A Generalized Linear
Evaluation Model

Michael Buro
Department of Computing Science
University of Alberta

mburo@cs.ualberta.ca
http://www.cs.ualberta.ca/~mburo

10/16/02 1

Outline

* Evaluation function construction

* GLEM - Building pattern-based evaluations

* Application: Othello
* Future work

10/16/02 2

Evaluation Function Construction

* EFs are used in look-ahead seach to assign
heuristic values to leaf nodes if no perfect
classification is available

* EFs correlated with optimization objective. E.g
- Expected/minimal distance to goal state

- Probability of winning
(even in deterministic games? - yes!)

- Expected payoff
* Classic approach: add weighted features

* Trade-off: evaluation accuracy vs. speed
10/16/02 3

Examples

* Chess: count pieces - fast!

- Material, mobility, King safety, pawn structure ...

- Add weighted features
* w(delta-pawns) = 100
* w(delta-queens) = 990 ...

* Othello: evaluate parts of the board - fast!

- add 51 pre-computed pattern values
* Rubic's Cube: admissible heuristic

- Databases for solving sub-problems
(lower bound on solution length)

10/16/02 4

Two Problems

* Where do features come from?
- Usually provided by human experts
- What if there are no experts?

- What if the expert can't explain the feature s/he is
using?

- What if human experts are weak in absolute terms?
* How to combine features?

- Linear, non-linear? What structure?

- How to assign weights to features?

Search in Function Space : Very Hard!

10/16/02 5

Genetic Programming

Breed LISP expressions (trees)
Atoms refer to state representation or
provided features

* Maintain a pool of expressions
* Let the best ones generate offspring

(“cross-over”, “mutation”)
* Remove weak performers
* [terate

10/16/02 6

Hybrid Approach

* Start with (simple) features
(could be raw state representation)

* Select evaluation model
(e.g. linear, ANN, decision trees)

* Grow new features by combining previously
generated features

* Select new relevant features
* Optimize numerical parameters
* lterate if not satisfied

10/16/02 7

GLEM

* Start with binary features
(as simple as “Is a black King on A1?”)

* Grow feature conjunctions
* Combine relevant features linearly

* Apply monotone squashing function
to model saturation

* Optimize feature weights using linear
regression

e(p) = g(?wi-cz'(p))

10/16/02 8

Conjunctions

* Complete, can represent perfect evaluation
* Fast evaluation

* “only” 22n feature combinations

* Natural non-linear feature interaction. E.g.
- F1: (Black King on 8" rank)
- F2: (White rook on 7" rank)
- F1 not correlated with winning
- F2 somewhat correlated with winning
- F1 & F2 much more correlated with winning

10/16/02 9

Top Level: Linear + Squashing

* Fast evaluation
* Efficient weight optimization

(Gradient based algorithms find global optimum)

* No need to apply squashing function during

game-tree search: monotone! i

- 1.0

g(x1) > glaxs) & z1 > x9 f—
1 + 05
x —_—

f
10/16/02 10

Generating Conjunctions
* Over-fitting?
(good fit on training data, but poor generalization)

* Ad hoc solution: Generate conjunctions that
appear at least N times in the training set:

- Inductive algorithm, length 1,2,3...

* Post processing: remove conjunctions that are
not correlated with winning

* Future work:
- generate maximal conjunctions fast

- smarter handling of rare conjunctions
10/16/02 11

Parameter Optimization

* Generate lots of training samples:
(state, evaluation)

* Generate conjunctions

* Solve large (linear) regression problem

- regression takes care of feature correlation!

* Boot-strapping: iterate

10/16/02 12

Application: Sle
Othello 0
Starting Position (Black To Move)
@@l]e QOe0
000 ee00 0 e00e00
O eCe000 C|@O0I0I0I0
ceeee | [OeCe0Oo0
L eee - OIOIOOIOIOIO
oK eee o0 eee
Oee Cee
[1@) [] @)

White To Move
10/16/02 13

Patterns

< < <
Qo (o) < L]
< e < <
(o] < L] o]
Qo o (o)
< <
o]
diag8 hor./vert.2 hor./vert.3 hor./vert.4
e
<& Lol RelRedlolRelRodloRked
<o O O|O[O[O[O[O[<
[e] felRelie] felRelRe] (o3 (o]
<
<o
Lol
<

3—corner

© [
K

10/16/02 14

3x3-corner

evaluation table

_ —1.0
0000ee
000000 0.3
0000000 e
(Jelel Jeil) J{]
000 0eee
oK eee
Ol Ve ee
o]/0/)(0)61 I SR —
\\\ configuration 4 w;
Fast S
. T 12
Evaluation

39 = 19683 entries 10/16/02 15

Logistello's Evaluation Function

13 game stages (every 4 discs)

Sum of 51 precomputed pattern value
Fast! 1.4 million evaluations/sec on Athlon 1666 MHz

1.5 million weights
17 million training positions
Least squares takes 6 hours

10/16/02 16

Future Work

* Better solution for rare configurations

- Weight bound depending on # of occurrence
* Automated pattern search

* Efficient implementation of large sparse

patterns

* Non-linear top-level combinations

* Other applications: ataxx, backgammon,

LOA, go ...

10/16/02 17

