
From Simple Features toSophisticated Evaluation FunctionsMichael BuroNEC Research Institute4 Independence WayPrinceton NJ 08540, USAAbstract. This paper discusses a practical framework for the semi{automatic construction of evaluation functions for games. Based on astructured evaluation function representation, a procedure for explor-ing the feature space is presented that is able to discover new featuresin a computational feasible way. Besides the theoretical aspects, relatedpractical issues such as the generation of training positions, feature se-lection, and weight �tting in large linear systems are discussed. Finally,we present experimental results for Othello, which demonstrate the po-tential of the described approach.Keywords: automatic feature construction, GLEM, Othello1 IntroductionMany AI systems use evaluation functions for guiding search tasks. In the con-text of strategy games they usually map game positions into the real numbers forestimating the winning chance for the player to move. Decades of research hasshown how hard a problem evaluation function construction is, even when focus-ing on particular games. In order to simplify the construction task, the notionof evaluation features was introduced. The underlying assumption is that thereexist reasonable approximations of the perfect evaluation function in the formof combinations of a few distinct numerical properties of the position | calledfeatures. Given this, evaluation functions can be constructed in two phases by1) selecting features and 2) combining them.Selecting features is one of the most important and di�cult sub{tasks inthe construction of a game playing program. It requires both domain speci�cknowledge and programming skills because of the well known tradeo� betweenspeed and knowledge in game{tree search. A couple of years ago, the authorsof the best game playing programs still picked not only features but also theirweights in course of a tedious optimization process. This is somewhat surprising,since already in [7] Samuel proposed ways for automatically tuning weights.While selecting features is di�cult for a machine, �tting even a large number ofweights given a set of training positions is not. Research focused on the lattertopic produced TD{Gammon, a world{class backgammon{program [8, 9], andcontributed to Deep Blue's victory over Kasparov in 1997 [4].

In this article we go a step further towards the ultimate goal of automaticevaluation function construction. First, a generalized linear evaluation modelis presented. It restricts evaluation features to boolean combinations of givenatomic functions. The model parameters can be tailored such that an automaticfeature space exploration becomes feasible. The following sections cover all as-pects of evaluation function construction | from generating training positionsover feature selection to weight estimation | with respect to the new modeland emphasis on e�cient implementation. Finally, we show how the presentedtechniques can be applied to the game of Othello and discuss the new approachwith regard to related work.2 Evaluation ModelWe �rst give a de�nition of the evaluation model we are proposing and discussits properties. In what follows, P denotes the set of all legal game positions1,and IR the set of real numbers. Let A be a �nite set of integer valued | socalled atomic | features and RA := f (f(�) = k) j f 2 A; k is an integergthe set of relations over A that compare feature values with integer constants.Con�gurations are conjunctions of relations in RA. For a position p 2 P and acon�guration c = r1 ^ : : : ^ rl we de�neval(c(p)) := �1; if r1(p) ^ : : : ^ rl(p) = true0; otherwise :A con�guration c is called active in a position p, i� c(p) = true.With this notation we can now de�ne the Generalized Linear EvaluationModel | GLEM(P ; A; g) for short. Evaluation functions in this model have thefollowing form: e(p) = g� nXi=1 wi � val(ci(p))�; (1)where c1; :::; cn are con�gurations over RA, w1; :::; wn 2 IR are weights, andg : IR! IR is an increasing and di�erentiable link function.The weights are subject to the usual least{squares optimization. That is,given a set of con�gurations c1; : : : ; cn, a link function g, and a sequence ofscored training positions �(pi; ri) j i = 1 : : :N�, the weights are chosen such thatthe total squared error E(w) := NXi=1(ri � ew(pi))2:is minimized. This model has several desirable properties:1 W.l.o.g. it is assumed that game positions in P are normalized in such a way that a�xed player is to move.

{ Atomic features are the building blocks of more sophisticated ones. This,in principle, allows the automated discovery of new important features bysystematic combination.{ If necessary, complex features can be added to A. Thus, \atomic" is notnecessarily a synonym for \simple".{ When evaluating a position, features are combined linearly. This keeps thetime overhead low. Actually, not even a multiplication with the weight isnecessary since val(ci(p)) is either 0 or 1.{ Non{linear e�ects can be approximated by using con�gurations that consistof several relations.{ In order to deal with saturation an increasing non{linear link function, suchas g(x) = 1=(1 + exp(�x)), can be used without increasing the run timeduring minimax search. There is no need to compute g, because g(x1) >g(x2) () x1 > x2.{ The simple linear core of the evaluation function allows an e�cient approxi-mation of optimal weights, even for large systems. In the application reportedlater, more than a million weights were �tted to a training set consisting ofeleven million scored positions in a reasonable period of time.At this point GLEM should be moved into the right perspective: in the statedform it is neither a new revolutionary evaluation approach, nor does it ease thetask of automatic evaluation function exploration. This is because the model isbuilt upon well known linear evaluation functions and does not impose a severerestriction on the structure of functions it includes. E.g., for any atomic featureset A, which is capable of distinguishing any two di�erent positions (includinggame history if the game result depends on it) via conjunctions over RA, GLEMcovers all evaluation functions over P . A trivial example for such a completeatomic feature set for board games without position repetition isA = �fs j fs(p) = contents of square s in position p;s is a square � ;where the contents of a square is considered to be an integer value.However, GLEM allows one to de�ne a hierarchy of submodels in a naturalway, which reects di�erent levels of computational complexity and the expres-sive power of the covered evaluation functions. By restricting the size of A, thenumber of con�gurations, or their structure, an automated search for new fea-tures becomes feasible. In the application discussed later, evaluation functionsbased on GLEM outperformed the best known functions so far. In this respect,GLEM breaks new ground.Good evaluation functions accurately estimate the winning chances in posi-tions visited during game{tree search and are optimized for speed. Therefore, thefollowing topics have to be borne in mind when using scored training positionsfor tuning con�guration weights:{ The training positions have to be representative of the positions that will beevaluated later in actual game{tree search.

{ Training positions must be scored accurately.{ The selected con�gurations and their combination must have the expressivepower to explain the data reasonably well while avoiding over{�tting. Giventhe at evaluation function representation in GLEM, meeting this conditionmay require a large number of con�gurations. Their automatic constructionis therefore of great interest.{ Evaluation speed is important.{ While computing weights is an o�{line process, its memory and time con-sumption should still be subject to optimization. The reason is that in thefeature selection phase usually many evaluation function versions have to becompared. Moreover, without optimization the current solver might not beable to handle the number of features one would like to use.In the following sections these topics are discussed in detail in the context ofGLEM.3 Training PositionsA theory of how to generate good training sets in the context of evaluationfunction tuning has not been developed yet. In this section practical ideas arediscussed which may become the seed for further investigations.Training positions can be generated and scored in several ways. If the con-sidered game has a long tradition and is quite popular, many games may beavailable in electronic format. The simplest scoring procedure assigns the �nalgame result (depending on the side to move) to all positions occurring in agame. Obviously, this ad hoc procedure has limitations, since it does not ensureaccurate scoring. Selecting games between good players alleviates this problem.But this approach leads to high{quality games, in which hardly any catastro-phe takes place, such as losing material in chess or a corner in Othello withoutcompensation. The reason for this is obvious: good players know the importantevaluation features and keep them mostly balanced in their games. What we(and machines) can learn from such games are the �ner points of play, whichmake the di�erence between good and the best players. However, an evaluationfunction must also be aware of the most important features. Thus, our trainingset should also contain games in which at one point a player makes a seriousmistake that is rigorously exploited by the opponent. In summary, a reason-able strategy for generating training positions from a game database is to selectgames played by at least one good player and to score game positions accordingto the �nal game result. This procedure is e�cient and its output can serve asthe basis for tuning the �rst evaluation function version.Besides the still present potential mis{scoring problem, the question arises,whether the so generated training set is representative to positions encounteredin game{tree search. This question is of importance, since the weight �t for alinear evaluation function is inuenced by the correlation among features in thetraining set. The answer obviously depends on the type of game{tree searchwe are conducting: in a highly selective search evaluated positions are in the

vicinity of principal variations, whereas in brute{force searches many ridiculouspositions are evaluated, which one would never encounter in actual games. Itseems natural to let the search algorithm generate the training positions by it-self. For instance, starting searches with positions from played games, a randomsubset of evaluated positions can be saved in a �le and serve as the trainingset after scoring. In this way, the generated positions are surely a representativesample of the positions encountered in game{tree searches. It remains to assignaccurate scores to the positions. This task can be accomplished again by game{tree searches, which normally return more reliable results than the evaluationfunction itself. In particular, in many games endgame positions can be evaluatedperfectly | or at least more accurately than middle{game or opening positions| in a reasonable amount of time. In this case, a game{stage dependent evalu-ation function can be improved iteratively by �rst tuning the endgame weights.Thereafter, training positions from the previous game stage are evaluated by agame{tree search, which utilizes the just tuned evaluation function, and so on.The next step would be to generate even positions and those with a narrowadvantage for one side. Similar to considering games between good players men-tioned above, these positions are useful for tuning weights of minor features orrevealing possible tradeo�s between major features (e.g. material vs. king safetyin chess or corner possession vs. mobility in Othello).If training positions are selected randomly during minimax{based searches,one soon discovers that the winning chance in such positions is biased towardsthe player to move. This phenomenon is easy to explain, given the fact thatin typical positions the majority of searched moves lose. Its undesirable e�ecton �tted weights is an arti�cial bonus for the player to move. This, in turn,leads to unstable evaluations, which compromise comparing evaluations backed{up from depths of odd di�erence during selective search. Because the proposedgeneration procedure labels positions with search results, a simple cure for thisproblem is to add the principal variation successor positions to the training setafter labelling them with the negated search result.4 Selecting Con�gurationsGLEM proposes a new perspective on how to look at evaluation features. In theclassical approach a couple of complex features are combined linearly. Weightswere mostly hand{tuned. Later, the study of neural networks opened up a prac-tical way of combining features non{linearly. Application of the well known gra-dient descent procedure (in this context called \back{propagation") makes itpossible to automatically tune a large number of network parameters. A promi-nent and very successful example is Tesauro's backgammon network which, inits strongest version, makes use of hand{crafted features in addition to a rawboard representation. GLEM uses a di�erent approach. Instead of modellingnon{linear e�ects by applying parameterized analytical functions to features,GLEM handles non{linearities directly by assigning values to boolean featurecombinations, called con�gurations. In this way, distinct cases can be handled

naturally, without the detour over non{linear analytical functions. The design ofneural networks corresponds to con�guration selection in GLEM, which is thetopic of this section. After stating basic requirements for the atomic features,we will present an algorithm for generating con�gurations by analyzing trainingpositions, and discuss several optimizations.4.1 Atomic FeaturesAtomic features are the building blocks for con�gurations. As the scope of auto-matic con�guration selection is limited by its time and space complexity, choos-ing the right abstraction level for atomic features is crucial. In Othello, con�gu-rations based upon the raw board representation are su�cient for building goodevaluation functions | as we shall see later. The reason is that many relevantfeatures in this game can be expressed by local board con�gurations of smallcardinality. Other games may require a greater abstraction level. For instance,the relation \piece A attacks piece B" in chess has a long description lengthwhen using raw board representation languages. Since many important features,such as forks and pins, are based on those attack features, they certainly shouldbe included in the atomic feature set. In general, candidates for atomic featuresare common parts of relevant features, that | combined in novel ways | maylead to new important features. Obviously, this selection task is beyond currentprogram abilities.Not all atomic features have to be useful for building other features. Limita-tions of the con�guration generator may suggest the inclusion of complex featuresthat can not be expressed or well approximated by restricted combinations ofother members of the atomic feature set.Moreover, GLEM generalizes the classical use of features | w � f(p) | be-cause (w � k) in w � f(p) =Xk (w � k) � val(f(p) = k):specializes the weight of val(f(p) = k). This generalization is only meaningful iff has a small range. In case one likes to incorporate a feature f having a largerange, GLEM can be easily extended by allowing summation terms of the formw � f(p).4.2 Generating Con�gurationsIn a balanced evaluation function design the number of features can be increasedup to a point where either 1) adding additional knowledge is compensated for bya decreased evaluation speed or 2) over{�tting becomes a problem. Since con�g-urations can be computed quickly, once the atomic features have been evaluated,GLEM encourages to use many con�gurations rather than a few complex fea-tures. Our chief concern is therefore over{�tting.We will �rst present an algorithm for generating a con�guration set thatdoes not su�er from over{�tting. Thereafter, we will discuss how to deal with a

possibly unacceptably long run time for the con�guration generator, for weight�tting, or for the con�guration value look{up during game{tree search.Con�gurations have to cover positions that occur in game{tree search whileavoiding over{�tting when optimizing weights. Both requirements can be met byusing a large set of training positions | generated as described in the previoussection | and selecting con�gurations that match a su�ciently large number ofthese positions. Fig. 1 shows a straight forward algorithm for this task. Given aset of atomic features A, training positions E, and a minimal match count n, itcomputes all valid con�gurations over A that occur in at least n positions in E.Beginning with all valid con�gurations of length one, the algorithm iterativelybuilds larger con�gurations by specializing previously generated con�gurations,until the matches count drops below n. The algorithm certainly halts, since theset of valid con�gurations is �nite. Its correctness can be shown by inductionusing the fact, that for k > 1, valid con�gurations of length k have valid sub-con�gurations of length k � 1.The run time of the algorithm is O(jCj � jRAj2 � jEj), where C is the com-puted set of valid con�gurations and E the set of training examples. The mosttime{consuming part is computing the match counts in the inner loop. Sincein the beginning the number of checked con�gurations grows exponentially inFunction GenConfInput: atomic feature set A, training position set E, minimal match count nOutput: con�gurations over A that are active in at least n positions of ER := fff(�) = kg j f 2 A; k 2 range(f); #match(ff(�) = kg; E) � ngC := R ; collects all valid con�gurationsN := R ; set of con�gurations created in previous iterationwhile N 6= ; doM := ; ; set of valid con�gurations in current iteration(*) foreach c 2 N; d 2 R doe := c [fdg ; specialize con�guration cif #match(e;E) � n thenM :=M [feg ; append if validendifendforN :=M ; next con�gurations to specializeC := C [N ; add valid con�gurationsendwhilereturn CFig. 1. Pseudo code for generating the set of con�gurations that occur in at least ntraining positions. The function iteratively specializes con�gurations, which are imple-mented as sets of relations, until the number of matching positions (#match(e;E))drops below n.

each iteration, it is crucial to optimize the match computations, especially ifthe number of positions is large. The following optimizations speed up a naiveimplementation considerably:{ Due to the commutativity of ^, valid con�gurations of length k may haveseveral valid subcon�gurations of length k � 1. This observation suggeststhat we should check whether a given specialization has been tested beforein the current iteration, in order to avoid repeated match computations. Aneven better solution is to generate specializations in an ordered fashion byde�ning a total order over R and replacing line (*) byforeach c 2 N; d 2 R with d > maxd02c d0 doIt is not hard to show that after applying this time{saving modi�cation thealgorithm still generates all valid con�gurations.{ A naive algorithm for deciding #match(e; E) � n evaluates the relationsin e for every member of E. The computation time of this algorithm canbe reduced by preprocessing and parallelizing computations. The idea is tocompute, for each r 2 R, a sequence of bits (bi)#Ei=1 de�ned by bi := val(r(pi)),where pi 2 E is the i{th training position. After this preprocessing step,the actual features and positions are no longer needed. The match countcomputation reduces to and{combining the bit sequences of the involvedrelations and counting set bits in the result sequence. Modern CPUs allowFunction MatchHeuristicInput: con�guration e, chunk size s, random partition E1; :::; Em ofposition set E as described in the text, con�dence level t > 0Output: true, if #match(e;E) � n is likely; false, otherwiseq := n=#E ; match count fraction aimed ford := 0 ; number of elements checkedu := 0 ; current match countfor i := 1 to m� 1 dou := u+#match(e;Ei) ; update countsd := d+ sif u � dq + tpdq(1� q) thenreturn true ; #match(e;E) � n is likelyendifif u < dq � tpdq(1� q) thenreturn false ; #match(e;E) < n is likelyendifendforreturn u+#match(e;Em) � nFig. 2. A fast procedure for testing the hypothesis #match(e;E) � n

a very e�cient implementation of the and{part by handling 32 or even 64bits in parallel. Iterating x := x ^ (x � 1), which clears the rightmost onein the binary representation of x, allows us to count set bits quickly. In thisapplication table{based techniques for counting bits are inferior because thenumber of set bits is decreasing rapidly due to specialization.{ Replacing the condition #match(e; E) � n by a sequential statistical testprocedure speeds up the computation further. This optimization can be mo-tivated by an intuitive example: if among the �rst 100 randomly selectedbits of 1000 there is only a single one, it is very unlikely that the total num-ber of ones exceeds 500. More formally, we propose the following heuristicfunction, which quickly checks whether #match(e; E) � n holds with a pre-scribed likelihood. In a preprocessing step, E is randomly partitioned intochunks E1; :::; Em of size s (Em might have less elements). For a given con-�guration e, the function then iteratively computes the match counts forincreasing subsets beginning with E1. If the match count fraction at onepoint signi�cantly di�ers from the one we aim for, the function returns thelikely truth value of #match(e; E) � n early. The pseudo code implemen-tation shown in Fig. 2 makes use of the fact that the expected number ofones in a sequence of d randomly generated bits is dq, if Probf1g = q, whileits standard deviation is pdq(1� q). The behaviour of this function is con-trolled by con�dence level t. For large values of t, hardly any break conditionwill be met | the function will be slow, and almost always return the correctresult. If t is small, the function is quick, but it also returns unreliable results.Experiments can tell how to choose t depending on the speed/reliability onelikes to achieve.4.3 Finding Active Con�gurationsDuring weight �tting and position evaluation the set of active con�gurationshas to be computed quickly for a large number of positions. For this purpose,we represent the set of all con�gurations over RA by a DAG G. Nodes in Gcorrespond to con�gurations, and arcs mark direct specializations. A detailedexample is shown in Fig. 3a. The just described selection algorithm computes allcon�gurations that occur at least n{times in a set of training positions. This setof valid con�gurations induces a sub{DAG G0 of G. Given a position, all activecon�gurations can be found by a depth{�rst search in G0 starting at its root.During search, all visited con�gurations are marked and their active status isdetermined. The search stops in nodes that have been visited before or have beenfound inactive. This algorithm quickly �nds all active con�gurations. However,the only relevant active con�gurations for evaluation purposes are those withoutactive specializations, because generalizations are redundant. It is easy to extendthe described algorithm accordingly by restricting its output to leaves of theactive con�guration sub{DAG. Fig. 4 illustrates the entire procedure.

2]f

r

r

r

r

2,1

2,2

r1,0

1,1

2,0

r^

r1,0 r2,1^

r1,1 r2,1^

r1,1 r2,2^

2,0r

r^ 2,0r1,1

1,0

r1,0 r^ 2,2

r

r

r

r

2,1

2,2

r1,0

1,1

2,0

r^

r1,0 r2,1^

r1,1 r2,1^

r1,1 r2,2^

2,0r

r^ 2,0r1,1

1,0

r1,0 r^ 2,2

true

a)

f1

f1]

0

1

2

3

4

5

0

1

0

1

2

table indices

f2]

 pattern[

 pattern[

 pattern[,

b)

Fig. 3. a) Con�guration DAG for two features f1; f2 with range(f1) = f0; 1g andrange(f2) = f0; 1; 2g. ri;k denotes the relation fi(�) = k. b) Con�gurations belongingto patterns over f1 and f2.
c) most specific active
 configurations

a) configuration sub-DAG G’

1

2

3

4

6 7

9

11 12

17

5 8 14 16

 left-to-right DFS numbers

15

13

10

b) active configurations andFig. 4. Finding the most speci�c active con�gurations by depth{�rst search in thecon�guration DAG4.4 Reducing Complexity: PatternsSo far, our focus has been on e�cient ways for generating con�gurations andcomputing active con�gurations. Despite the optimization e�orts, GenConf maystill not be able to generate all valid con�gurations due to time or space limi-tations. Furthermore, a large number of generated con�gurations might preventan e�cient position evaluation, because too many con�gurations are active, orthe con�guration data needs too much memory.One solution to these problems is to increase the minimal match count n,until the number of generated con�gurations is manageable. This approach, how-ever, narrows the evaluation function's view by focusing it on the most commonphenomena. A compromise is to generate all valid con�gurations choosing n highenough to avoid over{�tting, and to reduce their number afterwards by looking

at their statistical signi�cance with regard to winning chance prediction.2 An-other option for reducing the number of con�gurations is to limit their size or tochoose subsets of the atomic feature set as the base for generating con�gurations.Finally, considering sets of mutual exclusive con�gurations helps to reducethe number of active con�gurations in order to speed up the evaluation consid-erably. Let G be the complete con�guration DAG for ff1; :::; fmg � A (Fig. 3a),and let rmin and rmax denote the minimum/maximum range cardinality ofthe features. Then the number of nodes in G is bounded by (1 + rmin)m and(1 + rmax)m, and for any position the number of active con�gurations is 2m. 3Thus, in case of complete con�guration DAGs the DFS algorithm presented inthe last subsection seems to waste time by searching a large number of nodesbefore it eventually returns the single active con�guration we are interestedin. This observation motivates looking for a more e�cient data structure. Forff1; :::; fmg � A we collect all possible most speci�c con�gurations in a set calledpattern[f1; :::; fm], i.e.pattern[f1; :::; fm] := fr1;l1 ^ ::: ^ rm;lm j ri;li = (fi(�) = li); li 2 range(fi)gCon�gurations in pattern[f1; :::; fm] correspond to leaves of the complete con-�guration DAG (Fig. 3b). Data related to these con�gurations can therefore bestored in a table addressed by feature values. For instance, in Fig. 3b the tableindex for pattern[f1; f2] with regard to position p is simply 3 � f1(p) + f2(p).Checking whether a pattern con�guration is valid only requires incrementing amatch counter stored in a table whenever a con�guration is active, and com-paring the result with the minimal match count. Detecting whether a patterncon�guration is active during weight �tting or positional evaluation is a matterof a fast index computation and one table access. Incremental updates of onlythose indices which are inuenced by moves speeds up game{tree search further.In summary, the at table is the data structure of choice for storing informationregarding small and medium sized complete con�guration sets. The fast accessencourages to restrict con�guration sets to patterns.Large patterns require a more memory e�cient representation. In order toavoid over{�tting, we are still only interested in con�gurations that match severaltraining positions. Consequently, large patterns are sparse. Fig. 5 outlines a veryfast and | to our knowledge | novel technique for accessing sparse data whichtrades memory for speed. It is based on representing valid con�gurations asindex tuples (i1; i2). For a given position and pattern, i1 and i2 are computedby splitting the pattern's feature set into two parts and performing the indexcalculations described above separately for each subset. Both indices are thenused for accessing a hash{table, in which data regarding con�guration (i1; i2)2 The general problem of deciding the relevance of variables in a multivariate regressionmodel in advance is hard. Nevertheless, simple statistics like the feature's correlationwith the training position scores can serve as a reasonable �rst approximation.3 These numbers can be derived by adding lower/upper bounds for the number ofnodes/active con�gurations for each depth and applying the identityPmi=0 �mi �xi =(1 + x)m.

i1i

i

1

2

1

offset table

hash-table

offset(i) 1data(i ,i)2

Fig. 5. Fast sparse data access. Data regarding a con�guration represented by twoindices i1 and i2 can be accessed quickly in two steps.is stored. First, an o�set is looked{up in a table using index i1. Then, thiso�set, incremented by i2, is used to access the hash{table. For the algorithmto be correct, 1) unique hash{table entries have to be assigned to valid indextuples, and 2) invalid index tuples must be detected. The �rst condition can bemet by choosing suitable o�sets and a su�ciently large hash{table. In practice,the following greedy algorithm for constructing collision{free hash{tables hasproduced reasonable results: beginning with the most frequent i1{values, o�setsare assigned to them in �rst{�t manner. That is, whenever a collision occurswhen attempting to occupy the hash{table entry o�set(i1) + i2, all i1 entriesclaimed so far are erased and o�set(i1) is incremented before restarting. Thehash{table size must be greater than the sum of the maximal o�set and maximalpossible value of i2, in order to avoid accesses beyond table end. A simple wayfor meeting condition 2) is to add the lock i1 to hash entries for all valid tuples(i1; i2) and to reject tuples (i1; i2), for which the lock stored in the accessed hashentry does not match i1. Locks of unused hash entries must be initialized witha value di�erent from any possible i1 (e.g. �1). Finally, o�sets for all i1, whichare not the �rst component of any valid index tuple, can be safely set to 0, sinceall locks in the hash{table are di�erent from those i1 values.Patterns may outperform con�guration sets constructed by GenConf due toa much faster generation and evaluation of con�gurations. However, patternssu�er from their limited scope because patterns may miss essential generaliza-tions. This observation suggests building a hierarchy of patterns in order toquickly cover both general and speci�c position aspects. Since this approach

also increases the evaluation time, experiments have to tell, which is the betterstrategy for a given application.5 Weight FittingThe previous sections discussed the generation of scored training positions andthe selection of con�gurations. In order to conclude the evaluation function con-struction, we must show how to assign weights to con�gurations.If the number of weights is large or non{linear models are used, direct weightcomputation is no longer feasible. Instead, iterative methods have to be usedfor weight �tting, which are usually based on variations of the gradient decentprocedure. In each step, this procedure updates the current weight vector indirection of the negated gradient of the error function. If features are highlycorrelated, this simple algorithm is known to converge slowly. Faster conjugategradient algorithms have been developed [6], that do not su�er from this problem.However, because the basic algorithm works su�ciently well in practice andis easier to implement, its application will be discussed in more detail in theremainder of this section.5.1 Basic ConsiderationsIn games, the purpose of evaluation functions is to estimate the winning chancefor the player to move. This goal can be accomplished literally by constructingfunctions that map positions into [0; 1]. Alternatively, the game may providea numerical scoring of terminal positions reecting the win size. In this case,a reasonable evaluation objective is to estimate the �nal game score. In eithercase, experiments should be conducted to �nd a suitable link function g. Themost commonly used candidates are the identity function and sigmoid functionsof the form g(x) = 2C=(1+exp(�x))�C. For instance, for modeling the winningchance an S{shaped link function g : IR ! [0; 1] can be used in order to dealwith saturation. In this regard, g(x) = 1=(1 + exp(�x)) is of special interest,because the weight �tting process bene�ts from a quickly computable derivativeof g, which in this case is g(x)(1� g(x)). A straight forward scoring scheme forterminal positions in this model assigns 0.9 to won positions, 0.5 to draws, and0.1 to lost positions for the player to move. It is important to realize that anoptimal weight vector may not exist if the extreme values 1.0 and 0.0 are chosen.Given a sequence of scored training positions ((pi; ri))Ni=1 the objective is to�nd a weight vector w0 which minimizes the error functionE(w) = 1N NXk=1�k(w)2;where �k(w) := rk � g� nXi=1 wihi;k� and hi;k := val(ci(pk)):

Starting with an initial guess w(0), in each step the basic gradient descent pro-cedure updates the weight vector according to�(t) = �� � (gradwE)(w(t)) 4w(t+1) = w(t) + �(t):� > 0 is the step size and gradwE is the vector consisting of E's partial deriva-tives @E@wi . This update scheme changes the weights in direction of the errorfunction's steepest descent and is widely used for training arti�cial neural net-works.In this application, the partial derivatives have a simple form due to GLEM'sat evaluation structure:@E@wi (w) = � 2N NXk=1 g0� nXi=1 wihi;k��k(w)hi;k : (2)If g is the identity function, this expression reduces to@E@wi (w) = � 2N NXk=1�k(w)hi;k:Thus, steepest descent updates for all weights can be computed e�ciently in asingle pass through the training data. It is worth noting, that the computationof (2) can be arranged in such a way that its run time depends on the numberof hi;k di�erent from 0, rather than on N . Especially when using patterns, thesavings thus achieved are signi�cant.Since the con�guration match count may vary by large factors, the describedupdate step changes weights at very di�erent speeds. This is undesirable, becauseat one point the iteration process has to be stopped, and by then, weights ofrare but important con�gurations might not have reached a proper level yet. Asimple way to deal with this problem is to normalize the updates by dividingthe sum by the number of hi;k 6= 0 instead of N .5.2 Position Type Dependent WeightsThe evaluation of con�gurations may depend on the game stage or, more gen-erally, on the particular type of the position. For instance, centralizing the kingin chess openings is considered suicide, whereas his activation is crucial in manyendgames. It may therefore be worthwhile to partition the training set accord-ing to position type, and to select con�gurations and �t weights separately foreach set. In order to avoid big evaluation jumps when crossing type boundaries,which can cause undesired artifacts in game{tree search, it is helpful to de�ne �negrained position types and to smooth evaluations across adjacent types. Fitting4 adding � � �(t�1) | known as \momentum" | can improve the convergence in caseof correlated features.

weights for many position types, however, requires a large number of trainingpositions, provided the minimal match count is maintained in order to elimi-nate over{�tting. Globally lowering the match count is therefore not an option.Instead, a more local view can help to reduce the number of needed positions.One suggestion when �tting weights for a particular position type, is to con-sider the training positions from adjacent types as well. This method increasesthe number of positions for any single position type and weights are smoothedautomatically. The second option is to �t position type dependent weights ina more exible manner. For this purpose, valid con�gurations are generated byconsidering all training positions. The weight �tting process then decides, howto compute the con�guration weights separately for each type of position. Forany type, for which the particular con�guration match count is su�ciently high(say � 20), it is safe to �t the according weight as described in the previoussubsection. If the count is small (say � 4), over{�tting is likely and the con�gu-ration should be treated as if there is no information available, i.e. the weight isset to 0. Cases in between can be handled by merging adjacent position types,until the total match number allows a robust weight �t. Here, the alternativesare to have only a single weight for all involved types or, if there are enoughpositions available, to �t a parameterized weight model. An example for such amodel is w(k) = a � k + b; k0 � k � k1, which states a linear relationship be-tween the weight and the position type k | coded as an integer | in [k0; :::; k1].Of course, this kind of model is only meaningful for position types that can betotally ordered, such as opening, middle{game, and endgame. Incorporating theupdate of parameters a and b in the gradient descent procedure is not hard.This technique allows a exible and robust �tting of position type dependentweights. After generating training positions and selecting con�gurations, thisconcludes the evaluation function construction.6 Application: OthelloThe presented general framework for the construction of evaluation functionshas been inspired by the work on our Othello program Logistello. Besides theprogress in selective search and automated opening book construction, the ap-plication of the techniques discussed has contributed to the considerable playingstrength of this program. Logistello is able to beat the best human Othelloplayers handily, even when running only on ordinary hardware [2]. The detailsof Logistello's evaluation function already have been discussed in [1]. We willtherefore only give a short overview and concentrate on its recent improvement,which is based on the sparse pattern approach presented above.Othello is a popular Japanese board game, played by two players on an 8x8{board using 64 two{colored discs. Moves consist of placing one disc on an emptysquare and turning all bracketed opponent's discs over. Fig. 5 shows an example.The game ends when neither player has a legal move, in which case the playerwith the most discs on the board has won.

8765432
1 a b c d e f g h� ��� ffvvStarting position(Black to move) 8765432

1 a b c d e f g hvffvvff vvfvfvvvvvvfvffvfvvfff vfff
������ ��White to move 8765432

1 a b c d e f g hvffvfff vffvfvvffffffvffvfvvfff vfff
� � � � �� ��� �� ��Position after move b5Fig. 6. Example positions. Legal moves are marked with a dot.The most important concepts in Othello are disc stability, mobility, and par-ity. In particular:{ Stable discs can not be ipped by the opponent. Therefore, they directlycontribute to the �nal score. The most prominent stable discs are occupiedcorners, which can be used as anchors for creating more stable discs.{ Having fewer move options than the opponent is dangerous, because it in-creases the chance of losing a corner in the near future.{ Making the last move in an Othello game is advantageous, since it increasesone's own disc count while decreasing the number of opponent's discs. Paritygeneralizes this observation by considering last move opportunities for everyempty board region.In [1] it has been shown, that all of these features can be quickly approximatedby pattern con�gurations built upon a raw board representation. The chosenpatterns are shown in Fig. 7. Horizontal, vertical, and diagonal lines of length� 4 are included for covering mobility. The remaining patterns deal with the im-portant corner regions and edges. The evaluation function distinguishes 13 gamestages, depending on the number of discs on the board. Applying the techniquesdescribed in the previous sections, about eleven million scored training positionswere generated to �t approximately 1:5 million weights. This �gure takes weightsharing among symmetrical con�gurations into account. Starting with w(0) = 0,the weight �tting procedure took a Pentium II/333 CPU about 30 hours toreach an acceptable accuracy level after 250 iterations. Equipped with an eval-uation function very similar to that we have just described, Logistello beatthe human Othello World{champion 6{0 in August 1997 [2]. After four years ofsuccessful tournament play, Logistello ended its career in October 1997 witha straight 22{win victory in its last computer Othello tournament.Recently, the incorporation of larger patterns has improved the evaluationperformance. In the current implementation, con�guration weights are repre-sented as 16 bit integers. Storing weights for 10{square patterns in 13 at tablesthus requires 310 � 2 � 13 � 1:5 million bytes. Using the same approach for storingweights for much larger patterns is therefore out of the question. The �rst ex-periments with several sparse data access schemes based on binary search were

���� ����� ������ ��������������� �������� �������� ����������������� � ���������� ���������Fig. 7. Logistello's previous pattern set. Patterns that can be obtained by rotatingand mirroring the board have been omitted. Each diamond represents an atomic featuref with range f0; 1; 2g. f(p) is de�ned by the particular square contents (e.g. white disc7! 0, empty 7! 1, black disc 7! 2).A���������������� B���������������� C����������������Fig. 8. Large patterns tested. For each of these patterns the simpli�ed pattern versionof GenConf generated about 88,000 valid con�gurations (#E � 11 million, n = 75).All con�guration sets �t in hash{tables with about 310 thousand entries.disappointing. Increasing the program's knowledge by adding the patterns shownin Fig. 8 could not compensate for a slowdown of about 45%. Only after utilizingthe fast hash{table access scheme and adding just one of the three features, theprogram achieved its best performance so far. Table 1 summarizes the results ofall tournaments that have been played to evaluate each version. All games wereplayed by brute{force versions of Logistello running on Pentium II/333 PCs.On this hardware Logistello achieves a middle{game speed of approximately270K nodes/sec when the patterns shown in Fig. 7 are used. This speed enablesthe program to look 12{14 ply ahead in the opening and middle part of tenminutes games.The patterns presented in Fig. 8 were chosen based on both game and evalu-ation speed considerations. Human players frequently make use of their abilitiesto evaluate large disc formations which are not covered by the basic patterns.Of special interest are edge interactions and 2� 8{corner con�gurations. On theother hand, it is preferable to add patterns for which the index computation canmake use of already determined indices. The chosen 16{square patterns meet thispreference. Nevertheless, the results show, that the combined knowledge coded

Table 1. Tournament results. Logistello using the basic patterns played 434{gametournaments against several versions that | in addition | employed the large pat-terns shown in Fig. 8. The results indicate that speed matters. The strongest versionsare those that only use either pattern A or B. They beat the previous version signi�-cantly, although they are 11% slower. When playing at equal strength the best versiononly needs to search about 2/3 of the nodes | as the results of the time{handicaptournaments indicate.opponent time/game #nodes opponent results winning(minutes) (fraction) wins draws losses percentageA 10-10 0:89 213 58 163 55.8B 10-10 0:89 211 60 163 55.5AB 10-10 0:83 203 60 171 53.7ABC 10-10 0:8 211 49 174 54.3A 6-10 0:51 172 59 203 46.4A 7-10 0:62 183 55 196 48.5A 8-10 0:71 195 63 176 52.2in the new patterns does not compensate for the speed drop. This �nding indi-cates that a signi�cant improvement of a sequential program may not be possibleby adding further patterns based on the raw board representation. However, amore e�ective atomic features might exist which in combination outperform thecurrent evaluation function.7 Summary and DiscussionIn this paper a practical framework for the semi{automatic construction of eval-uation functions has been presented. Based on a generalized linear evaluationmodel | called GLEM | e�cient procedures have been developed for generat-ing training positions, exploring the feature space, and �tting feature weights.Rather than combining a few features by using complicated non{linear functions,we propose to construct evaluation functions by combining many | possiblymore than hundred thousand | features, which are boolean combinations ofatomic relations. This approach allows us to model non{linear e�ects directly,without the detour over analytic functions, and opens up practical ways for gen-erating features automatically. GLEM allows the program author to concentrateon the part of evaluation function construction, where humans excel: the dis-covery of fundamental positional features by reasoning about the game. GLEMsimpli�es this task because the exact feature formulation is no longer needed.The system is able to approximate complex features by combining atomic frag-ments. In this way, it is now possible for the programmer to speculate aboutfeature building blocks and to leave the creation of actually used features as wellas assigning weights to them to the system. One example for this strategy hasbeen presented in this paper: the observation that con�gurations can approxi-mate important Othello concepts combined with the \mechanical" analysis of

millions of training positions has produced an expert program capable of beatingany human player. An interesting fact is that the game knowledge encoded bythe set of over a million con�guration weights goes far beyond the features weintended the system to approximate in the �rst place [1]. This result encouragesthe application of GLEM to other games or even to search or decision problemsin other domains. Attractive candidates are chess and Go since both games arevery popular and well analyzed. And yet, for chess, hardware roughly equivalentto four thousand ordinary PCs is currently needed5 to compete with the humanWorld{champion. For Go the status is even worse because brute{force search isnot feasible due to the large branching factor. Since a good evaluation functionis not known either amateurs are still able to beat the best Go programs. It isour opinion that the key to better chess and Go programs lies in improved eval-uation functions. A starting point is the analysis of known features with regardto their approximation by weighted con�gurations as proposed by GLEM.The automatic construction of features has been studied by several authors.Utgo� [10] proposes a general evaluation function learner, called ELF, whichcombines the processes of constructing boolean feature combinations and weight�tting. This approach has been shown to be e�ective in small arti�cial problems,but could not convince in its application to checkers. The main problem ofELF is its low speed. Taking into account the large number of features neededfor an adequate evaluation in complex domains, and the resulting considerablee�ort for optimizing weights, it seems hopeless to combine feature constructionand weight �tting. Other approaches for constructing features or adapting thecombination function while �tting weights (e.g.Morph [5], meiosis networks [3],node splitting [11]), face similar complexity problems. Our solution is to separatethese tasks in order to speed{up the process and to give many opportunities foroptimization.References1. M. Buro. Experiments with Multi{Probcut and a new high{quality evaluationfunction for Othello. Workshop on Game{Tree Search, NEC Research Institute,1997.2. M. Buro. The Othello match of the year: Takeshi Murakami vs. Logistello. ICCAJournal, 20(3):189{193, 1997.3. S.J. Hanson. Meiosis networks. Advances in Neural Information Processing Sys-tems, pages 553{541, 1990.4. F. Hsu, S. Anantharaman, M.S. Campbell, and A. Nowatzyk. Deep Thought. InT.A. Marsland and J. Schae�er, editors, Computer, Chess, and Cognition, pages55{78. Springer Verlag, 1990.5. R.A. Levinson and R. Snyder. Adaptive pattern{oriented chess. In L. Birnbaumand G. Collins, editors, Proceedings of the 8th International Workshop on MachineLearning, pages 85{89, 1991.5 Deep Blue searched around 200 million nodes per second in the 1997 match withKasparov. Assuming a speed{up of four gained by using special purpose evaluationhardware and a speed of 200K nodes/sec of a state{of{the{art PC chess programleads to the given speed factor estimate.

6. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. NumericalRecipes, 2nd edition. Cambridge University Press, 1992.7. A.L. Samuel. Some studies in machine learning using the game of checkers. IBMJournal of Research and Development, 3(3):211{229, 1959.8. G. Tesauro. TD{Gammon, a self{teaching backgammon program, reaches master{level play. Neural Computation, 6(2):215{219, 1994.9. G. Tesauro. Temporal di�erence learning and TD{Gammon. Communications ofthe ACM, 38(3):58{68, 1995.10. P.E. Utgo�. Constructive function approximation. Technical Report 97{4, Univ. ofMass., 1997.11. M. Wynne-Jones. Node splitting: A constructive algorithm for feed{forward neuralnetworks. Neural Computing and Applications, 1(1):17{22, 1993.

