
10/16/02 1

A Generalized Linear
Evaluation Model

Michael Buro
Department of Computing Science

University of Alberta

mburo@cs.ualberta.ca
http://www.cs.ualberta.ca/~mburo

10/16/02 2

Outline

� Evaluation function construction

� GLEM – Building pattern-based evaluations

� Application: Othello

� Future work

10/16/02 3

Evaluation Function Construction

� EFs are used in look-ahead seach to assign
heuristic values to leaf nodes if no perfect
classification is available

� EFs correlated with optimization objective. E.g

� Expected/minimal distance to goal state

� Probability of winning
(even in deterministic games? - yes!)

� Expected payoff

� Classic approach: add weighted features

� Trade-off: evaluation accuracy vs. speed
10/16/02 4

Examples
� Chess: count pieces - fast!

� Material, mobility, King safety, pawn structure ...

� Add weighted features

� w(delta-pawns) = 100

� w(delta-queens) = 990 ...

� Othello: evaluate parts of the board – fast!

� add 51 pre-computed pattern values

� Rubic's Cube: admissible heuristic

� Databases for solving sub-problems
(lower bound on solution length)

10/16/02 5

Two Problems

� Where do features come from?

� Usually provided by human experts

� What if there are no experts?

� What if the expert can't explain the feature s/he is
using?

� What if human experts are weak in absolute terms?

� How to combine features?

� Linear, non-linear? What structure?

� How to assign weights to features?

Search in Function Space : Very Hard!
10/16/02 6

Genetic Programming

� Breed LISP expressions (trees)
Atoms refer to state representation or
provided features

� Maintain a pool of expressions

� Let the best ones generate offspring
(“cross-over”, “mutation”)

� Remove weak performers

� Iterate

10/16/02 7

Hybrid Approach

� Start with (simple) features
(could be raw state representation)

� Select evaluation model
(e.g. linear, ANN, decision trees)

� Grow new features by combining previously
generated features

� Select new relevant features

� Optimize numerical parameters

� Iterate if not satisfied

10/16/02 8

GLEM

� Start with binary features
(as simple as “Is a black King on A1?”)

� Grow feature conjunctions

� Combine relevant features linearly

� Apply monotone squashing function
to model saturation

� Optimize feature weights using linear
regression

10/16/02 9

Conjunctions

� Complete, can represent perfect evaluation

� Fast evaluation

� “only” 2^n feature combinations

� Natural non-linear feature interaction. E.g.

� F1 : (Black King on 8th rank)

� F2 : (White rook on 7th rank)

� F1 not correlated with winning

� F2 somewhat correlated with winning

� F1 & F2 much more correlated with winning

10/16/02 10

Top Level: Linear + Squashing

� Fast evaluation

� Efficient weight optimization
(Gradient based algorithms find global optimum)

� No need to apply squashing function during
game-tree search: monotone!

10/16/02 11

Generating Conjunctions

� Over-fitting?
(good fit on training data, but poor generalization)

� Ad hoc solution: Generate conjunctions that
appear at least N times in the training set:

� Inductive algorithm, length 1,2,3...

� Post processing: remove conjunctions that are
not correlated with winning

� Future work:

� generate maximal conjunctions fast

� smarter handling of rare conjunctions
10/16/02 12

Parameter Optimization

� Generate lots of training samples:
(state, evaluation)

� Generate conjunctions

� Solve large (linear) regression problem

� regression takes care of feature correlation!

� Boot-strapping: iterate

10/16/02 13

Application:
Othello

10/16/02 14

Patterns

10/16/02 15

Fast
Evaluation

10/16/02 16

Logistello's Evaluation Function

� 13 game stages (every 4 discs)

� Sum of 51 precomputed pattern value
 Fast! 1.4 million evaluations/sec on Athlon 1666 MHz

� 1.5 million weights

� 17 million training positions

� Least squares takes 6 hours

10/16/02 17

Future Work

� Better solution for rare configurations

� Weight bound depending on # of occurrence

� Automated pattern search

� Efficient implementation of large sparse
patterns

� Non-linear top-level combinations

� Other applications: ataxx, backgammon,
LOA, go ...

