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Outline

� Evaluation function construction

� GLEM – Building pattern-based evaluations

� Application: Othello

� Future work
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Evaluation Function Construction

� EFs are used in look-ahead seach to assign 
heuristic values to leaf nodes if no perfect 
classification is available

� EFs correlated with optimization objective. E.g

� Expected/minimal distance to goal state

� Probability of winning 
(even in deterministic games? - yes!)

� Expected payoff

� Classic approach: add weighted features

� Trade-off: evaluation accuracy vs. speed
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Examples
� Chess: count pieces - fast!

� Material, mobility, King safety, pawn structure ...

� Add weighted features 

� w(delta-pawns) = 100

� w(delta-queens) = 990 ...

� Othello: evaluate parts of the board – fast!

� add 51 pre-computed pattern values

� Rubic's Cube: admissible heuristic

� Databases for solving sub-problems 
(lower bound on solution length)
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Two Problems

� Where do features come from?

� Usually provided by human experts

� What if there are no experts?

� What if the expert can't explain the feature s/he is 
using?

� What if human experts are weak in absolute terms?

� How to combine features?

� Linear, non-linear? What structure?

� How to assign weights to features?

Search in Function Space : Very Hard!
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Genetic Programming

� Breed LISP expressions (trees)
Atoms refer to state representation or 
provided features

� Maintain a pool of expressions

� Let the best ones generate offspring 
(“cross-over”, “mutation”)

� Remove weak performers

� Iterate
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Hybrid Approach

� Start with (simple) features
(could be raw state representation)

� Select evaluation model  
(e.g. linear, ANN, decision trees)

� Grow new features by combining previously 
generated features

� Select new relevant features

� Optimize numerical parameters

� Iterate if not satisfied
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GLEM

� Start with binary features
(as simple as “Is a black King on A1?”)

� Grow feature conjunctions

� Combine relevant features linearly

� Apply monotone squashing function 
to model saturation

� Optimize feature weights using linear 
regression
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Conjunctions

� Complete, can represent perfect evaluation

� Fast evaluation

� “only” 2^n feature combinations

� Natural non-linear feature interaction. E.g.

� F1 : (Black King on 8th rank)

� F2 : (White rook on 7th rank)

� F1 not correlated with winning

� F2 somewhat correlated with winning

� F1 & F2 much more correlated with winning
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Top Level: Linear + Squashing

� Fast evaluation

� Efficient weight optimization 
(Gradient based algorithms find global optimum)

� No need to apply squashing function during 
game-tree search: monotone!
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Generating Conjunctions

� Over-fitting?
(good fit on training data, but poor generalization)

� Ad hoc solution: Generate conjunctions that 
appear at least N times in the training set:

� Inductive algorithm, length 1,2,3...

� Post processing: remove conjunctions that are 
not correlated with winning

� Future work: 

� generate maximal conjunctions fast

� smarter handling of rare conjunctions
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Parameter Optimization

� Generate lots of training samples: 
(state, evaluation)

� Generate conjunctions

� Solve large (linear) regression problem

� regression takes care of feature correlation!

� Boot-strapping: iterate
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Application: 
Othello
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Patterns
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Fast 
Evaluation
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Logistello's Evaluation Function

� 13 game stages  (every 4 discs)

� Sum of 51 precomputed pattern value        
  Fast!  1.4 million evaluations/sec on Athlon 1666 MHz

� 1.5 million weights

� 17 million training positions

� Least squares takes 6 hours
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Future Work

� Better solution for rare configurations

� Weight bound depending on # of occurrence

� Automated pattern search

� Efficient implementation of large sparse 
patterns

� Non-linear top-level combinations

� Other applications: ataxx, backgammon, 
LOA, go ...


