vertex € V(G), anda-(bounds.
Result Min. proof tree size for subtree rootedwatgivena;, 3.

begin
if a > 3 then return 0
if c(v) = 0 then return 1 /1 1eaf node

aliasT,[a,b] := MPT_si ze(w, —b, —a)
AssumeéVPT_si ze values are memoized across calls.
if f(v) <athen retun 1+ > Tulo, 0]

wee(v)

Figure 1: Sample construction of a DAG corresponding to an if f(v) > Bthen return 1+ Juin T, o,]
instance of Minimum Set Cover, with vertices labeled with fo(w)>p
their minimax value. Vertices; correspond to elements in t— > Tu[f(v),[] /1 conpute total

the MinSetCover universe ans} to the potential covering o€e(v)
sets. Vertices in the dashed box are used when reducing to ~ retun 1+ min/ (Tw [o, B] +t = T [f(@ﬂ])
MinProofGraph-2. fo(w)=F(v)

end

shown in Figure 1. In the minimax case at least one thirdigure 2: Algorithm for computing the minimum minimax
level node must have all its children examined, but aftet; tha proof tree size for a subtree 6frooted aty and bounds. Min-
due to the given node values, all other third level nodes neeiinax value functionf and treeZ are assumed to be global.
only examine any one of their children to produce a cut. As

the new vertices must necessarily be included in any proof

subgraph, we can assume that they are examined before tff[eder qf qlecrtias;n? iscore.f ;l'hIS d_oes_ n?r:’ howevefr, nelt-i_eslsar
other vertices on their levels. Ily minimize the total proof tree size in the case of multiple

0 best moves, where “best” refers to either absolute numeri-
cal score or ability to generate a cut. Using Theorem 3.3

. we can see that there are at most three possible incoming

5 Minimum Proof Graphs for Trees bounds with which a given vertex can be explored in a min-

Intuitively, the computational complexity of finding mini- imal proof tree (MPT). We may thus compute, bottom-up, a
mum proof graphs in the presence of nodes with in-degreéabke containing the MPT size for each vertex given the in-
> 2 arises from deciding whether to choose the proof graploming a-3 bounds. This process therefore runs in linear
rooted at a “larger” child over the proof graph rooted at atime and space in the graph size. Moreover, the table entries
smaller child, such that the proof for the larger child mayneed only be computed as needed, and the set of potential
be reused in a different portion of the graph, resulting in abest moves is easily constrained using the observations fro
smaller overall proof graph. As we will see in this sectiar, f Theorem 3.2's proof. The algorithm is listed in Figure 2, and
trees the minimum proof graph is itself a tree which can behe size of the minimum minimax proof tree is the result of
computed bottom-up in linear time. We distinguish betweerMPT_size(vy, —o0, o0). The runtime and space requirement
computing target and minimax proof trees. is linear in the input graph size and adjusting the algoritbm
actually contruct an MPT is straight-forward.
5.1 Computing Target Proof Trees

For a MinProofGraph-1 instanc&?, p, f,s,t) we may re- 6 Fastest-Cut-First Heuristics

strict the vertices of+ that need to be considered by removing |n, this section we develop a move sorting heuristic for Alpha
all white verticesv; such thatf(v;) <t and then removing Beta search based on the results on minimum proof graphs
components disconnected from the root as a preprocessifge have presented. In real-world game applications, usu-
step inO(|[V| + |E|) time. If f(vo) < t then the instance is a|ly none of the quantities used MPT_si ze are known
rejected. o) at the time when the decision about the next move to be
To compute the minimum target proof graph size one needearched is to be made. One therefore has to resort to move
only recursively determine this value for the subgraphedot ordering heuristics. In addition, search is often perfatme
ateach vertex. For first player nodes this is the minimum ovefy, pAGs, which complicates the computation of minimum
the sizes of the child proof graphs plus 1. For second playeproof graphs. Even so, if estimates for valumsd sizes
nodes this is the sum of the sizes of the child proof graphgre available, we could base move decisions on those, and
plus 1. Extracting an associated minimum target proof grapope to approximate minimum proof graphs sufficiently well.

is clearly trivial. This idea is not new. Plaat et 41996, for instance, sug-
. . f gest to use enhanced transposition table look-ups and bias
5.2 Computing Minimax Proof Trees moves towards those with small subtrees, to exploit proper-

The Alpha-Beta algorithm has been well studied in the cas¢ies of inhomogeneous DAGs, such as varying out-degrees
of trees[Knuth and Moore, 1975 and it has been stated and leaf depths. Closer in terms of using both value and
that the best-case move ordering is to examine children isize estimates comes what is known since the mid-1990s as

“fastest-first” search in the Othello programming commu-« values, the expected tree siz&sdo not increase. So, by
nity. The idea is to search moves first that have a considminimizing this number we can hope to decrease the Alpha-
erable chance to produce a cutoff, and among those to pr&eta search effort — also when searching DAGs. We will
fer moves with small sub-DAGs. Employing such heuristicspresent experimental results on the performance of thel nove
has improved Othello endgame solvers consideratily : fastest-cut-first heuristic in Section 8.
/I radagast . se/ ot hel | 0).

Because both move values and DAG sizes are taken intg Prefix Value Game Trees
account we prefer to call heuristics of this type “fastagt-c
first” heuristics. Implementations we have used succdgsful
in the past include sorting moves according i ¢ C -
S;/ max; S;), whereV; andsS; are the estimated move values
and sub-DAG sizes, an@ > 0 is a constant. Alternatively,

In this section we present a synthetic game tree model that we
will use to gauge the performance of the fastest-first hgaris
we proposed in the previous section.

Search algorithm improvements are often driven by spe-
; cific applications. A classic example is the development
moves can be restricted to those with> § — C and from of forward pruning and parallelization in computer chess.

e o e R erene o (J¥henWoring bt setch domlns, e space prop
motivatéd by the following theorem: erties — SL_Jch as the average bran_chl_ng _factor, the den-
: sity of terminal nodes, state value distributions and corre
Theorem 6.1. Consider a naive version of Alpha-Beta search |ations — are fixed. To gain insight into how such prop-
that does not adjust based on returned values and searcheserties generally affect search algorithms, several syiathe
a game tree starting at cut-nodewith successors;, ..., v,. game tree models have been proposed in the literature, e.g.,
LetS; be the expected size of the subtree rooted znd P; [Fulleret al,, 1973; Newborn, 1977; Nau, 1982; Pearl, 1983;
the probability of move leading to ag-cut. Then, visiting; Kaindl and Scheucher, 1992; Scheucher and Kaindl, 1,998
in ascending order of;/P; minimizes the expected number with emphasis on studying pathology in alpha-beta search.

of visited nodes starting at In [Fuller et al, 1973 Fuller et al. describe a game tree
Proof. For move orderingl n) the expected number of moc_iel_in which node value correlations are intro_duc_:ed by
visitea nodes is T assigning values fronil,..., N} to edges and assigning a
n i—1 value p(v) to leaves by summing up edge values along the
1+ Z[Sl H(1 _ pj)} — unigue path from the root node. One drawback of this so-
1o o1 called incremental game tree model is that values increase
with depth and therefore don't have the usual interpretad®
A+ (Sk - 7) + (S -7(1 = Pr)) + C, representing the expected payoff. [Bcheucher and Kaindl,
k-1 1999 this bias is offset first by considering move values from
form := H(l — P;) and suitabled > 0 andC > 0. {=N,...,N}, and then in a second step by realizing that
i playing a move can never increase a position’s value, i.e.,
Switching movek andk + 1 leads to expected search effort p(v;) = —p(v) — di (v), @)
A+ (Sgy1-m) + (S - (1 = Pega)) + C. wherep(z) denotes the accumulated value along the unique

Thus, ifr > 0 searching mové + 1 beforek while keeping
the other moves’ ordering constant is not detrimental iff

Sk+1 + Sk(l — Pk+1) <Sp+ Sk+1(1 — Pk)

& Srr Sk (1)
Py T Py

where we define:/0 := oo for ¢ > 0 to cover the cases
P, = 0 and/orP,., = 0. If # = 0, switching movesk
andk + 1 does not change the expected search effort. This
shows that when starting with an arbitrary move ordering we
can continue switching movésandk + 1 for which (1) holds
and not increase the expected search effort. Thereforexthe
pected number of searched nodes is minimized when visiting
nodesv; in ascending order of;/ P;. O

Picking the move with the lowest;/P; ratio first accom-
plishes the goal of producing a cut with high probability,
while keeping the node count low, in a principled way, unlike _ o
the ad-hoc fastest-cut-first heuristics presented earlible ~ Figure 3: An incremental game tree. Node values indicate
expected number of searched nodes established in the th&e current path valug(v) in the view of the player to move.
orem is an upper bound on the actual number of nodes thedge values represent the damage) self-inflicted by play-
true Alpha-Beta algorithm would visit, because with rising ing potentially non-optimal moves.

path when reaching node in view of the player to move, Our refinement of the incremental game tree model is based
v; Is thei-th successor of, and—D < d;(v) < 0is the on the following observation:

bounded damage self-inflicted by playing mave v. Fig- Theorem 7.1. If for all interior nodesw in trees generated by

ure 3 shows an example. To evaluate search performance itfﬁe incremental model there exists a moweith d, (v) — 0
useful to know exact values of intermediate states. Hovyevelihen for allv, f(v) = p(v) ! ’

in the above incremental model — whép is chosen ran-
domly from[—D, 0] — searching entire subtrees is required p

to compute the true negamax value of interior nodes, whichy 5 165t andf (1) = p(v) holds by definition. Now consider
can be very costly in terms of space and time requirements, 4e, with heightn + 1 and suppos¢(v') = p(v') holds
With a simple yet effective refinement of the incrementad tre for all ' with h(v') < n. W.l.o.g., we assumé; (v) = 0.

model, we are able to determine exact node vatwetie fly i ong thep(u;) valuesp(v;) is one of the smallest, because
while generating trees. Being able to leak true state evaluap(vl) = p(v) —d; > —p(v) = p(v1) + di(v) = p(vy).

tions in interior nodes at no additional cost greatly helps-a By the induction hypothesis we also kngiw;) = p(v;) for

lyzing search algorithms in general settings because n® tim, . _) — i) —
has to be spent on engineering domain dependent heuristic%l;)z'v-Shirggggefgv): pr(rsf;xz(F(vi)) = maxi(=p(v))
For instance, noise can be added when testing heuristits tha ! ! '

depend on heuristic state evaluations of interior nodesh su \wjth this result, evaluating nodes while generating trees i
as ProbCufBuro, 199§, e.g.,fc(v) = f(v) + C - e, where trivial because (3) can be maintained incrementally. This
f(v) denotes the true negamax valuewéinde is N'(0,1) property in invaluable for analysing search performance in
normally distributed. In addition, move preferences can bgarge trees based on true node values. We call our refined
leaked probabilistically by means of the parameterizett sof model the “Prefix Value Game Tree Model”. As usual, the

roof. (Induction on node height(v)). If h(v) = 0, thenv

max function number of successors and move values can either be fixed or
. . _exp(C- f(wr)) sampled from distributions to better model real-world game
Prob(movek is best in state) = S exp(C - f(v7))’ We will use prefix value trees to compare the performance of

which spans the range from uniform randofit £ 0) to per- alpha-beta and fastest-first search in the next section.

fectly informed choices(f — oo) and can be used to design]
synthetic move sorting routines for alpha-beta searchay-pl 8 Experiments
out policies for UCT[Kocsis and Szepesvari, 2006

Before we formulate the observation our model refinemen
is based on, we define tipeefix negamax valuef a node and

To investigate the effect on search effort resulting from th
ECF heuristics, we constructed synthetic trees using wario

. branching factors, edge value ranges, and heuristic ai@hua
show how to compute it. W.l.0.g., we assume that moves argy o5 For each set of parameters we generated 500 trees and
alternated from now on. performed an iterative deepening (ID) search up to depth 10
Definition 4. In the incremental game tree model the using plain Alpha-Beta, NegaScout, and MTO@)aatet al.,

prefix negamax valug(v) of nodew is defined recursively 1996H. The expanded tree nodes were annotated with search

based on (2): v is the rootr of the tree, them(v) = f(r). information, such as estimated value and treesize, which wa
Otherwisep(v) = —p(v’) —d;(v'), wherev’ is the predeces- used for ordering the next ID iteration.
sor ofv on the path to the rooy = v}, andd; (v’) < 0. Our move ordering function is a weighted combination of

Lemma 7.1. For the incremental game tree model describedthe estimated node value, ti#/P; value, andS;. For a
above el _gman noccjje we thlSi to be its OtIJIt—dcla_grhe:a. dLOO.k'”g (;ze_per

_ n n—k in the node’s subtree was actually slightly detrimentatsjn
p() = (=1)"f(r) + Z(_l) diy, (ur) () ideally, large portions of that tree will never actually be e

k=0 panded during search. Moreover the out-degree is ‘free’ to

. .) compute, given that we have expanded the node anyway. The
unique path from to v, i.e.,uo = 7, u, = v, anduy1iSthe \aue of P is initially a hard threshold based on whether the
ix-th successor iy node value (from the last ID pass)isbeta. Computing?,

v = r, so the statement trivially holds. Assuming (3) holds family produced a slight~¢3%) improvement. The ordering
for nodes with depth, consider the value of a nodé at Of child nodes which have not yet been expanded is random.

holds, wherer is the root of the tree andy, ..., u, is the

depthn + 1 with predecessar andv’ = u; . Then: In addition to synthetic trees we used FCF heuristics in
W) = —p(v) —di. (v) " solving open-handed cardplay for the trick-taking German
plv) = 7)) = i, (v) card gameSkatdescribed i Buro et al, 2009. Our search

i implementation sorts moves by way of a linear combination
(-1 dm(“k)) —di,(v) of features corresponding to the current value of a trick and

I
|
_—
|
-
S~—

3
=
=

|

k=1 the ability of teammates to contribute points. Our searsh al
" employs various pruning techniques and a transposition ta-
= (1)) +) (=), () ble — no iterative deepening is performed. Our lack of a
k=1 forward-looking state evaluation function for Skat prefgd

O an easy way to measure expected valué’orAs such, we

ordering, but an exponential gap between the minimum proof

Search Effort per Ordering Heuristic . . o
P 9 tree size and the size of the trees visited by Alpha-Betakear

14 remains. In future work we plan to investigate how to com-
12] bine fastest-cut-first heuristics with other enhancemsunt$
10 8 as information stored in transposition tables.

8 -

6] re —— Acknowledgments

4 1 ags F'éﬁ % Financial support was provided by NSERC.

MTD(f) 8-
2
0

MTD(+ FoF o References
[Buroetal, 2009 M. Buro, J.R. Long, T. Furtak, and
Search depth N. Sturtevant. Improving state evaluation, inference, and
search in trick-based card games. Rroceedings of the
Figure 4: Number of search nodes expanded for different or- 21st International Joint Conference on Atrtificial Intelli-
dering heuristics, relative to the minimum proof graph size ~ gence (IJCAI2009)2009.
. - . [Buro, 1995 M. Buro. ProbCut: An effective selective ex-
Ordering Heuristi¢Avg. Time (ms) Avg. Nodes tension of the alpha—beta algorithm. IGCA Journal
X 7.0 396386 pages 71-76, 1995.

X=-C-5 44.7 243090 [Fulleret al, 1973 S.H. Fuller, J.G. Gaschnik, and J.J.

o Gillogly. An analysis of the alpha-beta pruning algorithm.
Table 1: Effect of FCF heuristics on the search effort of epen Technical report, Carnegie Mellon University, 1973.

hand Skat initial cardplay positions. [Kaindl and Scheucher, 19pH. Kaindl and A. Scheucher.
Reasons for the effects of bounded look-ahead search.

include an FCF term in our linear combination by subtract- IEEE Trans. Systems Man Cybern&t2(5):992-1007,

ing S; := the branching factor for each move, timé€s a 1992.

weighting term optimized independently. Results are showilknyth and Moore, 1975D. Knuth and R. Moore. An

in 'I_'able 1, withX be_ing the po_rtion of the move evaluation analysis of alphabeta pruning.Artificial Intelligence
which does not consider tree size. Results are computed from ¢(4):293-326, 1975.

4000 initial cardplay positions from human games.

of nodes expanded / MPG size

étgocsis and Szepesvari, 2006. Kocsis and C. Szepesvari.

ation parameters, although the weights for combining lseuri Bandit based Monte-Carlo planning. Rnoceedings of the

tic components needed to be tuned. We made a best effort Eggog%%% Conference on Machine Learnimgges 282~

to determine the optimal weights in each case. In all cases, ' '

even when the node evaluation functions were given perfediNau, 1982 D.S. Nau. An investigation of the causes of
accuracy, we observed a significant reduction in nodes ex- pathology in games. Artificial Intelligence 19(3):257—
panded, compared to only using the estimated node value. 278, 1982.

Representative results are presented in Figure 4, whichssho [Newborn, 1977 M.M. Newborn. The efficiency of alpha-
the cumulativenumber of search nodes expanded, including peta search on trees with branch-dependent terminal node
previous ID passes, relative to the MPG size. Values are av- scores Artificial Intelligence pages 137-153, 1977.

eraged over 500 trees. The results shown are produced tﬁéearl, 1988 J. Pearl. On the nature of pathology in game

trees with branching factor uniformly drawn froph..12] at . g . s
each node, evaluations errors drawn fromi..4], and edge searchingArtificial Intelligence 20(4):427-453, 1983.

values drawn fronj—6..0]. There was no significant differ- [Plaatetal, 19964 A. Plaat, J. Schaeffer, W. Pijls, and

ence in performance between usifig P; andS; as the FCF A. De Bruin. Exploiting graph properties of game trees.

weighting term, with node reductions of 35% and 39% for In AAAI National Conference 1:234-238ages 234-239,

NegaScout and MTD(f) respectively at depth 10. Note that 1996.

the baseline MPG size grows exponentially with depth. [Plaatet al, 19960 A. Plaat, J. Schaeffer, W. Pijls, and
A. de Bruin. Best-first fixed-depth minimax algorithms.

9 Conclusions and Future Work Artificial Intelligence 87(1-2):255-293, 1996.

In this paper we have presented properties of minimum proofPlaat, 1995 A. Plaat. Research, Re: search & Re-search
graphs, NP-completeness results, and a linear-time #igori PhD thesis, Rotterdam, Netherlands, 1996.

for computing minimum proof graphs for trees. We also[Sahni, 197} Sartaj Sahni. Computationally related prob-
introduced the class of fastest-cut-first heuristics wisioft lems. SIAM J. Comput.3(4):262—-279, 1974.

moves dependent on sub-DAG size and value estimates. O cheucher and Kaindl, 19b&. Scheucher and H. Kaind.

experimental results using a novel synthetic game tree mod S .
O . . Benefits of using multivalued functions for minimaxing.
indicate that standard Alpha-Beta search algorithm gain ex Artificial Intelligence pages 187208, 1998.

ponentially when using fastest-cut-first heuristics forvemo

