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Abstract
Alpha-Beta is the most common game tree
search algorithm, due to its high-performance and
straightforward implementation. In practice one
must find the best trade-off between heuristic eval-
uation time and bringing the subset of nodes ex-
plored closer to a minimum proof graph. In this
paper we present a series of structural properties of
minimum proof graphs that help us to prove that
finding such graphs is NP-hard for arbitrary DAG
inputs, but can be done in linear time for trees. We
then introduce the class of fastest-cut-first search
heuristics that aim to approximate minimum proof
graphs by sorting moves based on approximations
of sub-DAG valuesandsizes. To explore how var-
ious aspects of the game tree (such as branching
factor and distribution of move values) affect the
performance of Alpha-Beta we introduce the class
of “Prefix Value Game Trees” that allows us to la-
bel interior nodes with true minimax values on the
fly without search. Using these trees we show that
by explicitly attempting to approximate a minimum
game tree we are able to achieve performance gains
over Alpha-Beta with common extensions.

1 Introduction
Alpha-Beta[Knuth and Moore, 1975] search is the classic
heuristic search algorithm for two-player games with perfect
information. In past decades AI researchers have found nu-
merous enhancements that, for instance, enable today’s chess
programs to defeat human World-champions at chess running
on ordinary computers. Alpha-Beta improvements usually
aim at decreasing the search effort given a fixed task such as
searching up to a certain depth, or shaping the search tree to
reduce heuristic evaluation errors. In this paper we focus on
the Minimum Proof Graphproblem that asks, given a DAG
G corresponding to the states in a 2-player zero-sum game,
a player labeling for each state denoting which player is to
act, and a score function for each terminal state, what is the
minimum number of vertices needed in a subgraphH ⊆ G
in order to prove one of the following properties:

(i) Can the first player achieve a score of at leastt, for some
integert? This assumes that the first player only seeks

to achieve a score≥ t, and the second player tries to
prevent this.

(ii) What is the minimax value of the game? This assumes
both players seek to maximize their numerical score.

[Knuth and Moore, 1975] answered question (ii) above in the
context of homogeneous trees with constant branching factor
b and depthd: searchingb⌈d/2⌉ + b⌊d/2⌋ − 1 leaves is nec-
essary and sufficient for establishing the minimax value of
such trees. But as[Plaatet al., 1996a] note, trees are rarely
homogeneous in practice, and in fact, inputs usually are not
even trees, but DAGs. For the purpose of judging how close
programs for popular games — such as chess, checkers, and
Othello — come to searching minimum proof graphs, they in-
troduce the concepts of Left-First-, Real-, and Approximate-
Real-Minimal-Graphs, and estimate upper bounds on mini-
mal proof graphs from game data.

In this paper we approach the problem more formally by
first proving some fundamental properties of proof graphs.
We then proceed to show that computing minimum proof
graphs for DAGs is NP-hard and minimum proof trees for
trees can be constructed in linear time. In the second half of
the paper we will describe fastest-cut-first search heuristics
which we evaluate using a novel synthetic game tree model.

2 Proof Graph Definitions
We shall assume throughout thatG = (V,E) is a DAG with
vertex setV = {v0, v1, . . . , vn−1} corresponding to states in
the original game, and directed edge setE corresponding to
legal moves from each state. Letp define the player function
which maps vertices inV to {white,black}, and letf be the
score function which maps terminal vertices to an integer.

Corresponding to the two properties being proven, we de-
fine two classes of decision problems. The first class is a tuple
〈G, p, f, s, t〉 which asks whether a proof graph exists using at
mosts nodes to prove that the first player can achieve a score
of at leastt. The second class is a tuple〈G, p, f, s〉 which
asks whether a proof graph exists using at mosts nodes to
prove the minimax value of the game. To clarify which type
of proof graph we are referring to, we shall use the termstar-
get proof graphandminimax proof graphrespectively.

In both cases we require that accepted instances of the de-
cision problems satisfy the condition that only one vertex of
G, which we shall call the root, has in-degree 0. Without



loss of generality we shall assume thatv0 is the root and that
p(v0) = white, such thatwhite is the first player, and that
the player to move alternates.

For convenience we introduce the indicator function

I(vi, vj) =

{

+1 : if p(vi) = p(vj),

−1 : otherwise.

We also denote the children of a vertex usingc(vi) = {vj :
(vi, vj) ∈ E}.

Note that the minimax value may be computed recursively
in time linear in the size ofG. As such, we extendf to be
defined over all vertices, rather than only the leaves, wheref
is now the negamax value of a vertex. Due to the zero-sum
nature of the problem we may simplify our analysis by using
a negamax perspective (where score is given w.r.t. the player
to move) rather than minimax. Specifically, ifc(vi) 6= ∅ then
f(vi) = max

vj∈c(vi)
I(vi, vj) · f(vj). For brevity we will use

fu(v) := I(u, v) · f(v) to refer to the value of a vertexv with
respect to some other vertexu, usuallyv’s parent.

2.1 Target Proof Graphs
A subgraphH ⊆ G is a valid target proof graph if and only
if all the following hold:

• v0 ∈ H

•
(

vi ∈ H andp(vi) = p(v0) andc(vi) 6= ∅
)

⇒
∃vj ∈ c(vi) such thatvj ∈ H

•
(

vi ∈ H andp(vi) 6= p(v0)
)

⇒ c(vi) ⊂ H

For a given target proof graphH, let

f (H)(vi) =

{

f(vi) : if vi is a leaf,
max

vj∈c(vi)∩H
−f (H)(vj) : otherwise.

This function corresponds to the proven value of each vertex.

Definition 1. MinProofGraph-1 is a set of succinct encod-
ings of 〈G, p, f, s, t〉 where there exists a subgraphH ⊆
G corresponding to a valid target proof graph such that
f (H)(v0) ≥ t, and such that|H| ≤ s.

2.2 Minimax Proof Graphs
The evaluation of a minimax proof graph is slightly more in-
volved than for a target proof graph as it depends on the con-
cept of Alpha-Beta pruning. Specifically, the order in which
a vertex’s children are evaluated can affect the size of their
proof graphs. This is due to more effective search cutoffs as
the range of potential values for a node (and thus its ances-
tors) is reduced. It should be noted that verifying a minimax
proof graph can be done in polynomial time even without ex-
plicitly giving the order in which to evaluate a node’s chil-
dren. This follows from results which will be presented in
Sec. 3, specifically that an optimal traversal will only exam-
ine vertices using one of three possibleα-β pairs.

For concreteness we will now define an indicator function
to specify whether, for a vertex in a given minimax proof
graph, the proof is accepted. First, for a vertex sequenceσ
of children, letαj be the highest possible alpha bound result-
ing from examining the firstj nodes inσ, given the (potential)
proof graphH ⊆ G. Now letµ(H)

(α,β)(vi) = true iff:

(i) vi ∈ H is a leaf, or

(ii) ∃σ, a permutation ofc(vi), such that ∀
1≤j≤|c(vi)|

either:

(a) σj ∈ H, µ
(H)
(−β,−αj)

(σj) = true or

(b) ∃k < j such thatβ ≤ αk.

These conditions correspond to having an ordering to ex-
plore a node’s children such that theα-β bounds at any point
are sufficient to prove the next child’s minimax value using
the vertices inH, or for the bounds to short-circuit further
child evaluations by causing a cutoff, which occurs when beta
≤ alpha indicating that the values of a parent’s remaining
children will provably not affect the game’s minimax value.
A subgraphH ⊆ G is a valid minimax proof graph if and
only if v0 ∈ H andµ

(H)
(−∞,∞)(v0) = true.

Definition 2. MinProofGraph-2 is a set of succinct encod-
ings of〈G, p, f, s〉 where there exists a subgraphH ⊆ G cor-
responding to a valid minimax proof graph such that|H| ≤ s.

3 Minimum Proof Graph Properties
We will now proceed to make some observations which will
simplify the computation of a minimax proof graph, assum-
ing that we know the true values of each vertex.

Theorem 3.1. For an Alpha-Beta examination of a vertexv
with α < β ≤ f(v) or f(v) ≤ α′ < β′, the size of the
minimum proof tree rooted atv is independent ofα andβ′.

Proof. We proceed by induction on the height ofv, the max-
imum path length starting fromv. Clearly the observation
holds for a height of0, wherev is a leaf and has no children.
Now assume the observation holds for all heights less than or
equal to somen, and thatv has heightn+1 (clearly all ofv’s
children have height≤ n).

First consider the case whereα < β ≤ f(v). The exami-
nation ofv must end with a cutoff where a child is proven to
have a value of at leastβ. Call such a childcutting. Note that
examining a child with value< β (so as to improve the alpha
bound) cannot reduce the effort required to prove a cutting
child w. To see this observe thatα < β ≤ fv(w) ≤ f(v) and
sow will be examined withf(w) ≤ −β < −α̃, whereα̃ is
some (potentially) improved alpha bound.

By the induction hypothesis, in neither case does the mini-
mum proof graph size forw depend onα. As such, the min-
imum proof graph forv will consist of examining only one
cutting node, and therefore also does not depend onα.

Now consider the case wheref(v) ≤ α < β. Since no
child can have a value greater thanf(v), the alpha bound can
never be improved, and all children must be examined. The
argument that the induction property holds forn + 1 is the
same as in the first case, except nowα̃ = α.

Thus, by induction, the observation holds for alln.

Theorem 3.2. For an Alpha-Beta examination of a vertexv
the following properties hold:

(i) α ≤ f(v) < β ⇒ the MPG size does not depend onβ.

(ii) α < f(v) ≤ β ⇒ the MPG size does not depend onα.



(iii) α ≤ f(v) ≤ β, α < β ⇒ ∃ w ∈ c(v) to examine first
which minimizes the proof graph size andfv(w) = f(v).

Proof. We again proceed by induction on the height ofv, for
which the listed properties clearly hold for a height of0 i.e., v
being a leaf. Now assume the properties holds for all heights
less than or equal to somen, and thatv has heightn + 1.

Property (i): Sincef(v) < β all children of v must be
examined. Note thatα can never become larger thanf(v) so
the initial constraint thatα ≤ f(v) < β holds at each step.
For any childw ∈ c(v) we have thatfv(w) ≤ f(v). Now,
eitherfv(w) ≤ α < β or α < fv(w) < β. In the first case
the MPG size is independent ofβ by Theorem 3.1. In the
second case the induction hypothesis gives the desired result,
using either (i) or (ii) depending on ifp(v) = p(w).

Property (ii): If we can show that the MPG size to examine
any childw with fv(w) = f(v) does not depend on the initial
value ofα (as long asα < f(v)) then we are done, since
all other nodes can be examined afterwards, and the tighter
bound can only decrease the size of those nodes’ MPG. Let
w ∈ c(v) be such thatfv(w) = f(v) andα < f(v), which
impliesα < fv(w) ≤ β. By the induction hypothesis (part
(i) or (ii), depending on ownership) the MPG size ofw does
not depend onα.

Property (iii): The preconditions of property (iii) match
those of (i) or (ii) (or both). In the case of (i), as noted in
its proof, the child ordering does not affect the MPG size, so
simply takew to havefv(w) = f(v), as at least one suchw
exists. In the case of (ii) it is never suboptimal to examine
such aw first, and as at least one child must minimize the
proof graph, takew to be that one. Hence (iii) holds. Thus,
by induction, the properties hold for alln.

Based on Theorem 3.2 we may assume that the initial path
from the root to a leaf follows an optimal line of play, the
principle variation(PV), such that all nodesw along the path
have valuefv0

(w) = f(v0). Clearly this initial path will be
explored using bounds〈α, β〉 = 〈∞,−∞〉. There may be
many optimal lines of play, but for clarity we shall assume
that the PV refers to some fixed initial path in an MPG.

Theorem 3.3. For an Alpha-Beta examination of a DAGG
that minimizes the proof graph size, it will be the case that for
eachv ∈ G not on the PV, with initial boundsα andβ:

(i) 〈α, β〉 ∈ {〈±f(v0),∞〉, 〈−∞,±f(v0)〉}
(ii) 〈α, β〉 = 〈−∞, f(v0)〉 ⇒ f(v) ≥ f(v0)

(iii) 〈α, β〉 = 〈−∞,−f(v0)〉 ⇒ f(v) ≥ −f(v0)
(iv) 〈α, β〉 = 〈 f(v0), ∞〉 ⇒ f(v) ≤ f(v0)
(v) 〈α, β〉 = 〈−f(v0), ∞〉 ⇒ f(v) ≤ −f(v0)

The proof is omitted for space, but is a straight-forward case-
based analysis which proceeds by induction on the maximum
distance,n, from the principle variation that a vertex may be.

4 NP-Completeness Results
In this section we show that determining the inclusion of
an element in MinSetCover, which is NP-complete, can
be reduced to determining the inclusion of an element in

MinProofGraph-1 or to determining the inclusion of an el-
ement in MinProofGraph-2.

Sahni has shown that computing a minimum proof for an
AND/OR tree (which is equivalent to MinProofGraph-1) is
NP-Complete[Sahni, 1974]. To help illustrate the source of
the complexity we present a slightly different reduction.

To see that MinProofGraph-1 is in NP, observe that a valid
proof graphH ⊆ G is a sufficient certificate.H is clearly
polynomial in the size of the original input, and all constraints
listed in Section 2 corresponding toH being valid are easily
checked in polynomial time along with computingf (H)(v0).
By a similar argument MinProofGraph-2 is in NP.

In preparation for proving that all problems in NP
can be polynomial-time reduced to MinProofGraph-1 and
MinProofGraph-2 we introduce the following definition for
the Minimum Set Cover problem:

Definition 3. MinSetCover is a set of succinct encodings
of 〈X,S, k〉 whereX is a finite set, andS is a collection of
subsets ofX such that there existsS′ ⊆ S where|S′| ≤ k
andX = ∪

T∈S′

T .

Theorem 4.1. MinSetCover≤p MinProofGraph-1 and Min-
SetCover≤p MinProofGraph-2.

Corollary 4.2. MinProofGraph-1 and MinProofGraph-2 are
NP-complete.

Proof. We describe a functionF that maps arbitrary code
wordsw into the encoding of an associated MinProofGraph-1
instance with the following properties:

(i) If w encodes a MinSetCover tuple〈X,S, k〉, then
〈X,S, k〉 ∈ MinSetCover if and only ifF(w) ∈
MinProofGraph-1.

(ii) Otherwise, F(w) encodes a fixed tuple not in
MinProofGraph-1.

(iii) There exists a Turing machineF and a polynomialp
such that for allw, F started on inputw computesF(w)
in at mostp(|w|) steps.

Given an element of Minimum Set Cover〈X,S, k〉 consist-
ing of X = {x0, . . . , xn−1} and setsS = {S0, . . . , Sm−1},
let F(〈X,S, k〉) = 〈G, p, f, s, t〉. F constructs a graph with
four levels corresponding to the root nodet, a dummy node
u, the elements ofX (v0, . . . , vn−1), and the elements of
S (w0, . . . , wm−1), as in Figure 1. Let the edge set be
{(t, u), (u, vi) : 0 ≤ i < n} ∪ {(vi, wj) : xi ∈ Sj}. Let
p(t) = p(vi) = white andp(u) = p(wi) = black, with
white nodes having value 1 andblack nodes having value -1.
Finally, let t = 1 ands = 2 + n + k.

We now show that〈G, p, f, s, t〉 is accepted if and only if
〈X,S, k〉 is accepted. Any solution to the MinProofGraph-1
instance will include the first three levels and some fourth
level nodes. By definition the minimum number of fourth
level nodes will be included, and as each third levelvi node
has at least one associated fourth levelwj node, the fourth
level nodes chosen correspond to a subset ofS which forms
a minimum set cover ofX.

The proof for MinProofGraph-2 being NP-complete is al-
most identical, except that two new vertices are required as
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Figure 1: Sample construction of a DAG corresponding to an
instance of Minimum Set Cover, with vertices labeled with
their minimax value. Verticesxi correspond to elements in
the MinSetCover universe andSi to the potential covering
sets. Vertices in the dashed box are used when reducing to
MinProofGraph-2.

shown in Figure 1. In the minimax case at least one third
level node must have all its children examined, but after that,
due to the given node values, all other third level nodes need
only examine any one of their children to produce a cut. As
the new vertices must necessarily be included in any proof
subgraph, we can assume that they are examined before the
other vertices on their levels.

5 Minimum Proof Graphs for Trees
Intuitively, the computational complexity of finding mini-
mum proof graphs in the presence of nodes with in-degree
≥ 2 arises from deciding whether to choose the proof graph
rooted at a “larger” child over the proof graph rooted at a
smaller child, such that the proof for the larger child may
be reused in a different portion of the graph, resulting in a
smaller overall proof graph. As we will see in this section, for
trees the minimum proof graph is itself a tree which can be
computed bottom-up in linear time. We distinguish between
computing target and minimax proof trees.

5.1 Computing Target Proof Trees
For a MinProofGraph-1 instance〈G, p, f, s, t〉 we may re-
strict the vertices ofG that need to be considered by removing
all white verticesvi such thatf(vi) < t and then removing
components disconnected from the root as a preprocessing
step inO(|V | + |E|) time. If f(v0) < t then the instance is
rejected.

To compute the minimum target proof graph size one need
only recursively determine this value for the subgraph rooted
at each vertex. For first player nodes this is the minimum over
the sizes of the child proof graphs plus 1. For second player
nodes this is the sum of the sizes of the child proof graphs
plus 1. Extracting an associated minimum target proof graph
is clearly trivial.

5.2 Computing Minimax Proof Trees
The Alpha-Beta algorithm has been well studied in the case
of trees[Knuth and Moore, 1975], and it has been stated
that the best-case move ordering is to examine children in

Function MPT size(v, α, β)

Data: subtree root vertexv ∈ V (G), andα-β bounds.
Result: Min. proof tree size for subtree rooted atv, givenα, β.
begin

if α ≥ β then return 0
if c(v) = ∅ then return 1 // leaf node

aliasTw[a, b] := MPT size(w,−b,−a)
AssumeMPT size values are memoized across calls.

if f(v) ≤ α then return 1 +
P

w∈c(v)

Tw[α, β]

if f(v) ≥ β then return 1 + min
w∈c(v)

fv(w)≥β

Tw[α, β]

t←
P

x∈c(v)

Tx[f(v), β] // compute total

return 1 + min
w∈c(v)

fv(w)=f(v)

“

Tw[α, β] + t− Tw[f(v), β]
”

end

Figure 2: Algorithm for computing the minimum minimax
proof tree size for a subtree ofG rooted atv and bounds. Min-
imax value functionf and treeG are assumed to be global.

order of decreasing score. This does not, however, necessar-
ily minimize the total proof tree size in the case of multiple
best moves, where “best” refers to either absolute numeri-
cal score or ability to generate a cut. Using Theorem 3.3
we can see that there are at most three possible incoming
bounds with which a given vertex can be explored in a min-
imal proof tree (MPT). We may thus compute, bottom-up, a
table containing the MPT size for each vertex given the in-
coming α-β bounds. This process therefore runs in linear
time and space in the graph size. Moreover, the table entries
need only be computed as needed, and the set of potential
best moves is easily constrained using the observations from
Theorem 3.2’s proof. The algorithm is listed in Figure 2, and
the size of the minimum minimax proof tree is the result of
MPT size(v0,−∞,∞). The runtime and space requirement
is linear in the input graph size and adjusting the algorithmto
actually contruct an MPT is straight-forward.

6 Fastest-Cut-First Heuristics
In this section we develop a move sorting heuristic for Alpha-
Beta search based on the results on minimum proof graphs
we have presented. In real-world game applications, usu-
ally none of the quantities used inMPT size are known
at the time when the decision about the next move to be
searched is to be made. One therefore has to resort to move
ordering heuristics. In addition, search is often performed
in DAGs, which complicates the computation of minimum
proof graphs. Even so, if estimates for valuesand sizes
are available, we could base move decisions on those, and
hope to approximate minimum proof graphs sufficiently well.
This idea is not new. Plaat et al.[1996], for instance, sug-
gest to use enhanced transposition table look-ups and bias
moves towards those with small subtrees, to exploit proper-
ties of inhomogeneous DAGs, such as varying out-degrees
and leaf depths. Closer in terms of using both value and
size estimates comes what is known since the mid-1990s as



“fastest-first” search in the Othello programming commu-
nity. The idea is to search moves first that have a consid-
erable chance to produce a cutoff, and among those to pre-
fer moves with small sub-DAGs. Employing such heuristics
has improved Othello endgame solvers considerably (http:
//radagast.se/othello).

Because both move values and DAG sizes are taken into
account we prefer to call heuristics of this type “fastest-cut-
first” heuristics. Implementations we have used successfully
in the past include sorting moves according to (Vi − C ·
Si/maxj Sj), whereVi andSi are the estimated move values
and sub-DAG sizes, andC > 0 is a constant. Alternatively,
moves can be restricted to those withVi ≥ β − C and from
this set a move with minimal size estimate is selected.

Here, we propose a new fastest-cut-first heuristic which is
motivated by the following theorem:

Theorem 6.1.Consider a naive version of Alpha-Beta search
that does not adjustα based on returned values and searches
a game tree starting at cut-nodev with successorsv1, . . . , vn.
LetSi be the expected size of the subtree rooted atvi, andPi

the probability of movei leading to aβ-cut. Then, visitingvi

in ascending order ofSi/Pi minimizes the expected number
of visited nodes starting atv.

Proof. For move ordering(1, . . . , n) the expected number of
visited nodes is

1 +
n

∑

i=1

[

Si

i−1
∏

j=1

(1 − Pj)
]

=

A + (Sk · π) + (Sk+1 · π(1 − Pk)) + C,

for π :=

k−1
∏

j=1

(1 − Pj) and suitableA > 0 andC ≥ 0.

Switching movek andk + 1 leads to expected search effort

A + (Sk+1 · π) + (Sk · π(1 − Pk+1)) + C.

Thus, ifπ > 0 searching movek + 1 beforek while keeping
the other moves’ ordering constant is not detrimental iff

Sk+1 + Sk(1 − Pk+1) ≤ Sk + Sk+1(1 − Pk)

⇔ Sk+1

Pk+1
≤

Sk

Pk
, (1)

where we definec/0 := ∞ for c > 0 to cover the cases
Pk = 0 and/orPk+1 = 0. If π = 0, switching movesk
andk + 1 does not change the expected search effort. This
shows that when starting with an arbitrary move ordering we
can continue switching movesk andk+1 for which (1) holds
and not increase the expected search effort. Therefore, theex-
pected number of searched nodes is minimized when visiting
nodesvi in ascending order ofSi/Pi.

Picking the move with the lowestSi/Pi ratio first accom-
plishes the goal of producing a cut with high probability,
while keeping the node count low, in a principled way, unlike
the ad-hoc fastest-cut-first heuristics presented earlier. The
expected number of searched nodes established in the the-
orem is an upper bound on the actual number of nodes the
true Alpha-Beta algorithm would visit, because with rising

α values, the expected tree sizesSi do not increase. So, by
minimizing this number we can hope to decrease the Alpha-
Beta search effort — also when searching DAGs. We will
present experimental results on the performance of the novel
fastest-cut-first heuristic in Section 8.

7 Prefix Value Game Trees
In this section we present a synthetic game tree model that we
will use to gauge the performance of the fastest-first heuristic
we proposed in the previous section.

Search algorithm improvements are often driven by spe-
cific applications. A classic example is the development
of forward pruning and parallelization in computer chess.
When working in particular search domains, state space prop-
erties — such as the average branching factor, the den-
sity of terminal nodes, state value distributions and corre-
lations — are fixed. To gain insight into how such prop-
erties generally affect search algorithms, several synthetic
game tree models have been proposed in the literature, e.g.,
[Fuller et al., 1973; Newborn, 1977; Nau, 1982; Pearl, 1983;
Kaindl and Scheucher, 1992; Scheucher and Kaindl, 1998],
with emphasis on studying pathology in alpha-beta search.

In [Fuller et al., 1973] Fuller et al. describe a game tree
model in which node value correlations are introduced by
assigning values from{1, . . . , N} to edges and assigning a
valuep(v) to leaves by summing up edge values along the
unique path from the root node. One drawback of this so-
called incremental game tree model is that values increase
with depth and therefore don’t have the usual interpretation as
representing the expected payoff. In[Scheucher and Kaindl,
1998] this bias is offset first by considering move values from
{−N, . . . , N}, and then in a second step by realizing that
playing a move can never increase a position’s value, i.e.,

p(vi) = −p(v) − di(v), (2)

wherep(x) denotes the accumulated value along the unique
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Figure 3: An incremental game tree. Node values indicate
the current path valuep(v) in the view of the player to move.
Edge values represent the damagedi(v) self-inflicted by play-
ing potentially non-optimal moves.



path when reaching nodex in view of the player to move,
vi is the i-th successor ofv, and−D ≤ di(v) ≤ 0 is the
bounded damage self-inflicted by playing movei in v. Fig-
ure 3 shows an example. To evaluate search performance it is
useful to know exact values of intermediate states. However,
in the above incremental model — whendi is chosen ran-
domly from [−D, 0] — searching entire subtrees is required
to compute the true negamax value of interior nodes, which
can be very costly in terms of space and time requirements.
With a simple yet effective refinement of the incremental tree
model, we are able to determine exact node valueson the fly
while generating trees. Being able to leak true state evalua-
tions in interior nodes at no additional cost greatly helps ana-
lyzing search algorithms in general settings because no time
has to be spent on engineering domain dependent heuristics.
For instance, noise can be added when testing heuristics that
depend on heuristic state evaluations of interior nodes, such
as ProbCut[Buro, 1995], e.g.,f̂C(v) = f(v) + C · e, where
f(v) denotes the true negamax value ofv ande is N (0, 1)
normally distributed. In addition, move preferences can be
leaked probabilistically by means of the parameterized soft-
max function

Prob(movek is best in statev) =
exp(C · f(vk))

∑

i exp(C · f(vi))
,

which spans the range from uniform random (C = 0) to per-
fectly informed choices (C → ∞) and can be used to design
synthetic move sorting routines for alpha-beta search or play-
out policies for UCT[Kocsis and Szepesvari, 2006].

Before we formulate the observation our model refinement
is based on, we define theprefix negamax valueof a node and
show how to compute it. W.l.o.g., we assume that moves are
alternated from now on.
Definition 4. In the incremental game tree model the
prefix negamax valuep(v) of nodev is defined recursively
based on (2): Ifv is the rootr of the tree, thenp(v) = f(r).
Otherwise,p(v) = −p(v′)−di(v

′), wherev′ is the predeces-
sor ofv on the path to the root,v = v′

i, anddi(v
′) ≤ 0.

Lemma 7.1. For the incremental game tree model described
above

p(v) = (−1)nf(r) +

n−1
∑

k=0

(−1)n−kdik
(uk) (3)

holds, wherer is the root of the tree andu0, . . . , un is the
unique path fromr to v, i.e.,u0 = r, un = v, anduk+1 is the
ik-th successor ofuk.

Proof. (Induction on depthn of v). For n = 0, we have
v = r, so the statement trivially holds. Assuming (3) holds
for nodes with depthn, consider the value of a nodev′ at
depthn + 1 with predecessorv andv′ = uin

. Then:

p(v′) = −p(v) − din
(v)

= −
(

(−1)nf(r) +
n−1
∑

k=1

(−1)n−kdik
(uk)

)

− din
(v)

= (−1)n+1f(r) +
n

∑

k=1

(−1)n+1−kdik
(uk)

Our refinement of the incremental game tree model is based
on the following observation:

Theorem 7.1. If for all interior nodesv in trees generated by
the incremental model there exists a movei with di(v) = 0,
then for allv, f(v) = p(v).

Proof. (Induction on node heighth(v)). If h(v) = 0, thenv
is a leaf andf(v) = p(v) holds by definition. Now consider
a nodev with heightn + 1 and supposef(v′) = p(v′) holds
for all v′ with h(v′) ≤ n. W.l.o.g., we assumed1(v) = 0.
Among thep(vi) values,p(v1) is one of the smallest, because
p(vi) = −p(v) − di ≥ −p(v) = p(v1) + d1(v) = p(v1).
By the induction hypothesis we also knowf(vi) = p(vi) for
all i. Therefore,f(v) = maxi(−f(vi)) = maxi(−p(vi)) =
−p(v1) = p(v) + d1 = p(v).

With this result, evaluating nodes while generating trees is
trivial because (3) can be maintained incrementally. This
property in invaluable for analysing search performance in
large trees based on true node values. We call our refined
model the “Prefix Value Game Tree Model”. As usual, the
number of successors and move values can either be fixed or
sampled from distributions to better model real-world games.
We will use prefix value trees to compare the performance of
alpha-beta and fastest-first search in the next section.

8 Experiments
To investigate the effect on search effort resulting from the
FCF heuristics, we constructed synthetic trees using various
branching factors, edge value ranges, and heuristic evaluation
errors. For each set of parameters we generated 500 trees and
performed an iterative deepening (ID) search up to depth 10
using plain Alpha-Beta, NegaScout, and MTD(f)[Plaatet al.,
1996b]. The expanded tree nodes were annotated with search
information, such as estimated value and treesize, which was
used for ordering the next ID iteration.

Our move ordering function is a weighted combination of
the estimated node value, theSi/Pi value, andSi. For a
given node we tookSi to be its out-degree. Looking deeper
in the node’s subtree was actually slightly detrimental since,
ideally, large portions of that tree will never actually be ex-
panded during search. Moreover the out-degree is ‘free’ to
compute, given that we have expanded the node anyway. The
value ofPi is initially a hard threshold based on whether the
node value (from the last ID pass) is≥ beta. ComputingPi

empirically by “training” on trees from the same generating
family produced a slight (∼3%) improvement. The ordering
of child nodes which have not yet been expanded is random.

In addition to synthetic trees we used FCF heuristics in
solving open-handed cardplay for the trick-taking German
card gameSkatdescribed in[Buro et al., 2009]. Our search
implementation sorts moves by way of a linear combination
of features corresponding to the current value of a trick and
the ability of teammates to contribute points. Our search also
employs various pruning techniques and a transposition ta-
ble — no iterative deepening is performed. Our lack of a
forward-looking state evaluation function for Skat precluded
an easy way to measure expected value orPi. As such, we
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Figure 4: Number of search nodes expanded for different or-
dering heuristics, relative to the minimum proof graph size.

Ordering HeuristicAvg. Time (ms) Avg. Nodes
X 77.0 396386
X − C · Si 44.7 243090

Table 1: Effect of FCF heuristics on the search effort of open-
hand Skat initial cardplay positions.

include an FCF term in our linear combination by subtract-
ing Si := the branching factor for each move, timesC, a
weighting term optimized independently. Results are shown
in Table 1, withX being the portion of the move evaluation
which does not consider tree size. Results are computed from
4000 initial cardplay positions from human games.

Performance results were consistent across the tree gener-
ation parameters, although the weights for combining heuris-
tic components needed to be tuned. We made a best effort
to determine the optimal weights in each case. In all cases,
even when the node evaluation functions were given perfect
accuracy, we observed a significant reduction in nodes ex-
panded, compared to only using the estimated node value.
Representative results are presented in Figure 4, which shows
thecumulativenumber of search nodes expanded, including
previous ID passes, relative to the MPG size. Values are av-
eraged over 500 trees. The results shown are produced by
trees with branching factor uniformly drawn from[4..12] at
each node, evaluations errors drawn from[−4..4], and edge
values drawn from[−6..0]. There was no significant differ-
ence in performance between usingSi/Pi andSi as the FCF
weighting term, with node reductions of 35% and 39% for
NegaScout and MTD(f) respectively at depth 10. Note that
the baseline MPG size grows exponentially with depth.

9 Conclusions and Future Work
In this paper we have presented properties of minimum proof
graphs, NP-completeness results, and a linear-time algorithm
for computing minimum proof graphs for trees. We also
introduced the class of fastest-cut-first heuristics whichsort
moves dependent on sub-DAG size and value estimates. Our
experimental results using a novel synthetic game tree model
indicate that standard Alpha-Beta search algorithm gain ex-
ponentially when using fastest-cut-first heuristics for move

ordering, but an exponential gap between the minimum proof
tree size and the size of the trees visited by Alpha-Beta search
remains. In future work we plan to investigate how to com-
bine fastest-cut-first heuristics with other enhancementssuch
as information stored in transposition tables.
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