
Abstract Reasoning for Multiagent Coordination and

Planning

by

Bradley J. Clement

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2002

Doctoral Committee:
Professor Edmund H. Durfee, Chair
Professor John E. Laird
Professor Martha E. Pollack
Professor William C. Rounds
Professor Chelsea C White III

ABSTRACT

Abstract Reasoning for Multiagent Coordination and Planning

by

Bradley J. Clement

Chair: Edmund H. Durfee

As autonomous software and robotic systems (or agents) grow in complexity, they

will increasingly need to communicate and coordinate with each other. These agents will

need planned courses of action to achieve their goals while sharing limited resources.

This dissertation addresses the problem of efficiently interleaving planning and coordi-

nation for multiple agents.

As part of my approach, I represent agents as having hierarchies of tasks that can

be decomposed into executable primitive actions. Using task hierarchies, an agent can

reason efficiently about its own goals and tasks (and those of others) at multiple levels

of abstraction. By exploiting hierarchy, these agents can make planning and coordi-

nation decisions while avoiding complex computation involving unnecessary details of

their tasks.

To reason at abstract levels, agents must be aware of the constraints an abstract task

embodies in its potential decompositions. Thus, I provide algorithms that summarize

these constraints (represented as propositional state conditions and metric resource us-

ages) for each abstract task in an agent’s library of hierarchical plans. This summary

information can be derived offline for a domain of problems and used for any instance of

tasks (or plans) assigned to the agents during coordination and planning. I also provide

algorithms for reasoning about the concurrent interactions of abstract tasks, for identify-

ing conflicts, and for resolving them.

I use these algorithms to build sound and complete refinement-based coordination

and planning algorithms. I also integrate summary information with a local search plan-

ner/scheduler, showing how the benefits can be extended to different classes of planning

algorithms. Complexity analyses and experiments show where abstract reasoning using

summary information can reduce computation and communication exponentially along

a number of dimensions for coordination, planning, and scheduling in finding a single

agent’s plan or in optimally coordinating the plans of multiple agents. In addition, I pro-

vide pruning techniques and heuristics for decomposition that can further dramatically

reduce computation. Overall, the techniques developed in this thesis enable researchers

and system designers to scale the capabilities of interleaved coordination, planning, and

execution by providing agents with tools to reason efficiently about their plans at multiple

levels of abstraction.

c Bradley J. Clement 2002
All Rights Reserved

To Heather, who gave the most to make this happen.

ii

ACKNOWLEDGMENTS

Work reported in this thesis was supported by grants from NSF and DARPA while I

worked as a graduate student and also by NASA when I joined the Artificial Intelligence

Group at the Jet Propulsion Laboratory, California Institute of Technology. Ed Durfee,

my adviser, provided the gentle guidance I needed to channel my efforts in the right

direction. His idea of using summary information for coordination is the foundation for

this dissertation.

The work on metric resource reasoning and experiments in the ASPEN Planning Sys-

tem was performed jointly with Tony Barrett and Gregg Rabideau at JPL. Tony helped me

characterize the metric resource summarization algorithm, and Gregg helped me set up

experiments to evaluate abstract reasoning within ASPEN. Both Gregg and Rus Knight

helped me integrate abstract reasoning into ASPEN. I thank Steve Chien and the rest of

the Artificial Intelligence Group for accommodating me during the last year of effort on

my Ph.D.

At the University of Michigan, Pradeep Pappachan helped me with related work and

provided many of the data structures upon which the implementation of my algorithms

rests. I am also grateful to Jeff Cox and Thom Bartold for helping construct demon-

strations of the software and suffering through Grid problems with me. Chris Brooks

and Eric Klavins have provided a lot of feedback and suggestions along the way. I also

thank my committee (John Laird, Martha Pollack, Bill Rounds, and Chip White) and

Mike Wellman for their valuable comments. I am also indebted to Terence Kelly, who

introduced me to LATEX.

Of course, this dissertation would not exist without the support of my wife, Heather,

our family, and friends. I am grateful for their encouragement and patience during this

challenging time.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF APPENDICES . x

Part I Motivation and Foundations 1

CHAPTERS

1 Introduction . 2
1.1 Problem Statement . 4
1.2 Manufacturing Example . 6
1.3 Summary of Approach and Results 8

1.3.1 Summary of Approach 8
1.3.2 Example . 14
1.3.3 Contributions . 16

1.4 Overview . 19

2 Background and Related Work . 21
2.1 Multiagent Coordination . 21
2.2 Plan Merging . 25
2.3 Planning . 26

2.3.1 Refinement and Local Search Planning 27
2.3.2 Hierarchical Planning 29

2.4 Summary of Related Work . 32

3 A Model of Hierarchical Plans and their Concurrent Execution 33
3.1 Example to Motivate Formalization 34
3.2 CHiPs . 35

iv

3.3 Executions . 38
3.4 Histories and Runs . 39
3.5 Asserting, Clobbering, Achieving, and Undoing 43
3.6 External Conditions . 44
3.7 Resource Usage . 46
3.8 Summary of Representations 47

4 Plan Summary Information . 49
4.1 Deriving Summary Conditions 50
4.2 Proving the Properties of Summary Conditions 55
4.3 Supporting Mechanisms . 55

4.3.1 Algorithms for computing interval relations 56
4.3.2 Summarizing, requiring, and attempting to assert sum-

mary conditions . 57
4.3.3 Definitions and algorithms for must/may asserting sum-

mary conditions . 60
4.3.4 Definitions and algorithms for must/may clobber, achieve,

and undo . 66
4.4 Summary Resource Usage . 71

4.4.1 Representation . 72
4.4.2 Resource Summarization Algorithm 74

4.5 Summary of Formalisms . 77

5 Identifying Threats at Abstract Levels 79
5.1 Summary Conditions . 79
5.2 Summary Resource Usage Conflicts 84
5.3 Summary of Foundations . 84

Part II Multiagent Coordination 87

6 Coordination Algorithm and Analyses 88
6.1 Coordinating from the Top Down 88
6.2 Search Techniques and Heuristics 95
6.3 Coordination Performance and Complexity 98

6.3.1 Improving the Performance of Search and Execution . . 98
6.3.2 Complexity of Summarization and Finding Abstract So-

lutions . 100

7 Performance Experiments and Applications 104
7.1 Evacuation Experiments . 105
7.2 Manufacturing Experiments . 111
7.3 Multi-Level Coordination of Military Coalitions 117

7.3.1 Multi-Level Coordination Agent 117
7.3.2 Coordinating Coalitions in Binni 118

v

7.3.3 Integrated Binni Demonstration 121

Part III Planning 124

8 Concurrent Hierarchical Planning . 125
8.1 A Concurrent Hierarchical Refinement Algorithm 125
8.2 Abstraction in Iterative Repair Planning 126

8.2.1 Decomposition Heuristics for Iterative Repair 128
8.2.2 Scheduling Complexity 129

9 Mars Rovers Experiments . 133
9.1 Problem Domains . 133
9.2 Empirical Results . 135
9.3 Comparing Refinement and Iterative Repair Planning 141

Part IV Conclusions and Future Directions 145

10 Contributions and Results . 146
10.1 Summary Information . 146
10.2 Coordination and Planning Algorithms 147
10.3 Decomposition Search Techniques and Heuristics 148
10.4 Complexity Analyses and Experiments 149

11 Future Directions . 152

APPENDICES . 158

BIBLIOGRAPHY . 182

vi

LIST OF TABLES

Table
4.1 Table for must-assert by/before algorithm 61
4.2 Table for may-assert by/before algorithm 62
4.3 Table for must/may-assert in algorithm 64
4.4 Table for must/may-assert when algorithm 65

vii

LIST OF FIGURES

Figure
1.1 A simple example of a manufacturing domain 6
1.2 The production manager’s hierarchical plan 7
1.3 The facilities manager’s hierarchical plan 7
1.4 The inventory manager’s hierarchical plan 8
1.5 Tradeoffs of coordinating at multiple levels 12
3.1 The production and facilities managers’ conflicting plan executions 40
3.2 Interval interactions of plan steps . 45
4.1 Subactivities’ intervals covering their parent’s interval 58
4.2 The production and facilities managers’ plans partially expanded 63
4.3 Example map of established paths between points in a rover domain . . . 72
4.4 and/or tree defining abstract tasks . 73
4.5 Possible task ordering for a rover’s morning activities, with resulting

subintervals. 76
5.1 The top-level plans of each of the managers for the manufacturing domain 82
5.2 :MSW is not complete for partially ordered CHiPs 83
6.1 A concurrent hierarchical coordination algorithm. 91
6.2 ApplyOperator subprocedure for expanding a search state. 92
6.3 Decompose subprocedure of ApplyOperator(). 93
6.4 EMTF heuristic resolving conflicts by decomposing the maintenance plan 96
6.5 Tradeoffs of computation and execution costs 99
6.6 Complexity of threat identification and resolution at abstract levels 102
7.1 Evacuation problem . 106
7.2 The plan hierarchy for transport t1 . 107
7.3 FTF-EMTF vs. FTF-RAND in searching for optimal solutions for 24

problems . 108
7.4 FTF-EMTF vs. FTF-ExCon in searching for optimal solutions 109
7.5 FTF-RAND vs. DFS-RAND in searching for optimal solutions 109
7.6 FTF-EMTF vs. FAF-FAF in searching for optimal solutions 110
7.7 FTF-EMTF vs. DFS-ExCon in searching for optimal solutions 111

viii

7.8 Delay of communicating different granularities of summary information
with varying latency . 113

7.9 Delay of communicating different granularities of summary information
with varying bandwidth. 114

7.10 Delay with varying latency for hypothetical example 115
7.11 Delay with varying bandwidth for hypothetical example 116
7.12 UN forces in Binni . 119
7.13 Window for selecting coordination solutions 120
7.14 Multiagent simulator . 121
7.15 Binni, a fictional city-state in Africa . 122
7.16 Solution selection window . 123
8.1 Schedule of n task hierarchies each with c constraints on v variables . . . 130
9.1 Randomly generated rectangular field of waypoints 134
9.2 Randomly generated waypoints along corridors 134
9.3 Plots for the no channel, mixed, and channel only domains 136
9.4 CPU time for solutions found at varying depths 138
9.5 Performance using the FTF heuristic . 139
9.6 Performance of EMTF vs. level-decomposition heuristics 141
9.7 Performance of summary information with aggregation vs. myopic 143

ix

LIST OF APPENDICES

APPENDIX
A Summary Conditions for Selected CHiPs 159
B Soundness and Completeness Proofs for Must/May Assert, Clobber,

Achieve, and Undo . 162
C Proof of Summary Information Properties 170
D Soundness and Completeness Proofs for CanAnyWay and MightSomeWay 174
E THREAT RESOLUTION is NP-complete 180

x

PART I

Motivation and Foundations

1

CHAPTER 1

Introduction

As the world becomes more automated, single autonomous systems will increas-

ingly need to communicate and coordinate with each other. In manufacturing, multiple

spacecraft operation, and multi-objective military operations, goals of different decision-

making entities (or agents) interact and require coordination. These agents may compete

for common resources, such as parts and tools, physical space, a spacecraft’s instrument,

a common communication channel, an airport, transports, etc. In order to coordinate

their actions, these agents must reason about both their individual and combined actions

in several ways.

A single agent itself can have competing goals requiring the agent to carefully plan

its actions. For example, a manufacturing agent may need to perform maintenance on

machines that the agent is also using to manufacture parts from other parts. The agent

must be careful not to plan maintenance on a machine at the same time it uses the machine

to manufacture parts. Otherwise, the agent may damage the machine or the parts.

In addition to avoiding conflicts, an agent often also needs to plan its actions to effi-

ciently achieve its goals. The manufacturing agent may have a deadline for manufacturing

certain parts or may maximize profit by increasing throughput. If the agent can manu-

facture parts on some machines while performing maintenance on others, the agent can

achieve its goals sooner.

At the same time, an agent must spend time to develop its plan. If an agent takes

too much time planning, it may not have enough time to execute the plan. However,

less efficient plans are often easier to discover than optimal plans, so an agent needs to

both plan efficiently and balance its planning time with plan quality. If the manufacturing

2

agent spends an appropriate time searching for efficient plans, it can ensure that it meets

deadlines while minimizing the profit it sacrifices in foregoing an optimal plan.

If an agent must share resources with other agents, the agent may not be able to

achieve its goals unless it coordinates with others. The manufacturing agent may be

using parts that another inventory agent needs to move on and off the floor of the factory

to meet shipping requirements. If the inventory does not move certain parts onto the floor

early enough, the manufacturing agent’s plan may not be feasible. Thus, not only do

interacting agents need to be able to coordinate their plans to avoid conflicts, the agents

need to be able to be able to make coordination decisions quickly while still ensuring that

they can accomplish their goals efficiently.

However, first the agents must be able to recognize whether they need to coordinate,

with whom they should coordinate, and over which resources they should coordinate.

Thus, an agent must be aware of what resources it potentially uses to achieve its goals.

The agent must also be aware of the needs and effects of other agents’ actions to iden-

tify conflicts over shared resources. If these resource constraints are not communicated

explicitly (maybe by inferring the constraints from the perceived actions of others), the

agents may lack certain information, making coordination more difficult. The agents

will also need to know when and how much of the resource each other uses in order to

understand when conflicts arise.

Because interacting agents can execute their actions concurrently, they also need to

be able to represent and reason about the temporal relationships of their actions. If the

inventory agent is in the middle of transporting a part, the manufacturing agent cannot

use that part until it is released by the inventory agent. Coordination may also require that

agents reason about the durations of their actions. This is often necessary in spacecraft

domains. If a Mars rover has a short window of opportunity to communicate with an over-

passing orbiter, the two will need to carefully plan what information will be transmitted

and the time that each transmission will take.

In addition, agents need mechanisms for resolving conflicts over shared resources.

Such a mechanism may decide who gets to use a resource first or how much of the re-

source each agent receives. Another kind of coordination decision is choosing among

optional methods for achieving a goal. If Mars rovers have optional paths to reach their

intended destinations, they should coordinate their choices of paths to avoid collision

3

while minimizing the distance they each travel.

This thesis addresses this problem of coordinating a group of agents that have either

developed or need to develop plans to achieve their own separate goals.

1.1 Problem Statement

When agents try to concurrently accomplish separate goals in a shared environment

with limited resources, they may need to coordinate and/or plan their actions carefully

to avoid conflicts that could prevent them from reaching their goals. The agents may not

know the plans, goals, or capabilities of others, but I assume that they can communicate

these in a common language. For example, if one agent uses a transport resource called

“transport1,” the other agents agree on which specific transport resource that is, but they

may not initially know how or when that transport will be used. Some agents may have

already developed plans to meet their goals, and others may still need to plan for their

goals.

The agents may also have preferences over alternative sequences and timings of states

in the executions of their planned actions. I assume that these preferences can be elicited

from some utility or cost function. The agents may associate great costs with plan failure

(e.g. lives at stake in military operations), in which case if solutions exists, the agents

must find one.

In addition, because the environment in which the agents must execute their plans is

often uncertain, the agents cannot always guarantee that one particular course of action

will achieve their goals. The agents also may not have time to replan their actions when

one action fails. Thus, agents may need to plan for alternative courses of action to han-

dle different potential environmental contexts and provide some means to recover from

failure.

So, I propose to solve the problem of efficiently finding preferable elaborations or

modifications to plans for a group of agents that will accomplish the goals of the agents

and provide flexibility to handle an uncertain environment.

Thus, in essence, the coordination problem I address has the following characteristics:

� the agents have individual goals that require them to carefully plan their actions

before execution;

4

� the agents have a shared environment with limited resources that are needed to

accomplish their goals;

� the agents do not initially know the intentions of others;

� the agents’ rewards depend on how and when they accomplish their goals (i.e.

on the sequences and timings of states they witness while executing their planned

actions); and

� unexpected events can cause agents’ actions to fail.

The agents cannot always maximize their rewards for a particular coordination scenario.

For example, if agents must accomplish their goals quickly, there may not be time to find

optimally efficient coordinated plans. A general approach should have mechanisms that

permit explicit tradeoffs between competing objectives. So, a coordination mechanism

should allow agents to either sacrifice plan quality in order to reach agreement on their

plans quickly or delay execution to find better ways to coordinate their plans.

This problem assumes that the agents need to develop their plans independently.

Manufacturing agents working together in a factory may have different responsibilities,

and the agents will receive separate rewards for achieving their goals even though some

amount of cooperation is required to avoid conflicts. Thus, the agents may wish to de-

velop their own plans to best achieve their own goals. The agents also may have physical

restrictions that prohibit them from communicating their potential goals and plans. For

example, a Mars rover and an orbiter may have a limited communication window (a

few minutes in a day) for coordinating their science and communication needs. Because

most of the information needed for determining capabilities and goals and for planning

to achieve the goals is physically separate, planning is best done separately before the

coordination window. Even if the rover could communicate its states and goals to the or-

biter, the orbiter may not have the computation power to centrally plan for both of them

in a reasonable amount of time. In addition, in military domains communicating all rele-

vant information may present a large security hole. Therefore, interacting agents need to

be able to develop separate plans when the agents are self-interested, the information is

physically distributed, parallel processing is warranted, or the information must remain

private. Because some of these constraints are limits on communication, the agents may

additionally need to minimize communication costs during coordination.

5

bin2 bin3 bin4bin1

M1 M2

B C

dock

A tool

D

E

transport2
transport1

Figure 1.1: A simple example of a manufacturing domain

The foundations in this first part of the thesis apply to both coordination and single-

agent planning problems. While Part II focuses on multiagent coordination, Part III ad-

dresses the single-agent planning problem specifically.

1.2 Manufacturing Example

The following example illustrates a particular problem to motivate this work and will

be used throughout this work. Consider a manufacturing plant where a production man-

ager, a facilities manager, and an inventory manager each have their own goals and have

separately constructed hierarchical plans to achieve them. However, they still need to

coordinate over the use of equipment, the availability of parts used in the manufacturing

of other parts, storage for the parts, and the use of transports for moving parts. The state

of the factory is shown in Figure 1.1. In this domain agents can produce parts using ma-

chines M1 and M2, service the machines with a tool, and move parts to and from the

shipping dock and storage bins on the shop floor using transports. Initially, machines M1

and M2 are free for use, and the transports (transport1 and transport2) and all of the parts

(A through E) shown in their storage locations are available.

The production manager is responsible for creating a G and an H part using machines

M1 and M2. Both M1 and M2 can consume parts A and B to produce G. M2 can also

produce H from G. The production manager’s hierarchical plan for manufacturing H in-

volves using the transports to move the needed parts from storage to the input trays of

the machines, manufacturing G and H, and transporting H back to storage. This plan is

shown in Figure 1.2. Arcs through subplan branches mean that the conjunction of sub-

plans must be executed. Branches without arcs mean that only one plan must be executed

6

produce G

produce Gproduce G
on M1 on M2

build Gmove A&B
to M2

move A to M2 move B to M2

move G
to M2 build H

move H
to bin1

produce H

produce H from G

Figure 1.2: The production manager’s hierarchical plan

maintenance

service M1 M2 service M2 M1

calibrate M1equip M1 tool
to M1

move tool

service M1 service M2
to dock

move tool

Figure 1.3: The facilities manager’s hierarchical plan

successfully to achieve the goal of the parent. The decomposition of produce G on M1

is similar to that of produce G on M2.

The facilities manager must service each of these machines by equipping it with a tool

and then calibrating it. The machines are unavailable for production while they are being

serviced. The facilities manager’s hierarchical plan branches into choices of servicing

the machines in different orders and uses the transports for getting the tool from storage

to the machines (Figure 1.3). The decomposition of service M2M1 is similar to that of

service M1M2.

The parts must be “available” on the space-limited shop floor in order for an agent to

use the machines to produce them. Whenever an agent moves or uses a part, it becomes

unavailable. The inventory manager’s goal is just to move part C to the dock and move D

and E into bins on the shop floor (shown in Figure 1.4).

So what aspects of this problem map to the one described in the previous section? I

outline them to correspond to the previously listed characteristics:

� The managers’ plans use common resources, requiring them to coordinate or risk

7

move D&Emove C to dock

move E to bin4move D to bin3

move_parts

Figure 1.4: The inventory manager’s hierarchical plan

resource conflicts leading to failure of achieving their goals.

� The managers developed their own plans and are ignorant of the intentions of the

others.

� It may be that unless the managers quickly find plans that execute with the most

concurrency, costs for unused resources and reduced throughput will cause profit

loss.

� If the machine upon which the production manager builds part G unexpectedly

fails, and the coordinated plans do not allow G to be built on the other machine,

then the managers may not have time to replan their actions, resulting in plan failure

and profit loss.

1.3 Summary of Approach and Results

Here I introduce my approach to the coordination and planning problem, introduce

terminology used throughout the thesis to show how the approach applies to the example

in the previous section, and describe the contributions of this work.

1.3.1 Summary of Approach

In short, my approach to solving the problem stated in Section 1.1 is to provide rep-

resentations and algorithms for reasoning abstractly about the concurrent interactions of

agents’ plans that can leverage and extend the capabilities of different kinds of existing

planning, scheduling, and execution systems. I provide agents with mechanisms that al-

low them to quickly reason at abstract levels so that they can make good decisions in the

8

planning/coordination process when computation time is limited.1

While multiagent research has proposed many models of an agent, this dissertation

draws on mature research in planning and scheduling to represent the capabilities of an

agent, to model the environment with which the agent interacts, and to leverage algo-

rithms for efficiently manipulating an agent’s intended actions. Planning and scheduling

research aims to provide general, robust, and efficient representations and algorithms for

deciding what course of actions an agent can take to achieve a set of potentially con-

flicting objectives based on its current context. These actions are commonly represented

according to the constraints and effects they have on states and resources describing the

agent and its environment. Based on this information and the initial state of the environ-

ment, the planning problem is finding a sequence of actions that manipulate the state of

the environment in a way that achieves a goal state and avoids violating the actions’ con-

straints. By basing my approach to coordination on planning, the coordination problem

additionally involves recognizing the need to resolve conflicts, identifying what needs to

be resolved, identifying which agents should be involved, and finding ways to resolve

their conflicts.

A hierarchical plan representation provides a domain expert a natural way of speci-

fying multiple courses of action for an agent to achieve an abstract goal or perform an

abstract task. Although the complexity of planning is intractable in general [Bylander,

1994], hierarchical representations promise the ability to solve problems efficiently by

localizing subproblems and solving them in a divide-and-conquer manner. Another ad-

vantage is that an algorithm can reason about the problem at abstract levels and avoid

more tedious manipulation of details deeper in the problem hierarchy. A group of agents

can employ hierarchical task structures for efficient coordination. A central coordinating

agent can use hierarchical planning techniques (see Section 2.3.2) to search for consistent

coordinated plans by reasoning about the combined task hierarchies of the agents. Thus,

my approach focuses on exploiting hierarchical plans.

My representation of concurrent hierarchical plans (called CHiPs) extends that of

HTNs (Hierarchical Task Networks) [Erol et al., 1994a] to include time durations as well

as constraints and effects that occur during execution in addition to just preconditions
1However, I do not solve the problem of taking into account expected planning/coordination time in

order to meet real time constraints.

9

and effects. The purpose of this is to enable agents to reason about concurrent execution.

The representation allows algorithms to detect and resolve conflicts between plans whose

execution intervals have relations such as overlaps or during. Because CHiPs (and HTNs)

are based on the STRIPS representation [Fikes and Nilsson, 1971], which is subsumed by

the representations of almost all current planners, the techniques introduced in this thesis

can be applied to many planning systems.

These conditions and effects are conjunctions of constraints on propositional state

variables. I do not represent disjunctive effects or universal quantification. I provide a

discussion of the use of variables in predicates in Section 4.1, but they are not included

in the formalisms of this thesis. These limitations in representational expressiveness are

topics for future work.

The motivation for using hierarchical representations is not simply to make coor-

dination and planning more efficient, but also to support another crucial application of

hierarchical task concepts—specifically, flexible plan execution systems, such as PRS

[Georgeff and Lansky, 1986], UMPRS [Lee et al., 1994], RAPS [Firby, 1989], JAM

[Huber, 1999], etc., that similarly exploit hierarchical plan spaces. These systems use

hierarchical task representations similar to CHiPs and HTNs.2 Rather than refine abstract

tasks into a detailed end-to-end plan, these systems interleave refinement with execution.

By postponing refinement until absolutely necessary, such systems leave themselves flex-

ibility to choose refinements that best match current circumstances. However, this means

that refinement decisions at abstract levels are made and acted upon before all of the

detailed refinements need be made. If such refinements at abstract levels introduce un-

resolvable conflicts at detailed levels, the system ultimately gets stuck part way through

a plan that cannot be completed. While backtracking to a decision point higher up in

a task hierarchy is possible for an offline planner (since no actions are taken until plans

are completely formed), it might not be possible when some (irreversible) plan steps have

already been taken. It is therefore critical that the specifications of abstract plan operators

be rich enough to summarize all of the relevant refinements to anticipate and avoid such

conflicts. As a foundation for this thesis, I formally characterize methods for deriving

and exploiting such rich summaries to support interleaved local planning, coordination,
2They also provide representations for iteration and monitoring. CHiPs do not include these language

elements. Iteration loops, for example, would need to be unrolled into a multiple CHiP instantiations.
Handling these representations is a subject of future work.

10

and execution.

To this end, I introduce algorithms to summarize the constraints and effects of tasks in

the decomposition of an abstract task. This information captures the uncertainty of con-

ditions for alternative decompositions (or branches) by keeping track of whether the con-

ditions must or may hold in the abstract plan.3 This information also captures uncertainty

in the timing of conditions, whether these summary conditions hold at the beginning, at

the end, sometimes (during execution), or always (throughout execution). Based on a

model of concurrent hierarchical plan execution, the algorithm for computing summary

conditions is proven sound and complete.4

In order for this work to apply to a wider class of planners and problem domains, I

also give a representation of summarized metric resource usage and an algorithm to com-

pute it for an abstract task. This represents the uncertainty in the amount and timing of

usage with ranges of values for the minimum and maximum usages during execution and

following execution. These summarization algorithms can be run offline to preprocess a

library of hierarchical plans for a domain.

Sub-procedures of the summarization algorithms for both the summary conditions

and summary resource usage determine interactions between abstract or primitive (non-

abstract) tasks. These interactions describe how constraints are established and violated

in other tasks. Thus, these procedures can be used to detect a conflict between a pair of

tasks and changes that can resolve the conflicts. These changes involve eliminating or

selecting alternative subtasks in an or branch and adding temporal constraints on the task

intervals. The procedures culminate in a sound and complete algorithm (CanAnyWay)

to determine whether a set of partially ordered tasks (abstract or primitive) are conflict

free or may have conflicts. Another algorithm (MightSomeWay) can detect unresolvable

conflicts soundly in set of partially ordered tasks and soundly and completely in a set of

totally ordered tasks.

These algorithms can be integrated into a coordinator, planner, or scheduler so that

conflicts can be resolved at abstract levels. As illustrated in Figure 1.5, by finding coordi-
3I often use “plan” for “task” in this thesis since an abstract task is a subgoal that is achieved by the

plan induced by its refinement. Thus, a hierarchical plan can be decomposed into other hierarchical plans
(subplans) for its subgoals.

4Soundness is the property of an algorithm that only generates solutions that achieve the algorithm’s
objective. Completeness is the property that if such solutions exist, the algorithm will generate one. Sound-
ness and completeness, as used in this thesis, is explained in greater detail in [Russell and Norvig, 1995].

11

coordination
levels

crisper
coordination

lower cost

more
flexibility

Figure 1.5: Tradeoffs of coordinating at multiple levels

nated plans at higher levels of abstraction, computation is minimized, and decomposition

choices are preserved to enable robust execution systems to flexibly control and monitor

an agent’s actions in varying contexts while reacting to unexpected events and failed ac-

tions. At the same time, the ability to coordinate and plan at lower levels of abstraction

enables an algorithm to find potentially better solutions by more crisply (or concurrently)

synchronizing detailed actions. I present a sound and complete hierarchical coordination

algorithm based on summary conditions that searches for coordinated plans by interleav-

ing conflict resolution with refinement of the agents’ plan hierarchies from the top down.

The algorithm searches for preferable elaborations or modifications to the hierarchical

plans of a group of agents that will accomplish the highest-level goals of the agents.

These modifications include

� eliminating subtask choices for achieving higher-level goals or tasks and

� placing additional ordering constraints on primitive or abstract tasks within or

across plan hierarchies.

For this algorithm, I assume that the plan hierarchies represent all feasible orderings of

actions that the agents can take.5 I analyze the complexity of the search algorithm at dif-

ferent levels of abstraction to evaluate the effectiveness of this approach, and I investigate

how the cost of combined computation and execution can be optimized by coordinating

at multiple levels of abstraction.
5Thus, just as in HTN planning [Erol et al., 1994a], I do not consider modifying plans by inserting

additional actions into the hierarchies (except for synchronization actions to enforce ordering constraints).
However, there are no assumptions in the representations and algorithms upon which this coordinator builds
that precludes their use within a planner that elaborates plans by inserting actions.

12

I also present search techniques for guiding the decomposition of the hierarchies,

pruning the search space at abstract levels, and maximizing the utility of individuals or

of a group of agents. I evaluate the heuristics for their effectiveness against state-of-

the-art HTN planning heuristics in the application of the coordination algorithm to an

evacuation domain. Other experiments in the manufacturing domain show how a domain

designer can reduce communication overhead exponentially during coordination based

on bandwidth, latency, and the level at which solutions are commonly found.

This thesis also investigates the use of summary information within different classes

of single-agent planners. The coordination algorithm is altered to serve as a hierarchical

refinement planning algorithm. I also integrate summary information into a local search

planner/scheduler. I explore differences in complexity for the two kinds of planners and

compare these to experiments in a multi-rover domain with a local search planner.

In showing the applicability of this approach to coordinating the plans (or planning)

of a group (or single) agents, I demonstrate the coordination and planning in several

problem domains. I apply the refinement-based coordination algorithm to an evacuation

domain, where transports must bring evacuees from different locations back to safety

points. I also apply the algorithm to coordinate the manufacturing agents described in

Section 1.2. In addition, I describe how to wrap the coordination algorithm into an agent

that continually coordinates requesting client agents in episodes. This multi-level co-

ordination agent (MCA) is integrated with other agent-based technologies in a fictional

military coalition scenario where the United Nations must maintain peace between na-

tions warring over a territory in Africa. Finally, I apply abstract reasoning within ASPEN

[Chien et al., 2000b], an iterative repair planner, to schedule the actions of a team of

rovers in a potential Mars surface exploration mission.

This dissertation does not study alternative coordination and negotiation protocols.

There are already many techniques (e.g. voting, market mechanisms, . . .) that could

be used for negotiating over candidate coordinated plans (merged plans of a group of

agents). Instead, I focus on recognizing the need to resolve conflicts, identifying what

needs to be resolved, identifying which agents should be involved, and finding candidate

solutions for different settlements. My approach enables agents to make tradeoffs among

their competing objectives (e.g. minimizing computation, maximizing utility, preserving

flexibility), but specific protocols are used to determine how agents make these tradeoffs.

13

This thesis also does not offer new methods for reactive execution. Instead, I show how

agents can reason abstractly to preserve plan flexibility for existing execution systems to

exploit.

1.3.2 Example

Here I show how my approach applies to the manufacturing problem example of

Section 1.2 and informally introduce terminology used throughout the dissertation.

Suppose that the factory managers in the example wish to coordinate their plans. Each

agent could have preprocessed its plan to derive summary information for every abstract

plan operator in the hierarchy. For a particular abstract plan, this information includes

the summary pre-, post-, and inconditions that correspond to the external preconditions,

external postconditions and internal conditions respectively of the plan based on its po-

tential refinements. Below I show a subset of the summary conditions for the production

manager’s top-level plan. (I give the complete set of summary conditions for many of the

managers’ plans in Section 4.1 and Appendix A.) Following each literal are modal tags

for existence and timing information. “Mu” is must; “Ma” is may; “F” is f irst; “L” is

last; “S” is sometimes; and “A” is always.

Production manager’s produce H plan:

Summary preconditions:

available(A)MuF, available(M1)MaS, available(M2)MaS

Summary inconditions:

available(M1)MaS, available(M2)MuS, available(G)MuS, :available(A)MuS,

available(A)MuS, :available(M1)MaS, :available(M2)MuS, :available(G)MuS,

available(H)MuS, :available(H)MuS

Summary postconditions:

:available(A)MuS, available(M1)MaS, :available(G)MuS, available(M2)MuS,

available(H)MuL

I now describe the meaning of some of these conditions and how they are derived. I

revisit this example is Section 4.1, where the derivation is fully explained. available(M2)

is a must precondition of the top-level plan, produce H, because no matter how the hi-

erarchy is decomposed, M2 must be used to produce H, so available(M2) must be es-

14

tablished externally to the production manager’s plan. However, available(M1) is a may

precondition because the production manager may not use M1 if it chooses to use M2

instead to produce G. available(A) is a f irst summary precondition because part A is

needed at the beginning of execution when it is transported to one of the machines. Since

the machines are not needed at the very beginning when parts are being transported, they

are not f irst but sometimes conditions since they are needed at some point in time during

execution.

available(G) is not an external precondition because, although G is needed to pro-

duce H, G is supplied by the execution of the produce G plan. Thus, available(G) is met

internally, making available(G) an internal condition. Another summary incondition

(representing an internal need or effect) of produce H is available(M1). available(M1)

is an external precondition, an internal condition, and an external postcondition because

it is needed externally and internally; it is an effect of produce G on M1 which releases

M1 when it is finished; and no other plan in the decomposition undoes this effect. It

is a may condition because G may be manufactured on M2. :available(M1) is also

a summary incondition of produce H because M1 may be used to produce G. Having

both available(M1) and :available(M1) as inconditions is consistent because they are

sometimes conditions, implying that they hold at different times during the plan’s exe-

cution. So, these conditions would conflict if they were both must and always (meaning

that they must always hold throughout the plan’s execution).

:available(A) is a must summary postcondition of the top-level plan because A

will definitely be consumed by make G and is not produced by some other plan in

the decomposition of produce H f rom G. Even though available(G) is an effect of

produce G, it is not an external postcondition of produce H because it is undone by

produce H f rom G, which consumes G to make H. available(H) is a last summary

postcondition because the production manager releases H at the very end of execution.

available(M2) is not last because the manager finishes using M2 before moving H into

storage.

With summary information derived for the managers’ plan hierarchies, the production

and inventory managers could send the summary information for their top-level plans

to the facilities manager. The facilities manager could then reason about the top-level

summary information for each of their plans to determine that if the facilities manager

15

serviced all of the machines before the production manager started producing parts, and

the production manager finished before the inventory manager began moving parts on and

off the dock, then all of their plans can be executed (refined) in any way, or CanAnyWay.

Then the facilities manager could instruct the others to add communication actions to

their plans so that they synchronize their actions appropriately.

This top-level solution maximizes robustness in that the choices in the production and

facilities managers’ plans are preserved, but the solution is inefficient because there is no

concurrent activity—only one manager is executing its plan at any time. The production

manager might not want to wait for the facilities manager to finish maintenance and could

negotiate for a solution with more concurrency. In that case, the facilities manager could

determine that they could not overlap their plans in any way without risking conflict

(:CanAnyWay). However, the summary information could tell them that there might be

some way to overlap their plans (MightSomeWay). Then, the facilities manager could

request the production manager for the summary information of each of produce H’s

subplans, reason about the interactions of lower level actions in the same way, and find

a way to synchronize the subplans for a more fine-grained solution where the plans are

executed more concurrently.

1.3.3 Contributions

This dissertation extends work multiagent coordination, planning, and scheduling by

enabling agents to reason abstractly about their plans. Much of the work in the planning

community has traditionally focused on plan generation. Pollack argues that this is not

enough to handle the demands of an uncertain, dynamic world, which requires an agent

to also be able to manage its generated plans in a number of ways [Pollack and Horty,

1999]. While this thesis describes how different classes of planners can generate plans

more efficiently, it concentrates on methods for agents to efficiently manage their plans

when the plans interact with each other.

The algorithms for deriving and reasoning about summary information serve as a for-

mal toolbox that can be used to enable abstract planning, scheduling, and coordination in

different classes of existing systems. Complexity analyses and experiments explain and

quantify the benefits of abstract reasoning so that researchers can estimate the potential

16

performance improvements of integrating summary information into their own coordina-

tion/planning/scheduling systems. These benefits are not obvious since summary infor-

mation for a task can grow exponentially up the hierarchy, potentially complicating the

search for solutions to a problem.

The multi-level coordination algorithm extends the capabilities of existing approaches

(see Chapter 2) by including interval temporal reasoning about hierarchical tasks that may

execute concurrently. In addition, the ability to reason at abstract levels can greatly im-

prove computation and communication performance by orders of magnitude to apply to

even larger problem domains. The algorithms for summarizing metric resource usage in

addition to propositional state variables and the adaptation of ASPEN, a local search plan-

ner, to exploit this summary information serves as a model for integrating this approach

into a wide variety of planning and scheduling systems. The ability to find solutions at

abstract levels and preserve alternative decompositions for achieving subgoals enables

robust execution systems, such as PRS [Georgeff and Lansky, 1986], UMPRS [Lee et al.,

1994], RAPS [Firby, 1989], JAM [Huber, 1999], etc., to handle more situations and un-

expected events when decompositions depend on the state and to recover from the failure

of one branch of decomposition by choosing another.

This approach enables agents to discover potential conflicts among their plans with-

out revealing details by controlling the summary information they communicate during

coordination. During coordination (and planning) agents can discover at abstract levels

which tasks are not involved in conflicts and avoid refining them unnecessarily and caus-

ing the search space to grow. By finding solutions much more quickly at abstract levels,

the agents can have a solution ready in case there is no time to further coordinate. If the

agents need more efficient solutions that can only be found at deeper levels within the

hierarchy, the abstract solutions can be used to prune the search space where solutions

are guaranteed to be worse.6 Summary information can also be used to detect and prune

search spaces where conflicts are unresolvable. These search techniques and heuristics

for guiding the decomposition of plan hierarchies are another contribution of this thesis.

Complexity analyses and experiments show a number of ways agents can reduce com-

putation and communication exponentially. Previous work shows that hierarchical prob-
6Note that just as it is not the purpose of this thesis to specify particular negotiation protocols, I also do

not introduce methods for determining when agents need these more efficient solutions. Instead I provide
the ability to find better solutions using efficient decomposition techniques.

17

lem solving can reduce the size of the search space exponentially when subproblems do

not interact [Korf, 1987; Knoblock, 1991]. Summary information enables these speedups

even with interacting subproblems. At higher levels of abstraction, the coordinator (and

planner) reasons about exponentially fewer actions and potentially exponentially fewer

constraints compared to lower levels. This reduction in information translates into ex-

ponentially fewer and less complex planning and scheduling operations. I give analyses

both for refinement-based coordination and planning and for iterative repair planning to

show how different classes of planners and schedulers can benefit from abstract reasoning

based on summary information. Experiments show how these benefits are realized in a

number of domains and that the search techniques and heuristics enable multi-level coor-

dination and planning to find optimal solutions at lower levels faster than state-of-the-art

HTN heuristics. They also show where reasoning at abstract levels fails to improve search

performance.

In summary, the work presented here makes the following contributions:

� Algorithms for deriving summary information for propositional conditions and

metric resource usage and for determining potential and definite interactions of

abstract tasks;

� Sound and complete algorithms for concurrent hierarchical refinement planning

and plan coordination supporting flexible plan execution systems;

� The integration of abstract reasoning using summary information in a local search

planner/scheduler, showing applicability to other classes of planners;

� Search techniques and heuristics, including fewest-threats-first (FTF) and expand-

most-threats-first (EMTF), for both hierarchical refinement and local search plan-

ners/schedulers that take advantage of summary information to prune the search

space; and

� Complexity analyses and experiments showing that the search for abstract solu-

tions at higher levels is exponentially less expensive than at lower levels for both

hierarchical refinement and local search planners/schedulers.7

7In doing this I also prove that resolving threats among partially ordered STRIPS operators is NP-
complete.

18

The collection of algorithms presented here for summarization, abstract reasoning,

coordination, planning, and scheduling enables researchers and system designers to

� construct new coordination and planning systems,

� expand and improve existing ones, and

� apply those presented here to many domains where an agent or group of agents

must reason (collectively) about their actions to achieve short and long-term goals.

1.4 Overview

This dissertation is broken down into four parts. The remainder of Part I describes re-

lated work and introduces the representation of hierarchical plans, the summarization of

propositional state and metric resource constraints, and mechanisms for reasoning about

the interactions of summarized abstract plans. Part II describes how these mechanisms

are integrated into a coordination algorithm. It also gives analyses and experiments eval-

uating multi-level coordination and decomposition heuristics. Part III explains how the

benefits of the coordination algorithm are also realized in a refinement-based single-agent

planner. In addition, it describes how an iterative repair planner takes advantage of sum-

mary information through analyses and experiments and follows with a comparison of

the advantages of abstract reasoning in different classes of planners. Finally, Part IV

summarizes results and describes future research directions.

More specifically, Chapter 2 explains how others have addressed this problem or vari-

ations and where my approach extends this work. Chapter 3 describes the concurrent

hierarchical plan (CHiP) representation, formalizes the concurrent execution of CHiPs,

and describes different kinds of metric resource usage. Chapter 4 formalizes summary

information for propositional state conditions and metric resource usage. As part of the

summarization algorithm, definitions and algorithms for determining achieve, clobber,

and undo interactions among abstract tasks are presented with pointers to appendices for

soundness and completeness proofs. Chapter 5 explains how these algorithms can be

used to detect conflicts in set of plans with ordering constraints, whether the plans are

threat-free, or whether there is an unresolvable conflict.

In Part II, Chapter 6 shows how these algorithms for reasoning about a set of partially

19

ordered plans can be integrated into a coordination algorithm. It also presents search

techniques that the coordination algorithm can use to efficiently guide decomposition

and prune the search space. This is followed by complexity analyses explaining how rea-

soning at higher levels of abstraction can doubly exponentially reduce the search space in

the worst case that summarization does not reduce the size of information and showing

how the combined cost of computation and execution can be optimized by coordinat-

ing at appropriate levels of abstraction. Chapter 7 reports experiments in an evacuation

domain that evaluate the EMTF and FTF heuristics compared to other state-of-the-art

HTN heuristics in finding optimally coordinated plans. Another experiment in the man-

ufacturing domain shows how a domain designer can exponentially reduce communica-

tion delay by altering the granularity at which agents exchange summary information.

Chapter 7 also describes how the coordination algorithm is wrapped in a multi-level co-

ordination agent that continually coordinates a group of military coalitions in a fictional

peace-keeping scenario, that integrates many agent-based technologies.

Part III focuses on the single-agent planning problem. Chapter 8 describes a refinement-

based hierarchical planner based on the coordination algorithm that similarly exploits the

advantages of summary information. It then describes how summary information is used

in a local search planner (ASPEN) with variations of the EMTF and FTF search heuris-

tics and analyzes scheduling complexity. Chapter 9 reports experiments with ASPEN for

a team of Mars rovers that verify the analyses and point out where abstract reasoning can

be inefficient. Section 9.3 compares the complexity advantages of summary information

in the refinement planner, local search planner, and other kinds of planners.

Part IV concludes by summarizing results and contributions in Chapter 10 and iden-

tifies new research needs in Chapter 11.

20

CHAPTER 2

Background and Related Work

Here I give background on research that this dissertation builds on and describe how

other work has addressed the problem of this thesis (given in Section 1.1).

2.1 Multiagent Coordination

The approach I have taken for abstract reasoning draws on earlier work involving

a hierarchical behavior-space search where agents represent their planned behaviors at

multiple levels of abstraction [Durfee and Montgomery, 1991]. Distributed protocols are

used to decide at what level of abstraction coordination is needed and to resolve conflicts

there. This approach capitalizes on domains where resources can be abstracted naturally.

This earlier work can be viewed as a very limited, special case of this thesis. It is justified

only intuitively and with limited experiments and analyses.

In closer relation to my approach, Pappachan shows how to interleave hierarchical

plan coordination with plan execution for cooperative agents using an online iterative

constraint relaxation (OICR) algorithm [Pappachan, 2001]. OICR uses a disjunctive tem-

poral constraint network to keep track of task interactions among agents at the primitive

level and derive legal temporal orderings of abstract tasks. A protocol enables agents to

commit to legal orderings at abstract levels from the top of their hierarchies down until the

necessary temporal commitments are made to ensure consistency across the agents plans.

Like my approach, coordination can be achieved at higher levels of abstraction for more

flexible execution, or the agents can decompose their tasks to lower levels to for tighter

coordination that can improve plan quality. In focusing on efficient interleaved coordina-

21

tion and execution, completeness of the algorithm can be sacrificed to avoid backtracking

up the hierarchy (breaking commitments), and the only computation needed at execution

time involves updating the temporal constraint network based on ordering commitments.1

However, effort is needed up front to build the initial constraint network for the

agents’ task hierarchies. In my approach, the preprocessing of hierarchies (deriving sum-

mary information) can be done by the agents separately before they encounter each other.

Thus, there are no extra costs of agents joining or leaving a coordination group while the

temporal constraint network must be rebuilt for OICR in such cases.

The main difference between the OICR approach and using summary information is

that OICR effectively propagates legal temporal ordering constraints while I propagate

constraints up the hierarchy. The OICR approach is tailored towards efficiently interleav-

ing coordination and flexible execution at the price of completeness while my coordina-

tion algorithm is aimed at efficient, complete interleaved coordination and planning at the

price of potentially delaying execution due to backtracking. Another difference is that it

is unclear how metric resource usage constraints can be efficiently integrated into OICR’s

temporal constraint network while this is explored in detail in this thesis.

At the same time, summary information could complement OICR. The temporal con-

straint network could be built with abstract tasks using summary information and ex-

panded whenever a decomposition is needed. This could bring computational advantages

to updating the temporal constraint network because the network will be smaller when

tasks are not fully decomposed.

TÆMS (a framework for Task Analysis, Environment Modeling, and Simulation)

takes a different approach to abstract reasoning by allowing the domain modeler to spec-

ify a wide range of relationships for abstract or primitive tasks [Decker, 1995]. This work

offers quantitative methods for analyzing and simulating agents as well as their interac-

tions. While not all of these interactions can be represented and discovered using sum-

mary information, summary information is automatically discovered through analysis in

my approach. I build on this work by showing how coordination can exploit abstraction

for more efficient search for conflict resolutions. However, my approach does not cur-

rently use quantitative representations for reasoning about progress and the achievement
1The sacrifice in completeness is exhibited by only considering temporal orderings at the abstract level

that will lead to coordinated plans no matter which decomposition branches the agents choose. This is the
CanSomeWaySynchronize property to which Section 5.1 refers.

22

of a subset of goals.

Social laws have also been used to resolve conflicts among agents [Shoham and Ten-

nenholtz, 1992]. A social law is a mechanism for resolving a conflict over a shared

resource among a group of agents. If agents are committed to abide by social laws, and

these laws have a large enough scope to prevent such conflicts for all of the different kinds

of agent interactions that may occur, then an agent can expect to achieve its goals by exe-

cuting its plan according to these laws without coordinating with others. However, often

the efficiency of plans is unnecessarily sacrificed when laws are not tailored for handling

many of the potentially large numbers of cases of agent interactions. In other words, it

would be difficult to define social laws that specify the efficient alternative actions each

agent can take for each possible combination of conflicts over any combination of shared

resources for any potential plan of the agent and those of the other agents involved. In

addition, for some domains, the interactions can be so complicated to the point that there

are no social laws that can generally resolve conflicts (i.e. social laws are not complete

in resolving conflicts). It is also difficult to avoid cases where agents are unnecessarily

coordinating according to a social law even though no conflicts exist. For the example

in Section 1.2, if a social law requires that the facilities manager wait until after 5pm

to service machines so that the production manager can manufacture parts without in-

terruption during the day, it would be inefficient for the facilities manager to postpone

servicing machines if the production manager had no plans to manufacture parts that day.

My approach to handling this problem suggests that the agents should efficiently search

for tailored social laws to resolve present and future conflicts in the context of their short

and long-term plans while maximizing local or global utility.

Grosz’s shared plans model of collaboration presents a theory for modeling multi-

agent belief and intention [Grosz and Kraus, 1996]. While the shared plans work is

directed towards cooperative agents, it represents action hierarchies and provides mental

models at a higher level than represented in this thesis. However, my use and analysis

of summary information complements Grosz’s work by providing a way to automatically

represent and efficiently reason about the intentions of agents at multiple levels of ab-

straction. Future work is needed to understand how summary information can be bridged

with mental states of agents to exploit the techniques employed in shared plans and other

work based on BDI (belief-desire-intention) models of agents [Rao and Georgeff, 1995].

23

TEAMCORE is a system based on similar models of shared intentions that integrates

team coordination and communication [Pynadath et al., 1999; Tambe, 1997]. Teams are

built using a team-oriented programming (TOP) framework, that allows a programmer

to build an agent-based system by specifying an agent organization hierarchy and team

tasks. TEAMCORE allows for robust, flexible execution, monitoring, and failure recov-

ery for a group of collaborative agents. This work assumes that agents are cooperative

and focuses on the level of execution instead of the level of deliberative planning that

this dissertation investigates. My algorithms for deriving and using summary informa-

tion present an alternative to building team plans. Instead of a user programming the

tasks and team organization while working out shared resource conflicts, the user can

just model the task plans individually, and the coordination software can automatically

generate consistent team plans that can be adapted for use within TEAMCORE. However,

research is needed to understand how hierarchical plans and the algorithms that generate

and coordinate them can be adapted so that agents can take advantage of the execution

monitoring and failure recovery of TEAMCORE.

Work in Generalized Partial Global Planning (GPGP) investigates how to combine

different coordination strategies to approach specific domains [Decker, 1995]. Combin-

ing different techniques for sharing information and establishing commitments based on

the TÆMS task representation can minimize communication overhead. While this thesis

does not evaluate specific coordination strategies, the algorithms that use summary infor-

mation to determine interactions of tasks at multiple levels of abstraction automatically

determine where conflicts exist and what plan information should be communicated to

resolve them. By decomposing tasks to necessary levels of abstraction, agents using my

approach can automatically minimize the information needed to complete coordination.

In TÆMS, the domain expert must specify the constraints of each abstract task in order

to minimize communication in the same fashion.

The hierarchical plan representation (CHiP) described in Chapter 3 is constructed to

be compatible with many other planning and execution task representations. The for-

malization of the concurrent execution of CHiPs tries to distill appropriate aspects of

theories for multiagent action and reasoning [Georgeff, 1984; Fagin et al., 1995]. As

mentioned earlier, future work is needed to extend this agent model to take advantage

of techniques developed for other models of interacting agents [Grosz and Kraus, 1996;

24

Rao and Georgeff, 1995; Tambe, 1997].

2.2 Plan Merging

The term “plan merging” has taken several meanings in previous work:

1. merging redundant tasks within a single plan that achieve the same effect in sepa-

rate subgoals,

2. incorporating plans for new goals into a plan that achieves current goals,

3. distributing the goals of a planning problem to agents that cooperatively solve them

(merging solutions), and

4. resolving conflicts among the plans of separate agents (merging into a coordinated

plan).

These are all closely related, and merging techniques that address one of those will likely

apply to or complement the others. This is because merging plans (whether of one agent

or of a group of agents) involves resolving conflicts and/or eliminating redundant actions

using existing planning techniques. Likewise, reasoning about temporal concurrency of

multiagent interactions can be applied to parallel actions of a single agent.

The fourth form of plan merging is the one addressed in this dissertation. For this

problem, conflicts can be avoided by reducing or eliminating interactions by localizing

plan effects to particular agents [Lansky, 1990], and by merging the individual plans of

agents by introducing synchronization actions [Georgeff, 1983]. In fact, planning and

merging can be interleaved, such that agents can propose next-step extensions to their

current plans and reconcile conflicts before considering extensions for subsequent steps.

By formulating extensions in terms of constraints rather than specific actions, a “least

commitment” policy can be retained [Ephrati and Rosenschein, 1994]. These techniques

all assume that actions are non-hierarchical and atomic, meaning that an action either

executes before, after, or at exactly the same time as another. Hence, they do not represent

the possibility of several actions of one agent executing during the execution of one action

of another agent. While not focused on multiagent applications, there are several planning

25

systems that can reason about such concurrent temporal interactions [Allen et al., 1991;

Laborie and Ghallab, 1995; Muscettola, 1994; Rabideu et al., 1999].

Techniques directed at the second plan merging problem include reasoning about con-

current actions with temporal extent [Tsamardinos et al., 2000]. This work combines or

branches and simple temporal networks (STNs) into conditional simple temporal net-

works (CSTNs) that are used to identify conflicts between plans and resolve them using

constraint satisfaction. My approach uses less expressive temporal constraints than those

of a simple temporal network, but the CSTN approach does not exploit task decompo-

sition. To extend my approach to handle simple temporal networks would only involve

substituting the temporal constraint algorithm (see Section 4.3.1) with one that can handle

STNs [Meiri, 1992].

Corkill studied interleaved planning and merging (the fourth form) in a distributed

version of the NOAH hierarchical planner [Corkill, 1979]. He recognized that, while

most of the conditions affected by an abstract plan operator might be unknown until fur-

ther refinement, those that deal with the overall effects and preconditions that hold no

matter how the operator is refined can be captured and used to identify and resolve some

conflicts. He recognized that further choices of refinement or synchronization choices

at more abstract levels could lead to unresolvable conflicts at deeper levels, and back-

tracking could be necessary. The work presented here is directed toward avoiding such

backtracking by improving how an abstract plan operator represents all of the potential

needs and effects of all of its potential refinements (in summary conditions).

2.3 Planning

In this section I discuss other planning techniques upon which my approach builds.

First I describe different classifications of planners as background for the comparison

of planning techniques in this dissertation. Then I describe related work in hierarchical

planning in Section 2.3.2.

26

2.3.1 Refinement and Local Search Planning

This thesis investigates the differences in using summary information in refinement

and local search planners in Chapters 8 and 9. Here I describe classifications of different

planning algorithms and ASPEN (a local search planner) as background for understand-

ing these chapters. For a lengthier discussion about planning algorithms and search, see

[Russell and Norvig, 1995].

In order to understand the differences between classes of planners, one must first

understand how planning is based on search. A search algorithm defines a state of the

search, a set of search operators for generating new search states from an existing one,

and the criteria for a solution state. Search starts with an initial state, tests to see if the

state is a solution, chooses a search operator to generate new search states, and picks a

new state to explore. With the new state the process is repeated typically until a desired

solution is found. For example, a search algorithm for solving a Rubik’s Cube2 puzzle

could define the search state as the colors on each face of the cube. Search operators

could be turning a layer of the cube, and the solution state is reached when the faces each

have one color.

A planning problem includes an initial state of the environment3, a goal4, and a set of

actions that have constraints and effects on the state of the environment. A planner finds

a collection of actions with ordering constraints that takes the agent from the initial state

to a state that satisfies the goal. Planners are special kinds of search algorithms. Planners

define the search state either as a state of the environment or as a partially elaborated

plan. The former is a state-space planner, and the latter is a plan-space planner.

A state-space planner’s initial search state is the initial state of the environment.

Search operators for the state-space planner include adding an applicable action to the

plan that generates the next state of the environment from the current state, removing an

action from the plan, or replacing an action with another applicable action. An action is

applicable if its constraints agree with the current state. The operator that adds an action

is a refinement operator, and the others are modification operators. A solution is found
2 cRubik/Seven Towns
3Note that there are two kinds of “states” mentioned here: the state of the environment (that the agent

senses and manipulates) and the state of the search (a construct in the search algorithm).
4A goal is a partial specification of the state of the environment. Often we speak of an agent having

multiple goals. The goal mentioned here can represent multiple goals as a conjuction of subgoals.

27

when the resultant search state generated from the actions satisfies the goal. A regression

state-space planner works similarly from the goal back to the initial state.

A plan-space planner’s search state is a plan. Initially this plan is already instantiated

with actions or is empty. Search operators typically add, remove, or order actions so

that their constraints are met. Refinement operators elaborate the plan by adding actions

and constraints. Modification operators remove or substitute actions and constraints. A

constraint could be a temporal ordering of the actions or a binding of a value to a variable

in an actions conditions and effects. A solution is found when there are no constraint

violations, and the goal state is achieved by the effects of the actions.

A planner is also classified along another dimension as either a refinement planner

or a local search planner. A refinement planner elaborates a plan by using refinement

operators to successively add details about how the goal will be accomplished. Typically

the refinement planner is complete in that it will find a solution if one exists, but it must

keep track of all search states expanded, which can cause memory to grow. Completeness

is achieved by backtracking. Whenever the search ends up in a search state where no there

are no applicable operators, and the goal has not been achieved, it backtracks to another

expanded state, and continues the search. The search terminates when the goal has been

achieved, and all constraints have been met or when the search fails because there are no

more search states to explore.

A local search planner typically keeps little or no memory of previous search states

and, thus, requires only a constant amount memory. While it may elaborate a plan with

refinement operators, a local search planner also uses modification operators and often

starts out with a flawed plan that it modifies. Although these planners can potentially

revisit search states, they often choose operators stochastically and eventually break out

of the local search space to find other plans. The search terminates when the goal is

satisfied. The search is not guaranteed to find a solution (i.e. is not complete) and may

never terminate (especially if no solution exists) unless the algorithm explicitly “gives

up” with a timer, for example.

While hierarchical planners commonly take a least commitment, refinement approach

to problem solving, research in the operations research community illustrates that a sim-

ple local search is surprisingly effective [Papadimitriou and Steiglitz, 1998]. A heuristic

iterative repair planner is a type of local search plan-space planner that focuses on re-

28

pairing flaws. It starts with an initial (usually flawed) plan and iteratively chooses a flaw,

chooses a modification (repair) operator, and changes the plan by applying the operator.

It can also use these operators to optimize the plan according to specified criteria. Be-

cause it employs local search, the iterative repair planner never backtracks. Since taking a

random walk through a large space of plans is inefficient, heuristics guide the choices (of

flaws and repair operators) by determining the probability distributions for each choice.

I build on this approach to planning by studying the integration of summary information

into the ASPEN planner [Chien et al., 2000b]. ASPEN assigns actual time values to

start and end times of actions, so the plan (or schedule) is always fully ordered. (In con-

trast, many refinement plan-space planners search through partially ordered actions, only

specifying an ordering between actions to resolve a conflict.) ASPEN allows for abstract

tasks, and one of its repair operators is to abstract a hierarchy so that it can potentially

choose a different decomposition branch. Parameters of a task (that are used to specify

constraints on propositional state and metric resource variables) can be passed from a

parent task or a child task or can be computed by a function of other variables.

2.3.2 Hierarchical Planning

Hierarchical Task Network (HTN) planners such as NOAH [Sacerdoti, 1977], NON-

LIN [Tate, 1977], and UMCP [Erol et al., 1994b], use task hierarchies to search through

all combinations of alternatives to achieve particular goals within a particular context.

Rather than building a plan from the beginning forward (or end backward), hierarchical

planners identify promising classes of long-term activities (abstract plans), and incre-

mentally refine these to eventually converge on specific actions. However, planners of

this class commit to one such combination of alternative actions in a found solution, re-

sulting in a linearized action sequence that does not preserve any alternatives for handling

uncertainty during execution. This thesis introduces techniques that exploit hierarchy for

more efficient planning while preserving alternative choices for achieving subtasks.

While HTN planning is fairly well understood [Erol et al., 1994a], using HTN plan-

ning for concurrently-executing agents is less well understood. If several HTN planning

agents are each generating their own plans, how and when should these plans be merged?

Certainly, merging could wait until the plans were fully refined, and merging techniques

29

mentioned before [Georgeff, 1983] would work. But interleaving planning and merging

holds greater promise for identifying and resolving key conflicts as early in the process

as possible to try to avoid backtracking or failure. Such interleaving requires the ability

to identify potential conflicts among abstract plans.

Another seeming advantage of hierarchical planners is their ability to reduce the

search space through the encoding of domain knowledge in the structure of the task de-

compositions. By structuring the refinement of tasks and goals, the planner indirectly

prunes the space of inconsistent or poor plans by avoiding sequences of operators that

do not effectively achieve higher-level goals. While the planner is restricted to produce

only those plans dictated by the structure of the hierarchy, the domain expert may still (if

desired) guarantee completeness by carefully structuring the abstract plan operators. The

domain expert has a similar responsibility when crafting operators for non-hierarchical

planners. In addition, under certain restrictions, different forms of hierarchical problem

solving can reduce the size of the search space by an exponential factor [Korf, 1987;

Knoblock, 1991]. I demonstrate that a hierarchical planner can achieve similar speedups

without these restrictions by reasoning about the summary conditions of abstract opera-

tors. Another analysis of hierarchical planning [Yang, 1997] explains that, in the case of

interacting subgoals, certain structurings of the hierarchy that minimize these interactions

can reduce worst case planning complexity exponentially. Yang’s analysis applies to the

coordination and planning algorithms in this thesis. However, the complexity analyses in

Sections 6.3, 8.2.2, and 9.3 explain how using summary information can achieve expo-

nential performance gains in addition to Yang’s analysis by limiting the decomposition of

task hierarchies and compressing the information manipulated by a coordinator, planner,

or scheduler.

Tsuneto et. al. also discovered the value of identifying external conditions for HTN

planning and showed that these conditions can help direct the search to avoid backtrack-

ing to improve planning efficiency for problems with interacting goals [Tsuneto et al.,

1998]. Tsuneto’s ExCon heuristic identifies must external conditions and is used for or-

dering the expansion of tasks but not the ordering of decomposition choices to explore as

discussed in Section 7.

Another class of hierarchical planners based on ABSTRIPS [Sacerdoti, 1974] intro-

duces conditions at different levels of abstraction so that more critical conflicts are han-

30

dled at higher levels of abstraction and less important (or easier) conflicts are resolved

later at lower levels. While this approach similarly resolves conflicts at abstract levels,

the planning decisions may not be consistent with conditions at lower levels resulting in

backtracking. Summary information provides a means to make sound and complete deci-

sions at abstract levels without the need to decompose and check consistency with lower

levels. However, resolving conflicts based on criticality can still improve performance.

This dissertation does not investigate this approach.

Yang presented a method (similar to summarization) for preprocessing a plan hier-

archy in order to be able to detect unresolvable conflicts at an abstract level so that the

planner could backtrack from inconsistent search spaces [Yang, 1990]. This corresponds

to the use of :MightSomeWay in Section 6.2. However, his approach requires that the

decomposition hierarchy be modeled so that each abstract operator have a unique main

subaction that has the same preconditions and effects as the parent. I avoid this restriction

by analyzing the subplans’ conditions and ordering constraints to automatically compute

the parent’s conditions.

The DPOCL (Decompositional Partial-Order Causal-Link) planner [Young et al.,

1994] adds action decomposition to SNLP [McAllester and Rosenblitt, 1991]. Like other

HTN planners, preconditions and high level effects can be added to abstract tasks in or-

der to help the planner resolve conflicts during decomposition. In addition, causal links

can be specified in decomposition schemas to isolate external preconditions that DPOCL

must satisfy. However, because these conditions and causal links do not necessarily cap-

ture all of the external conditions of abstract tasks, the planner does not find solutions at

abstract levels and requires that all tasks be completely decomposed. In addition, DPOCL

cannot determine that an abstract plan has unresolvable conflicts (:MightSomeWay) be-

cause there may be effects hidden in the decompositions of yet undetailed tasks that

could achieve open preconditions. By deriving summary conditions automatically and

using sound and complete algorithms for determining causal link information (e.g. must-

achieve), the planner introduced in this thesis can find and reject abstract plans during

search without adding burden to the domain expert to specify redundant conditions or

causal links for abstract tasks. Furthermore, DPOCL does not handle concurrent activity.

Allen’s temporal planner [Allen et al., 1991] uses hierarchical representations of tasks

and could be applied to reasoning about the concurrent actions of multiple agents. How-

31

ever, it does not exploit hierarchy by reasoning about abstraction levels separately and

generates a plan by proving the consistency of the collective constraints. Allen’s model

of temporal plans [Allen and Koomen, 1983] and subsequent work on interval point alge-

bra [Vilain and Kautz, 1986] strongly influenced my hierarchical task representation and

algorithms that reason about them.

2.4 Summary of Related Work

In summary, this dissertation builds on work in multiagent coordination, planning,

and plan merging to efficiently coordinate planning agents. The main extension is the use

of summary information to reason about concurrent plans at multiple levels of abstrac-

tion. Previous analyses explain how hierarchical problem solving can reduce the search

space exponentially. The use of summary information achieves these exponential gains

without the harsh assumptions on the problem structure that these prior analyses make.

Work in multiagent planning and plan merging does not exploit hierarchy and existing

planning and scheduling algorithms to the extent of this thesis, but that work offers di-

rections to extend my approach to include more sophisticated mental models of agents

and explore efficient coordination protocols. In bridging multiagent and planning strate-

gies, my approach extends representations of HTN planners while providing principled

methods for reasoning efficiently about concurrently executing plans at abstract levels.

32

CHAPTER 3

A Model of Hierarchical Plans and their Concurrent

Execution

The original purpose of developing the following theory was to provide, as simply

as possible, a consistent model of execution to generally reason about the concurrent in-

teraction of hierarchical plans. However, if the model shared important aspects of plans

used by PRSs, HTNs, Allen’s temporal plans, and many STRIPS-style plan represen-

tations, it could more easily draw on the strengths of many current planning and plan

execution systems. Therefore, this theory of action tries to distill appropriate aspects of

other theories, including Allen’s temporal plans [Allen and Koomen, 1983], Georgeff’s

theory for multiagent plans [Georgeff, 1984], and Fagin et. al.’s theory for multiagent

reasoning about knowledge [Fagin et al., 1995].

First I give an example explaining why this formalization is necessary. Because this

section details many definitions upon which the theory rests, the casual reader may skip

to a summary of the concurrent hierarchical plan and metric resource usage formaliza-

tion in Section 3.8. I also describe the model of metric resource usage in Section 3.7

separate from the model of concurrent hierarchical plans that is based those of existing

planners [Chien et al., 2000b; Laborie and Ghallab, 1995]. Resource usage constraints

are described separately from those of state constraints and effects for simplicity since

there are no interactions between state and resource constraints.

33

3.1 Example to Motivate Formalization

The example here (based on the one in Section 1.2) illustrates the need to formalize

plan execution, summary information, and the algorithms that use summary information.

(Terminology described in this section is introduced in the example in Section 1.3.2.)

Consider a situation where the facilities manager plans to perform maintenance on the

two machines and then transport his tool to storage bin3 using transport1, and the inven-

tory manager wants to move part F from the dock to bin3 using transport2. Assume that

the agents’ plan libraries do not include subplans for moving their parts out of bin3; so,

in effect, once a part is in bin3, it will stay there. Thus, it is not possible to coordinate

their plans.

But, how would they recognize this based on the summary information for their

top-level plans? They would find that if the maintenance top-level plan is ordered

before move F to bin3, MightSomeWay is false since the external postconditions of

maintenance must always clobber the external preconditions of move F to bin3. But

how would the agents figure out that they could not overlap their plans? If one

wanted to describe a method for determining whether two actions can or might over-

lap, it is not obvious how this should be done. One could conclude that because must

postconditions conflict ((at(tool;bin3) and :at(F;bin3)) conflicts with (at(F;bin3) and

:at(tool;bin3))), the algorithm for determining when tasks conflict should account for

this and determine that MightSomeWay is false for all ordering constraints. But, this al-

gorithm would be unsound in general because the :at(tool;bin3) postcondition of the

inventory manager’s plan could be interpreted as pushing the tool out of the goal cell.

In other words, if the facilities manager’s plan is just to visit the goal location, then the

facilities manager would still have accomplished its goal even if the inventory manager

pushed the tool out of bin3.

It turns out that MightSomeWay is true for overlapping the plans because there are

other plans with the same summary conditions that can be overlapped successfully. There

is not enough information at the highest level to prove that MightSomeWay is false for this

case. The real reason these particular plans cannot be overlapped is that the preconditions

of the primitive plan moving F into bin3 are violated by the postconditions of the facilities

manager’s plan. The agents could detect this by digging deeper into the maintenance plan

34

and considering the conditions of the primitive actions.

The difficulty of composing such algorithms for determining task interactions stems

from an imprecise specification of concurrent plan execution and the large space of po-

tential plans that have the same summary information. If the MightSomeWay algorithm

is not specified to be complete, the agent may not determine that the overlaps relation

cannot hold until it has exhaustively checked all synchronizations of the agents’ primitive

subplans. As the number of subplans grows, this becomes an intractable procedure [Vi-

lain and Kautz, 1986]. Even worse would be if, for the sake of trying to be complete, an

algorithm is specified such that it is unsound (as just discussed) leading to a synchroniza-

tion choice that causes failure. Thus, it is necessary to formalize concurrent hierarchical

plans, their execution, and the derivation of summary conditions to avoid costly, irre-

versible, as well as inconsistent decisions made during planning, plan execution, and

coordination.

3.2 CHiPs

A concurrent hierarchical plan p is a tuple hpre, in, post, type, subplans, orderi.

pre(p), in(p), and post(p) are sets of literals (v or :v for some propositional variable

v) representing the preconditions, inconditions, and postconditions defined for plan p.1

In order to reason about plan hierarchies as and/or trees of actions, the type of a plan p,

type(p), is given a value of either primitive, and, or or. An and plan is a non-primitive

plan that is accomplished by carrying out all of its subplans. An or plan is a non-primitive

plan that is accomplished by carrying out one of its subplans. So, subplans is a set of

plans, and a primitive plan’s subplans is the empty set. order(p) is only defined for an

and plan p and is a set of temporal relations [Allen, 1983] over pairs of subplans that

together are consistent; for example, be f ore(pi; p j) and be f ore(p j; pi) could not both be

in order. Plans left unordered with respect to each other are interpreted to potentially

execute concurrently.

For the example in Figure 1.1, the production manager’s highest level plan produce H
1Functions such as pre(p) are used for referential convenience throughout this paper. Here, pre and

pre(p) are the same, and pre(p) is read as “the preconditions of p.”

35

is the tuple

hfg;fg;fg;and;fproduce G; produce H f rom Gg;fbe f ore(0;1)2gi:

There are no conditions defined because produce H can rely on the conditions defined

for the primitive plans in its refinement. The plan for moving part A from bin1 to the first

input tray of M1 using transport1 is the tuple

hfg;fg;fg;and;fstart move; f inish moveg;fmeets(0;1)gi:

This plan decomposes into two half moves which help capture important intermediate

effects. The parent orders its children with the meets relation to bind them together into

a single move. The start move plan is

hfat(A;bin1);available(A); f ree(transport1);: f ull(M1 tray1)g;

f:available(A);:at(A;bin1);: f ull(bin1);: f ull(M1 tray1); f ree(transport1)g;

f:at(A;bin1);: f ull(bin1);:available(A);: f ull(M1 tray1);: f ree(transport1)g;

primitive;fg;fgi:

The f inish move plan is

hfg;f:available(A);:at(A;bin1);: f ull(bin1); f ull(M1 tray1);: f ree(transport1)g;

fat(A;M1 tray1);available(A); f ull(M1 tray1);:at(A;bin1);: f ull(bin1);

f ree(transport1)g; primitive;fg;fgi:

I split the move plan into these two parts in order to ensure that no other action that

executes concurrently with this one can use transport1, part A, or the input tray to M1.

It would be incorrect to instead specify : f ree(transport1) as an incondition to a single

plan because another agent could, for instance, use transport1 at the same time because

its : f ree(transport1) incondition would agree with the : f ree(transport1) incondition of

this move action. By representing the transition from f ree to : f ree and explicitly never

decomposing the parent move plan, the modeler ensures that another action that tries to
20 and 1 are indices of the subplans in the decomposition referring to produce G and

produce H f rom G respectively.

36

use transport1 concurrently with this one will cause a conflict.3

A postcondition is required for each incondition to specify whether the incondition

changes. This clarifies the semantics of inconditions as conditions that hold only dur-

ing plan execution whether because they are caused by the action or because they are

necessary conditions for successful execution. If a plan’s postconditions did not spec-

ify the truth values of the inconditions’ variables at the end of execution, then it is not

intuitive how those values should be determined in the presence of other concurrently

executing plans. Requiring postconditions to specify such values resolves all ambiguity

and simplifies rules specifying how the state transitions (described in Section 3.4).

The decomposition of a CHiP is in the same style as that of an HTN as described in

[Erol et al., 1994a]. An and plan is a task network, and an or plan is an extra construct

representing a set of all tasks that accomplish the same goal or compound task. Tasks

in a network are subplans of the plan corresponding to the network. High-level effects

[Erol et al., 1994a] are simply the postconditions of a non-primitive CHiP. CHiPs can

also represent a variety of interesting procedures that can be executed by robust systems

such as PRS [Georgeff and Lansky, 1986].

Note that the conditions of a CHiP are not summary conditions (formally introduced

in Chapter 4). There is no modal information about the existence (must, may) or tim-

ing (f irst, last, sometimes, always) of these conditions. As will become clear in the

following sections describing the semantics of CHiP execution, inherently preconditions

are must, f irst; inconditions are must, always; and postconditions are must, last. Con-

ditions in CHiPs were specified differently than summary conditions in order to ground

the semantics of primitive actions and to keep greater compatibility with STRIPS-based

operator specifications, which many planning systems use.
3Using universal quantification [Weld, 1994] a single plan could have a 8agent;agent 6= production-

Manager ! :using(transport1, agent) condition that would exclude concurrent access to the transport.
Other planning systems have explicit mechanisms for mutually exclusive (or atomic) resources [Rabideu
et al., 1999]. Thus, I could have simply specified transport1 as a metric resource with maximum capacity
of one.

37

3.3 Executions

Informally, an execution of a CHiP is recursively defined as an instance of a decom-

position and an ordering of its subplans’ executions. Intuitively, when an agent executes

a plan, it fixes the plan’s start and finish times, chooses how it is refined, and determines

at what points in time its conditions must hold. This formalism helps us reason about

the outcomes of different ways to execute a group of plans, describe state transitions, and

formalize other terms.

An execution of CHiP p, e, is a tuple hd; ts; t f i. ts(e) and t f (e) are positive, non-zero

real numbers representing the start and finish times of execution e, and ts < t f . d(e) is a

set of subplan executions representing the decomposition of plan p under this execution e.

Specifically, if p is an and plan, then it contains one execution from each of the subplans;

if it is an or plan, then it contains only one execution of one of the subplans; and it is

empty if it is primitive. In addition, for all subplan executions, e 0 2 d, ts(e0) and t f (e0)

must be consistent with the relations specified in order(p). Also, the first subplan(s) to

start must start at the same time as p, ts(e0) = ts(e); and the last subplan(s) to finish must

finish at the same time as the p, t f (e0) = t f (e). The possible executions of a plan p is

the set E(p) that includes all possible instantiations of an execution of p, meaning all

possible values of the tuple hd; ts; t f ;constraintsi, obeying the rules just stated.

For the example in Section 1.2, an execution for the production manager’s top-level

plan produce H would be some e 2 E(produce G&H). e might be hfe1, e2g, 2.0, 9.0 i

where e1 2 E(produce G), and e2 2 E(produce H). This means that the execution of

produce H begins at time 2.0 and ends at time 9.0. e1 also starts at 2.0, and e2 ends at

9.0. Figure 3.1 shows how these executions and those of their subplans are placed on a

timeline.

For convenience, the subexecutions of an execution e, often later referred to as

subex(e), is defined recursively as the set of subplan executions in e’s decomposition

unioned with their subexecutions. For the production manager, subex(e) = fe1, e2g [

subex(e1) [subex(e2). In addition, we say that a condition of a plan with an execution

in the set containing e and e’s subexecutions is a condition of e. So, if the production

manager executes its top-level plan, since :at(A, bin1) is an incondition of a primitive

for moving part A from bin1 to machine M1 (the start move plan described in Section

38

3.2), :at(A, bin1) is an incondition of the primitive’s execution as well as the execution

of produce H.

3.4 Histories and Runs

Hypothetical possible worlds, called histories, are defined so that it can be determined

what happens in all worlds, some, or none. Agents that must consider the ramifications

of their abstract tasks before they decompose them must reason about possible histories

to make sound decisions. Then I define runs as specifications of how the state transforms

according to a particular history.4 A state of the world, s, is a truth assignment to a set of

propositions, each representing an aspect of the environment. I will refer to the state as

the set of true propositional variables.

A history, h, is a tuple hE;sIi. E is a set of plan executions including those of all plans

and subplans executed by all agents, and sI is the initial state of the world before any plan

begins executing. So, a history h is a hypothetical world that begins with sI as the initial

state and where only executions in E(h) occur. So a history where only the production

manager executes its plan might have an initial state as shown in Figure 1.1 where all

parts and machines are available, and both transports are free. The set of executions E

would contain e (the execution of produce H), e1 and e2 (the executions of produce G

and produce H f rom G), and their subexecutions, subex(e1) and subex(e2). Each execu-

tion specifies a start time, finish time, and refinement choices for the corresponding plan.

Figure 3.1 shows the executions of a history h where the production manager executes

produce H concurrently with the facilities manager’s service M1 plan. Here the produc-

tion and facilities managers’ plan executions conflict over the availability of machine M1

in this example history and corresponding run. Executions are labeled by their associated

plans’ names. The run r(h) specifies the truth values of the state predicates over time. All

of the line segments above the timeline represent executions in E(h). The leaf plans in the

figure each have two primitive subplans for beginning and finishing the low-level actions

as signified by the intermediate points in the execution intervals. These hidden subplans

function similarly to the start move and f inish move primitives described in Section 3.2
4The formalization of histories and runs follows closely to that of Fagin et. al. in describing multiagent

execution [Fagin et al., 1995].

39

move H

move B

move A&B

produce G on M1

produce G

move G

move A

build H

build G

tool

move equip M1

tool

calibrate M1

service M1

truefalse

true
available(M1)

3 4 5 7 80 1 2 1096

available(H)

of History

Run r(h)

false
available(A)

true truefalse

false true
true

false

Time

h
Executions produce H

produce H from G

Figure 3.1: The production and facilities managers’ conflicting plan executions

40

to conflict with other actions that access resources required by the plans throughout the

duration of their executions.

A run, r, is a function mapping time to states. It gives a complete description of how

the state of the world evolves over time, which ranges over the positive real numbers.5

r(t) denotes the state of the world at time t in run r. So, a condition c is met at time t if

and only if the condition is a non-negated propositional variable v, and v 2 r(t) or if the

condition is a negated propositional variable :v, and v 62 r(t).

For each history h there is exactly one run, r(h)6, that specifies the state transitions

caused by the plan executions in E(h). The interpretation of a history by its run is defined

as follows. The world is in the initial state at time zero: r(h)(0) = sI(h). In the smallest

interval after any point where one or more executions start and before any other start

or end of an execution, the state is updated by adding all non-negated inconditions of

the plans and then removing all negated inconditions (as specified in Axiom 1 below).

Similarly, at the point where one or more executions finish, the state is updated by adding

all non-negated postconditions of the plans and then removing all negated postconditions

(as specified in Axiom 2). Lastly, if no execution of a plan begins or ends between two

points in time, then the state must be the same at those points (Axiom 3).

Axiom 1
8h;e1; t;e1 2 E(h)^

[t > ts(e1)^ (8e2 2 E(h);(ts(e2)> ts(e1)!

t � ts(e2))^ (t f (e2)> ts(e1)! t < t f (e2)))]!

r(h)(t) = r(h)(ts(e1))[fv j 9p;e3 2 E(h);

e3 2 E(p)^ ts(e3) = ts(e1)^ v 2 in(p)g�

fv j 9p;e3 2 E(h);e3 2 E(p)^

ts(e3) = ts(e1)^:v 2 in(p)g:
5Real valued time points are used instead of discrete time to avoid complications in formalizing actions

with durations of an atomic unit of time.
6For convenience, I now treat r as a function mapping histories to runs, so r(h)(t) is a mapping of a

history and a time to a state.

41

Axiom 2
8h;e1; t;e1 2 E(h)^

[t < t f (e1)^ (8e2 2 E(h);(ts(e2)< t f (e1)!

t > ts(e2))^ (t f (e2)< t f (e1)! t � t f (e2)))]!

r(h)(t f (e1)) = r(h)(t)[fv j 9p;e3 2 E(h);

e3 2 E(p)^ t f (e3) = t f (e1)^ v 2 post(p)g�

fv j 9p;e3 2 E(h);e3 2 E(p)^

t f (e3) = t f (e1)^:v 2 post(p)g:

Axiom 3
8h; t1; t2; t1 < t2^ (:9e 2 E(h); t1 � ts(e)< t2

_t1 < t f (e)� t2)! r(h)(t2) = r(h)(t1):

The run of a history allows both inconditions and postconditions to change the state of

the world. An agent should expect that if a plan’s preconditions are met, the inconditions

would not be clobbered in the absence of other interacting plan executions. Otherwise,

the inconditions should be preconditions.

So, for the history given in Figure 3.1, the state at time 0.0, r(h)(0:0), will be

the initial state where all parts and machines are available, and the transports are free

for use. Since service M1 executes first beginning at 1.0, the run of this history

specifies that the initial state (including available(A) and available(M1) as shown in

the figure) remains the same up to time 1.0 since no action takes place before then

(i.e. r(h)(0:0) = r(h)(0:5) = r(h)(1:0) = sI(h)). During the production of part G on

machine M1, part A is transferred to machine M1. As a result of the incondition

:available(A) in the f inish move subexecution of move A, available(A) becomes f alse

at time 2.1 (available(A) 62 r(h)(2:1)). In the brief interval after part A is moved, A is

available just before being consumed by build G. Part H does not become available until

the postcondition of the execution of build H asserts available(H). Machine M1 becomes

unavailable when it is equipped with the tool, but because the subexecutions of build G

assert both available(M1) and :available(M1), there is a short interval starting at 3.1

where M1 is available, violating the equip M1 tool plan’s incondition that M1 is un-

available. In addition, the calibrate M1 plan expects M1 to be unavailable, but build G

asserts that M1 is available when it is finished with the machine at 4.8, thus, violating the

42

incondition of the calibrate M1 plan.

Now that I have specified state transitions, I can define what it means for a plan to

execute successfully. An execution e = hd; ts; t f i succeeds in h if and only if the executing

plan’s preconditions are met at ts; the inconditions are met throughout the interval (ts; t f);

the postconditions are met at t f ; and all executions in e’s decomposition are in E(h) and

succeed. Otherwise, e fails. So, in a history h where the production manager successfully

executes its plan to produce G and H, E(h) = feg [subex(e), and all conditions of

all plans with executions in E(h) are met at the appropriate times. In the history of

Figure 3.1, inconditions of the facilities manager’s service M1 execution fails because

conditions of equip M1 tool and calibrate M1 are not met causing their executions to

fail. Because they are subexecutions of service M1, service M1 also fails. produce H

also fails because available(M1) is f alse at 3.1 when it is required as a precondition to

build G.

3.5 Asserting, Clobbering, Achieving, and Undoing

Conventional planning literature often speaks of clobbering and achieving precondi-

tions of plans [Weld, 1994]. In CHiPs, these notions are slightly different since incon-

ditions can clobber and be clobbered, as seen in the previous section. Formalizing these

concepts and another, undoing postconditions, helps prove properties of summary condi-

tions. However, it will be convenient to define first what it means to assert a condition.

Figure 3.2 gives examples of executions involved in these interactions, and I define these

terms as follows:

An execution e of plan p asserts a condition ` at time t in a history h if and

only if ` is an incondition of p, t is in the smallest interval beginning after

ts(e) and ending before a following start or finish time of any execution in

E(h), and ` is satisfied by r(h)(t); or ` is a postcondition of p, t = t f (e), and

` is satisfied by r(t).

Asserting a condition only causes it to hold if the condition was not previously met.

Otherwise, the condition was already satisfied and the action requiring it did not really

cause it. In Figure 3.1, wherever the state changed in the run of the history, an execution

43

caused the state to change by asserting a condition in the state that previously did not

hold.

A precondition ` of plan p1 is [clobbered, achieved]7 in e1 (an execution of

p1) by e2 (an execution of plan p2) at time t if and only if e2 asserts [`0, `] at

t; `,:`0; and e2 is the last execution to assert ` or `0 before or at ts(e1). An

[incondition, postcondition] ` of plan p1 is clobbered in e1 by e2 at time t if

and only if e2 asserts `0 at t; `,:`0; and [ts(e1)< t < t f (e1), t = t f (e1)].

Achieving inconditions and postconditions does not make sense for this formalism,

so it is not defined. Achieving inconditions does not make sense because they are not

required external to the execution—that is the purpose of preconditions. Inconditions are

asserted internally at the time that they are first required to be met so that they, in effect,

achieve themselves. Postconditions are also asserted at the time they are required.

Figure 3.2c shows the five different ways an execution clobbers a condition of another.

For the two on the left, the postcondition of e clobbers the precondition of e0, and the

incondition of e clobbers the precondition of e0. In the middle, the postcondition of e

clobbers an incondition of e0; the incondition of e clobbers the incondition of e0. On the

right, the postcondition of e clobbers the postcondition of e 0. Figure 3.1 shows build G

execution clobbering the incondition of equip M1 tool that machine M1 is available.

A postcondition ` of plan p1 is undone in e1 (an execution of p1) by e2 (an

execution of plan p2) at time t if and only if e2 asserts `0 at t; `,:`0; and e2

is the first execution to assert ` or `0 at or after t f (e1).

3.6 External Conditions

As recognized in [Tsuneto et al., 1998], external conditions are important for reason-

ing about potential refinements of abstract plans. Although the basic idea is the same, I

define them a little differently and call them external preconditions to differentiate them

from other conditions that I call external postconditions. Intuitively, an external precon-

dition of a group of partially ordered plans is a precondition of one of the plans that is
7I use braces [] as a shorthand when defining similar terms and procedures. For example, saying “[a,

b] implies [c, d]” means a implies c, and b implies d.

44

a) e asserts in/postcondition l

b) e achieves precondition l of e’

c) e clobbers pre/in/postcondition l of e’

d) e undoes postcondition l of e'

e
l l

e
l

e'

l

e

l

e'

l

e
¬l

e'

l

e

¬l

e'

l e

¬l

e'
l

e'
l

e

¬l

e

¬l

e'

l

e

¬l

e'

l

Figure 3.2: Interval interactions of plan steps

not achieved by another in the group and must be met external to the group. External

postconditions, similarly, are those that are not undone by plans in the group and are net

effects of the group.

Formally, an external precondition ` of an interval (t1; t2) in history h is a precon-

dition of a plan p with some execution e 2 E(h) for which t1 � ts(e) < t2, and ` is

neither achieved nor clobbered by an execution at a time t where t1 � t � ts(e). An

external precondition of an execution e = hd; ts; t f i is an external precondition of an in-

terval (t1; t2) in some history where t1 � ts; t f � t2; and there are no other plan execu-

tions other than the subexecutions of e. So, if the history in Figure 3.1 only included

the execution of produce H, available(M1) would be an external precondition of any

interval beginning by the start of build G and ending after that point because no execu-

tion other than build G achieves or clobbers available(M1) before the start of build G.

available(M1) is thus an external precondition of the execution produce H because in

this history available(M1) is an external precondition of the interval of the execution

produce H. An external precondition of a plan p is an external precondition of any of

p’s executions. It is called a must precondition if it is an external precondition of all

executions; otherwise it is called a may precondition. So, because available(M1) is an

45

external precondition of the execution produce H for the execution in Figure 3.1, it is an

external precondition of the plan produce H. It is a may external precondition because it

is not an external precondition of the execution of produce H where produce g on M2

is selected in the decomposition of produce G.

Similarly, an external postcondition ` of an interval (t1; t2) in h is a postcondition of

a plan p with some execution e 2 E(h) for which t1 � t f (e) � t2; ` is asserted by e; and

` is not undone by any execution at a time t where t f (e) < t � t2. External postcondi-

tions of executions and plans can be defined in the same way as external preconditions.

:available(A) is a must external postcondition of produce H because it is definitely

consumed in the production of G, and no other execution makes A available again.

3.7 Resource Usage

Metric resources, such as a battery and a collection of available part-assembling ma-

chines, typically have maximum capacities. Battery energy is limited by the capacity of

the battery, and there are only so many part-assembling machines that can be available.

At the same time, these resource variables can have minimum values. The number of

available machines cannot fall below zero, and a modeler may constrain the battery to

never fall below 20% of its capacity.

The use of these resources have different properties. Battery energy, once used, can-

not be restored without explicit recharging. This is an example of a depletable resource—

when a task depletes the resource, the resource level is not restored. The machines,

however, are only unavailable while they are being used. Once a task is finished using

a machine, it automatically becomes available again. Resources of this type are non-

depletable—the resource level is restored at the end of the task.

Thus, my model of a metric resource is the tuple hname, minvalue, maxcapacity,

typei. name is an identifier for the resource. The min and max values can be integer or

real valued. The type of the resource is either depletable or non-depletable. An instance

of metric resource usage is simply hname, usagei where usage is the value that depletes

the resource name.

In order to understand how resource conflicts can be recognized by a planner, a model

of execution is needed just as is given for conditions in Section 3.3. The state of a resource

46

is a level value (again, integer or real). For depletable resource usage, a task that depletes

a resource is modeled to instantaneously deplete the resource (subtract usage from the

current state) at the start of the task by the full amount. For non-depletable resource

usage, a task also depletes the usage amount at the start of the task, but usage is restored

(added back to the resource state) at the end of execution. A task can restore a resource

by having a negative usage.

To extend this to concurrent hierarchical execution, any task (abstract or primitive)

can have usages over any resource.8 If a set of tasks using the same resource begin at the

same time, the total usage is summed and subtracted from the resource state. Likewise,

for a set of tasks using a non-depletable resource and all ending at the same, the usages

are summed and added back to the resource level. Conflicts occur when the level of the

resource falls below the min value or exceeds the max capacity. This simple model of

resources and usage is based directly on those of the ASPEN [Chien et al., 2000b] and

IxTeT [Laborie and Ghallab, 1995] planners. After I describe summary resource usage

in Section 4.4, Section 5.2 explains how these planners recognize these conflicts.

3.8 Summary of Representations

In summary, in this section I have described the structure of a concurrent hierarchical

plan (CHiP) in its specification of propositional state variable conditions and also a rep-

resentation of metric resource usage. A CHiP has pre-, in-, and postconditions as well

as a decomposition (unless it is primitive). Preconditions are requirements on the state

at the point where plan execution begins. Postconditions are effects realized at the end

of execution, and inconditions are intermediate requirements or effects that must hold

throughout the duration of the plan’s execution. If the CHiP is an and plan, all of the

subplans must be executed according to a set of specified partial ordering constraints. If

it is an or plan, just one subplan must be executed. An execution of a plan is an instance

of a CHiP with a particular decomposition and with fixed start and finish times. A history

is a possible world specifying an initial state and a set of executions taking place together.

A run describes how the state is updated over time for a particular history with concur-
8Although it is trivial to extend the algorithms in this paper to handle resource constraints specified for

abstract tasks, the algorithms will assume only primitive tasks can use resources.

47

rently executing CHiPs. A set of histories can enumerate different ways a set of plans can

be decomposed and executed. This is helpful for describing potential plan interactions

when the decomposition and ordering of actions is yet uncertain. Based on this model of

execution, I defined different interactions among plan executions: asserting, achieving,

clobbering, and undoing conditions (see Figure 3.2). I then defined which conditions of

an abstract plan’s subplans are the external pre- and postconditions of the abstract plan.

An external precondition is a condition that is not established within the abstract plan’s

decomposition but is required to be established externally. An external postcondition is

an effect of the abstract plan’s decomposition that is not undone internally. Examples of

external conditions are given in Section 1.2. Metric resources are categorized as either

depletable or non-depletable, depending on whether the resource is restored at the end of

its use, and have maximum capacities and minimum values.

Metric resource usage is represented (as is common) as a value that is subtracted

from the current state of the resource at the beginning of the task. A resource’s state at

any point in time is the initial state minus the usages of tasks whose intervals overlap

the time point and, for depletable resources, the usages of tasks completed before this

time point. These formalisms enable us to define summary information and describe the

algorithms that derive this information and use it within a planner or plan coordinator.

48

CHAPTER 4

Plan Summary Information

With the previous formalisms, I can now define summary information and describe a

method for computing it for non-primitive plans (in Section 4.1). After pointing to sound-

ness and completeness proofs in the appendices for the algorithm that derives summary

conditions (Section 4.2), Section 4.3 also defines and gives sound, complete algorithms

for determining a variety of interactions among concurrently executing plans based on

their summary information. Then I describe a representation for summarized metric re-

source usage of a task and an algorithm that derives it in Section 4.4. In Section 4.5, I

summarize the many terms and algorithms given in this chapter.

The summary information for a plan p is psum. psum is a tuple hpresum; insum; postsumi,

whose members are sets of summary conditions. The summary [pre, post]1 conditions of

p, [presum(p), postsum(p)], contain the external [pre, post] conditions of p. The sum-

mary inconditions of p, insum(p), contain all conditions that must hold within some

execution of p for it to be successful. A condition c in one of these sets is a tuple

h`;existence; timingi. `(c) is a literal. The existence of c can be must or may. If

existence(c) = must, then c is called a must condition because ` holds for every suc-

cessful plan execution (` must hold). For convenience I usually write must(c). c is a may

condition (may(c) is true) if there is at least one successful plan execution where `(c)

must hold.

The timing of a summary condition c can take the values always, sometimes, f irst,

last. timing(c) is always for c 2 insum if `(c) is an in-condition that must hold through-
1As mentioned earlier, I use braces [] as a shorthand when defining similar terms and procedures. For

example, saying “[a, b] implies [c, d]” means a implies c, and b implies d.

49

out the execution of p (` holds always); otherwise, timing(c) = sometimes meaning `(c)

holds at one point, at least, within an execution of p. The timing is f irst for c 2 presum if

`(c) holds at the beginning of an execution of p; otherwise, timing = sometimes. Simi-

larly, timing is last for c 2 postsum if `(c) is asserted at the end of a successful execution

of p; otherwise, it is sometimes. Although existence and timing syntactically only take

one value, semantically must(c)) may(c), and always(c)) sometimes(c).

Examples of must, may, always, and sometimes conditions are given for the man-

ufacturing domain in Section 1.2. For the production manager’s produce H plan,

available(A) and available(M1) are both summary preconditions, but only available(A)

is f irst because part A must be available to move to machine M1 at the start of the execu-

tion, and available(M1) is sometimes because the production manager does not need the

machine to build G and H until part way into the produce H plan. Likewise, available(G)

is a sometimes summary postcondition because it is made available in the middle of the

produce H plan, and available(H) is a last summary postcondition because it is an ex-

ternal postcondition of the last plan step of produce H where H is moved to bin1.

4.1 Deriving Summary Conditions

The method for deriving the summary conditions of a plan p is recursive. First, sum-

mary information must be derived for each of p’s subplans, and then the following pro-

cedure derives p’s summary conditions from those of its subplans and its own sets of

conditions. This procedure only applies to plans whose expansion is finite.

Summary conditions for primitives and non-primitives

� First, for each literal ` in pre(p), in(p), and post(p), add a condition c with literal ` to

the respective set of summary conditions for plan p. existence(c) is must, and timing(c) is

f irst, always, or last if ` is a pre-, in-, or postcondition respectively.

Summary [pre, post] conditions for and plan

� Add a condition c to the summary [pre, post] conditions of and plan p for each summary

[pre, post] condition c0 of p’s subplans that is not [must-achieved, must-undone] or must-

50

clobbered2 by another of p’s subplans, setting `(c) = `(c0).3

� Set existence(c) = must if `(c) is a [pre, post] condition of p or is the literal of a must

summary [pre, post] condition in a subplan of p that is not [may-achieved, may-undone] or

may-clobbered by any other subplans. Otherwise, set existence(c) = may.

� Set timing(c) = [f irst; last] if `(c) is a [pre, post] condition of p or the literal of a [f irst,

last] summary [pre, post] condition of a [least, greatest] temporally ordered subplan

(i.e. no others are constrained by order(p) to [begin before, end after] it).2 Otherwise,

set timing(c) = sometimes.

Summary [pre, post] conditions for or plan

� Add a condition c to the summary [pre, post] conditions of or plan p for each summary

[pre, post] condition c0 in p’s subplans, setting `(c) = `(c0).

� Set existence(c) = must if `(c) is a [pre, post] condition of p or a must summary [pre, post]

condition of all of p’s subplans. Otherwise, set existence(c) = may.

� Set timing(c) = [f irst; last] if `(c) is a [pre, post] condition of p or the literal of a [f irst,

last] summary [pre, post] condition in a subplan. Otherwise, set timing(c) = sometimes.

Summary inconditions for and plan

� Add a condition c to the summary inconditions of and plan p for each c0 in C defined as the

set of summary inconditions of p’s subplans unioned with the set of summary preconditions

of the subplans that are not always f irst in a least temporally ordered subplan and with

the set of summary postconditions of the subplans that are not always last in a greatest

temporally ordered subplan2, and set `(c) = `(c0).

� Set existence(c) = must if `(c) is an incondition of p or a literal of a must summary con-

dition c0 2C, as defined above, and is always not a f irst or last condition.2 Otherwise, set

existence(c) = may.

� Set timing(c) = always if `(c) is an incondition of p or a literal in the always summary in-

conditions in the subplans of p whose intervals must cover the interval within the execution

of p.2 Otherwise, set timing(c) = sometimes.

2See the definitions and algorithms in Section 4.3.4 about how to determine must-achieved, may-
achieved, must-undone, may-undone, must-clobbered, and may-clobbered as well as those about deter-
mining least and greatest temporally ordered subplans, always f irst/last conditions, and interval covering.

3To resolve ambiguity with set membership, any two summary conditions (c and c 0) are equal if `(c) =
`(c0), and if they belong to the same set of summary conditions for some plan.

51

Summary inconditions for or plan

� Add a condition c to the summary inconditions of or plan p for for each summary incondi-

tion c0 in p’s subplans, setting `(c) = `(c0).

� Set existence(c) = must if `(c) is an incondition of p or a must summary incondition of all

of p’s subplans. Otherwise, set existence(c) = may.

� Set timing(c) = always if `(c) is an incondition of p or an always summary incondition of

all of p’s subplans. Otherwise, set timing(c) = sometimes.

Below is the summary information derived for the production manager’s top-level

plan (produce H) for the example given in Section 1.2, the produce G subplan, and

a move plan. The summary conditions for the other factory managers’ plans and the

subplans of produce G (to give an example of the summarization of an or plan) are given

in Appendix A. In addition to the discussion following these example plans, Section 1.3.2

explains the derivation of some of the summary conditions. Following each literal is a

tag for the existence and timing information. “Mu” is must; “Ma” is may; “F” is f irst;

“L” is last; “S” is sometimes; and “A” is always. The language of the coordination code

allows for variables (preceded by “$”) in the conditions.

Variables are often used as parameters to a general plan operator schema or for intro-

ducing least commitment in constraints on objects. Below, $srcG is the location where

part G is placed after its production, and $imtransport is the transport used by the in-

ventory manager for some of its tasks. Yang and Chan show how variable binding can

be used successfully in least commitment planners and point to many other planners that

use them [Yang and Chan, 1994]. I do not give details in this thesis on the summarization

of plans with unbound variables; however, the basic approach is to unify conditions with

variables to see if the domains of the variables overlap for determining whether one con-

dition may or must be the same as another. This unification test also enables a planner to

determine whether one plan must or may achieve, clobber, or undo a condition of another.

Production manager’s produce H plan:

Summary preconditions:

at(bin1, A)MuF, at(bin2, B)MuF, available(A)MuF, free(transp1)MaF,

:full($srcG)MuF, available(B)MuS, :full(M1 tray2)MaS, available(M1)MaS,

free(transp2)MaF, :full(M2 tray2)MaS, available(M2)MaS, :full(M2 tray1)MaS

52

Summary inconditions:

available(B)MuS, :full(M1 tray2)MaS, available(M1)MaS, :full(M2 tray2)MaS,

available(M2)MuS, full($srcG)MuS, :at(bin1, A)MuS, :full(bin1)MuS,

:at(bin2, B)MuS, :full(bin2)MuS, free(transp1)MaS, at($srcG, G)MaS,

available(G)MuS, :available(A)MuS, :available(B)MuS, :at($srcG, A)MuS,

:at(M1 tray2, B)MaS, free(transp2)MuS, :at(M2 tray2, B)MaS,

at(bin2, B)MuS, at($srcG, A)MuS, available(A)MuS, at(M1 tray2, B)MaS,

full(M1 tray2)MaS, :full($srcG)MuS, :free(transp1)MaS,

:available(M1)MaS, at(M2 tray2, B)MaS, full(M2 tray2)MaS,

:free(transp2)MuS, :available(M2)MuS, :full(M2 tray1)MuS,

:at($srcG, G)MuS, :available(G)MuS, :at(M2 tray1, G)MuS,

at(M2 tray1, G)MaS, full(M2 tray1)MuS, at(M2 tray1, H)MaS,

available(H)MuS, :at(M2 tray1, H)MuS, :available(H)MuS

Summary postconditions:

:at(bin1, A)MuS, :full(bin1)MaS, :at(bin2, B)MuS, :full(bin2)MaS,

free(transp1)MaS, :available(A)MuS, :available(B)MuS, :at($srcG, A)MuS,

:at(M1 tray2, B)MaS, :full(M1 tray2)MaS, available(M1)MaS,

:at(M2 tray2, B)MaS, :full(M2 tray2)MaS, :at($srcG, G)MuS,

:available(G)MuS, :at(M2 tray1, G)MuS, available(M2)MuS, at($srcG, H)MuL,

available(H)MuL, full($srcG)MuL, :at(M2 tray1, H)MuL, :full(M2 tray1)MuL,

free(transp2)MuL

Production manager’s produce G plan:

Summary preconditions:

at(bin1, A)MuF, at(bin2, B)MuF, available(A)MuF, free(transp1)MaF,

:full($srcG)MuF, available(B)MuS, :full(M1 tray2)MaS,

available(M1)MaS, free(transp2)MaF, :full(M2 tray2)MaS, available(M2)MaS

Summary inconditions:

at(bin2, B)MuS, available(B)MuS, :full(M1 tray2)MaS, at($srcG, A)MuS,

available(A)MuS, full($srcG)MuS, :at(bin1, A)MuS, :full(bin1)MuS,

at(M1 tray2, B)MaS, full(M1 tray2)MaS, :at(bin2, B)MuS, :full(bin2)MuS,

free(transp1)MaS, :available(A)MuS, :full($srcG)MuS, :free(transp1)MaS,

:available(B)MuS, available(M1)MaS, :available(M1)MaS,

:full(M2 tray2)MaS, at(M2 tray2, B)MaS, full(M2 tray2)MaS,

free(transp2)MaS, :free(transp2)MaS, available(M2)MaS, :available(M2)MaS

53

Summary postconditions:

full($srcG)MaS, :at(bin1, A)MuS, :full(bin1)MuS, :at(bin2, B)MuS,

:full(bin2)MuS, free(transp1)MaS, at($srcG, G)MuL, available(G)MuL,

:available(A)MuL, :available(B)MuL, :at($srcG, A)MuL,

:at(M1 tray2, B)MaL, :full(M1 tray2)MaL, available(M1)MaL,

free(transp2)MaS, :at(M2 tray2, B)MaL, :full(M2 tray2)MaL,

available(M2)MaL

Production manager’s move A to $srcG plan:

Summary preconditions:

at(bin1, A)MuF, available(A)MuF, free(transp2)MuF, :full($srcG)MuF

Summary inconditions:

:at(bin1, A)MuA, :available(A)MuS, available(A)MuS, full($srcG)MuS,

:full($srcG)MuS, :full(bin1)MuA, :free(transp2)MuS, free(transp2)MuS

Summary postconditions:

at($srcG, A)MuL, available(A)MuL, full($srcG)MuL, :at(bin1, A)MuL,

:full(bin1)MuL, free(transp2)MuL

Notice that only the move A to $srcG plan has always inconditions. This is because

its subplans have the meets ordering constraint (see the example in Section 3.2) such

that summary inconditions in both of the subplans must span the entire duration of the

parent. The other plans have be f ore ordering constraints over their subplans, so even if

all of the subplans have common inconditions, they may not span potential gaps between

them (where plans of other agents or concurrent subgoals may be placed), so they do not

always need to hold.

The produce G or plan is achieved by either producing G on machine M1 or M2. The

summary conditions that involve M1 and M2 are in only one of the subplans, so those

conditions are summarized as may conditions in produce G. However, the conditions in-

volving parts A, B, and G are common in both subplans, so they are summarized as must

conditions in the parent. The produce H plan summary preconditions require A and B to

be available externally to produce G. But, although G is needed to produce H as a sum-

mary precondition of the produce H f rom G plan (shown in Appendix A), there are no

preconditions that G must be available in the produce H parent plan. This makes sense

because G does not need to be made available externally since produce H f rom G’s

54

summary precondition for G is must-achieved by G’s production in the produce G sub-

plan. Similarly, produce H has no summary postcondition that G is available from its

production since available(G) is must-undone by the must :available(G) summary post-

condition of produce H f rom G that consumes G.

Because these plans have no internal conflicts, there are no must or may-clobbered

summary conditions. However if a condition is must or may-clobbered, this internal con-

flict may be resolved in the domain model by either adding temporal constraints or elimi-

nating the or branch (subplan) containing the conflict. The definitions and algorithms for

must/may-achieved/clobbered/undone are given in Section 4.3.4.

4.2 Proving the Properties of Summary Conditions

I prove that the procedure in the previous section derives summary conditions with

their intended properties. This proof (given in Appendix C) is not broken down into

separate lemmas for each property since the truth of each property depends on those of

others, and it depends on soundness and completeness proofs of algorithms introduced

in the next section. These results ease the proofs of soundness and completeness for

procedures determining how CHiPs can definitely or potentially interact so that good

planning and coordination decisions can be made at various levels within and among

plan hierarchies.

4.3 Supporting Mechanisms

In this section, I describe algorithms for computing interval relations and determining

plan interactions base on summary information. These plan interactions describe relation-

ships where a plan must or may achieve, clobber, or undo the condition of another under

particular ordering constraints. The algorithms for computing interval relations are used

to determine the timing of summary conditions. The algorithms for determining plan

interactions are used to determine which summary conditions are propagated as external

conditions of the parent plan. They are also used to identify threats and solutions within

planning and coordination algorithms (see Section 5.1). Readers who do not wish to fully

understand proofs of these and other formalisms of Chapter 4 may safely skip to Section

55

4.5.

The procedure in Section 4.1 ensures that external and internal conditions are cap-

tured by summary conditions and must, always, f irst, and last have their intended mean-

ings. The soundness and completeness proof of the algorithm depends on the sound-

ness and completeness of the algorithms for determining the plan interactions (such as

must-achieve and may-clobbers). However, these algorithms for determining the plan

interactions rely on the correctness of the procedure for deriving summary information.

To avoid a circular argument, I shall assume that the summary information is correct for

the set of plans over which these relations are defined, and in the proof of the properties

of summary information (Appendix C), I will be able to use the following formalisms

since I also assume the properties of summary information for the set of subplans in the

inductive step. These concepts will also aid in proving the soundness and completeness

of methods for determining whether certain temporal relations can or might hold among

abstract plans.

The definitions and algorithms throughout this section are given within the context of

a set of plans P with a corresponding set of summary information Psum, a set of ordering

constraints order, and a set of histories H including all histories where E(h) only includes

an execution e of each plan in P and e’s subexecutions, and E(h) satisfies all constraints in

order. They are all concerned with the ordering of plan execution intervals and the timing

of conditions. By themselves, they do not have anything to do with whether conditions

may need to be met or must be met for a plan execution.

4.3.1 Algorithms for computing interval relations

The algorithms for determining whether the defined relations hold between summary

conditions for plans in P use a point algebra constraint table as described in [Vilain and

Kautz, 1986]. The point algebra table is constructed for the interval endpoints corre-

sponding to the executions of the plans in P; a row and column for both p� (start end-

point) and p+ (finish endpoint) are added for each plan p 2 P. Then, the constraints in

order are added to the table, and the transitive closure is computed to get all constraints

entailed from those in order. This only needs to be done once for any P and order. For

must-assert relations, each constraint specified in an entry of the case tables must be a

56

subset of the constraints in the point algebra table in order for the relation to hold for that

case. For may-assert relations, each constraint specified in an entry of the case tables

must be missing from the constraints in the point algebra table in order for the relation to

hold for that case. These inferences using the point algebra table are shown to be sound

and complete in [Vilain and Kautz, 1986].

I determine that a plan q in p’s subplans is temporally ordered [least, greatest] if and

only if [q�, q+] is constrained [before, after] or equal to all other points in the point

algebra table for p’s subplans. This is done by looking at each entry in the row for [q�,

q+] and checking to see that the constraint is [<, >], =, or [�, �]. If this is not the

case, then q is not always [f irst, last]. A summary [pre, post] condition of plan q in p’s

subplans is always [f irst, last] if and only if q is a [least, greatest] temporally ordered

subplan. A summary [pre, post] condition of plan q in p’s subplans is always not [f irst,

last] if and only if in the row for [q�, q+] there is an entry with the [>, <] constraint.

I determine that an interval i0 is covered by a set of intervals I = fi1; i2; : : : ; ikg ac-

cording to a conjunction of constraints order by constructing a point algebra table for all

of these intervals, adding the constraints in order to the table, and computing the transi-

tive closure. After this, the algorithm checks to see if i0 is covered by looking at all pairs

of intervals to see if they overlap. i0 is not covered if either no intervals in I meet either i�0

or i+0 , there are any intervals that have an endpoint that is contained only by i0 and do not

meet the opposite side of another interval in I or an endpoint of i0, or there are no intervals

overlapping i0. Otherwise, it is. For example, in Figure 4.1a, the parent plan A is covered

by its subplans B, C, and D because B� meets A�; D+ meets A+; B+ is contained by

C; C� is contained by B; and C+ meets D�.4 In Figure 4.1b, E is not covered because

F+ is not necessarily contained by any interval other than E, and it doesn’t meet another

interval. In Figure 4.1c, I is not covered because there are no intervals overlapping it.

4.3.2 Summarizing, requiring, and attempting to assert summary

conditions

In order to determine whether abstract plan executions can achieve, clobber, or undo

conditions of others, an agent needs to be able to reason about how summary conditions
4Arrows show precedence constraints over the endpoints of the intervals, and double ended arrows with

’=’ beside them indicate that the endpoints must occur at the same time.

57

B
=

=

Aa)

C

=

=

b)

c)

D

E

F

G

H
I

Figure 4.1: Subactivities’ intervals covering their parent’s interval

are asserted and required to be met. Ultimately, the agent needs to be able to determine

whether a partial ordering of abstract plans can succeed, so it may be the case that an

agent’s action fails to assert a summary condition that is required by the action of another

agent. Therefore, I formalize what it means for an action to attempt to assert a summary

condition and to require that a summary condition be met. These definitions rely on

linking the summary condition of a plan to the CHiP conditions it summarizes in the

subplans of the plan’s decompositions. Thus, I first define what it means for a summary

condition to summarize these conditions.

Definition: A summary condition c summarizes a condition ` in condition

set conds of plan p iff c was added by the procedure for deriving summary

information to a summary condition set of p0; ` = `(c); and either c was

added for ` in a condition set conds of p = p0, or c was added for a summary

condition of a subplan of p0 that summarizes ` in conds of p.

For example, at(bin1, A) is a precondition of the start move plan for moving part A

from bin1 to machine M1 (as given in Section 3.2). When deriving the summary condi-

tions for start move, at(bin1, A) is added to the summary preconditions. Thus, the sum-

mary precondition must, f irst at(bin1, A) summarizes at(bin1, A) in the preconditions

of start move. Because at(bin1, A) is added to the move plan’s summary preconditions

from the summary preconditions of start move, the move plan’s summary precondition

must, f irst at(bin1, A) also summarizes at(bin1, A) in the preconditions of start move.

Likewise, since this summary condition is propagated up the hierarchy to the top-level

plan produce H, must, f irst at(bin1, A) in produce H’s summary preconditions also

summarizes at(bin1, A) in the preconditions of start move.

58

Definition: An execution e of p requires a summary condition c to be met

at t iff c is a summary condition in p’s summary information; there is a

condition ` in a condition set conds of p0 that is summarized by c; if f irst(c),

t = ts(e); if last(c), t = t f (e); if always(c), t is within (ts(e); t f (e)); and if

sometimes(c), there is an execution of a subplan of p in d(e) that requires a

summary condition c0 to be met at t, and c0 summarizes ` in conds of p0.

So, basically, an execution requires a summary condition to be met whenever the

conditions it summarizes are required. The build G execution (shown in Figure 3.1)

has a summary precondition must, f irst available(M1). This execution requires this

summary condition to be met at ts(build G) because at(A, M1 tray1) is a precondition

of build G’s first subplan that is summarized by build G’s summary precondition. The

must, sometimes available(M1) summary precondition of produce G on M1 is also re-

quired by the plan’s execution at ts(build G) because the summary condition summa-

rizes the same available(M1) precondition of build G’s first subplan; build G is a sub-

plan of produce G on M1; build G’s execution requires the must, f irst available(M1)

summary precondition to be met at the same time (which is within the execution of

produce G on M1). Similarly, produce H’s execution requires its may, sometimes

available(M1) summary precondition to also be met at rts(build G).

Similar to the previous definition: an execution e of p attempts to assert a

summary condition c at t iff c is a summary condition in p’s summary infor-

mation; there is a condition ` in a condition set conds of p0 that is summa-

rized by c; : f irst(c); if always(c), t is in the smallest interval after ts(e) and

before the start or end of any other execution that follows ts(e); if last(c),

t = t f (e); and if sometimes(c), there is an execution of a subplan of p in d(e)

that attempts to assert a summary condition c0 at t; and c0 summarizes ` in

conds of p0.

I say that an execution “attempts” to assert a summary condition because asserting

a condition can fail due to a simultaneous assertion of the negation of the condition.

Like the example above for requiring a summary condition, the executions of build G,

produce G on M1, and produce H all assert summary postconditions that M1 becomes

available at t f (build G).

59

4.3.3 Definitions and algorithms for must/may asserting summary

conditions

I have defined what it means for a plan execution to require or attempt to assert a

summary condition at a particular point in time, but in order for agents to determine

potential interactions among their abstract plans (such as clobbering or achieving), they

need to reason about when a summary condition is asserted by one plan in relation to

when it is asserted or required by another. Based on interval or point algebra constraints

over a set of abstract plans, an agent specifically would need to be able to determine

whether a plan would assert a summary condition before or by the time another plan

requires or asserts a summary condition on the same state variable. In addition, to reason

about clobbering inconditions, an agent would need to determine if a summary condition

would be asserted during the time a summary incondition c was required (asserted in

c). Agents also need to detect when a summary postcondition would be asserted at the

same time as another summary postcondition c (asserted when c). I do not consider

cases where executions attempt to assert a summary in- or postcondition at the same time

an incondition is asserted because in these cases, clobber relations are already detected

because executions always require the summary inconditions that they attempt to assert.

For example, in Figure 3.1 if equip M1 attempted to assert the incondition that M1 was

unavailable at the same time that build G attempted to assert the postcondition that M1

was available, the incondition of equip M1 that requires M1 is unavailable would be

clobbered by build G’s postcondition.

In the case that the ordering constraints allow for alternative synchronizations of the

abstract plans, the assertions of summary conditions may come in different orders. There-

fore, I formalize must-assert and may-assert to determine when these relationships must

or may occur respectively. As mentioned at the beginning of Section 4.3, this use of

“must” and “may” is based only on disjunctive orderings and not on the existence of

summary conditions in different decompositions. For the following definitions and algo-

rithms of must- and may-assert, I assume c and c0 are summary conditions of plans in P.

Soundness and completeness proofs of the algorithms are given in Appendix B.

Definition: p0 2 P must-assert c0 [by, before] c iff for all histories h 2 H and

all t where e is the top-level execution in E(h) of some p 2 P that requires

60

p0 must-assert c0 by c p0 must-assert c0 before c
order must impose order must impose

c0 2 post(p0) c 2 pre(p) these constraints these constraints
last f irst

1 T T p0+ � p� p0+ < p�

2 T F p0+ � p� p0+ < p�

3 F ? p0+ � p� p0+ < p�

4 ? ? p0+ � p� p0+ < p�

c0 2 in(p0)
always

5 T T p0� < p� p0� < p�

6 T F p0� � p� p0� � p�

7 F ? f alse f alse
c0 2 post(p0) c 2 in(p)

last always

8 T ? p0+ � p� p0+ � p�

9 F ? p0+ � p� p0+ � p�

c0 2 in(p0)
always

10 T ? p0� � p� p0� < p�

11 F ? f alse f alse
c0 2 post(p0) c 2 post(p)

last last

12 T T p0+ � p+ p0+ < p+

13 T F p0+ � p� p0+ � p�

14 F T p0+ � p+ p0+ � p+

15 F F p0+ � p� p0+ � p�

c0 2 in(p0)
always

16 T T p0� < p+ p0� < p+

17 T F p0� � p� p0� � p�

18 F T f alse f alse
19 F F f alse f alse

Table 4.1: Table for must-assert by/before algorithm

c to be met at t, and e0 is the top-level execution of p0 in E(h), there is a t 0

where e0 attempts to assert c0 at t 0, and [t 0 � t, t 0 < t].

Algorithm: p0 2 P must-assert c0 [by, before] c if and only if for the row of

Table 4.1 describing c0 and c, all of the corresponding ordering constraints

are imposed by (can be deduced from) order as described above using the

point algebra table.

Definition: p0 2 P may-assert c0 [by, before] c iff for some history h 2 H,

there exists a p 2 P, e, e0, t, and t 0 such that e is the top-level execution of p

in E(h); e0 is top-level execution of p0 in E(h); e0 attempts to assert c0 at t 0; e

attempts to assert c at t, and [t 0 � t, t 0 < t].

Algorithm: p0 2 P may-assert c0 [by, before] c if and only if for the row of

Table 4.2 describing c0 and c, none of the corresponding ordering constraints

are imposed by (can be deduced from) order as described above using the

point algebra table.

I illustrate these relationships for the example in Figure 4.2a. Here the agents’ plans

61

p0 may-assert c0 by c p0 may-assert c0 before c
order cannot impose order cannot impose

c0 2 post(p0) c 2 pre(p) these constraints these constraints
last f irst

1 T T p0+ > p� p0+ � p�

2 T F p0+ � p+ p0+ � p+

3 F T p0� � p� p0� � p�

4 F F p0� � p+ p0� � p+

c0 2 in(p0)
always

5 ? T p0� � p� p0� � p�

6 ? F p0� � p+ p0� � p+

c0 2 post(p0) c 2 in(p)
last always

7 T T p0+ > p� p0+ > p�

8 T F p0+ � p+ p0+ � p+

9 F T p0� � p� p0� � p�

10 F F p0� � p+ p0� � p+

c0 2 in(p0)
always

11 ? T p0� > p� p0� � p�

12 ? F p0� � p+ p0� � p+

c0 2 post(p0) c 2 post(p)
last last

13 T T p0+ > p+ p0+ � p+

14 T F p0+ � p+ p0+ � p+

15 F T p0� � p+ p0� � p+

16 F F p0� � p+ p0� � p+

c0 2 in(p0)
always

17 ? T p0� � p+ p0� � p+

18 ? F p0� � p+ p0� � p+

Table 4.2: Table for may-assert by/before algorithm

are unordered with respect to each other. Part G is produced either on machine M1 or M2

depending on potential decompositions of the produce G plan. produce G must-assert

c0 = must, last available(G) before c = must, f irst available(G) in the summary precon-

ditions of move G because no matter how the plans are decomposed (for all executions

and all histories of the plans under the ordering constraints in the figure), the execution

of produce G attempts to assert c0 before the execution of move G requires c to be met.

The algorithm verifies this by finding that the end of produce G is ordered before the

start of move G (row 1 in Table 4.1). It is also the case that equip M2 tool may-assert

c0 = must, last :available(M2) by c = may, sometimes available(M2) in the summary

preconditions of produce G because the two plans are unordered with respect to each

other, and in some history equip M2 tool can precede produce G. The algorithm finds

that this is true since equip M2 is not constrained to start after the start of produce G

(row 2 in Table 4.2).

Definition: p0 2P must-assert c0 in c iff always(c), and for all histories h2H

and all t where there’s a plan p 2 P such that c 2 insum(p); e is the top-level

execution in E(h) of p that requires c to be met at t; and e0 is the top-level

62

produce G

move G build H move H

produce G

move G build H move H

produce G

move G build H move H

tool

move equip M2

tool

service M2

calibrate M2

service M2

tool tool

calibrate M2

tool

equip M2

produce H from G

move equip M2

produce H from G

tool

service M2

move calibrate M2

produce H from G

produce H

produce H

produce H

c)

=

a)

b)

Figure 4.2: The production and facilities managers’ plans partially expanded

63

p0 must-assert c0 in c
order must impose

c0 2 post(p0) c 2 in(p) these constraints
last always

1 T T p0+ > p� and p0+ < p+

2 T F f alse

3 F T p0� � p� and p0+ � p+

4 F F f alse
c0 2 in(p0)

always

5 T T p0� � p� and p0� < p+

6 T F f alse
7 F T f alse
8 F F f alse

p0 may-assert c0 in c
order cannot impose

c0 2 post(p0) c 2 in(p) these constraints
last always

1 T T p0+ � p� or p0+ � p+

2 T F p0+ � p� or p0+ � p+

3 F T p0+ � p� or p0� � p+

4 F F p0+ � p� or p0� � p+

c0 2 in(p0)
always

5 T T p0+ � p� or p0� � p+

6 T F p0+ � p� or p0� � p+

7 F T p0+ � p� or p0� � p+

8 F F p0+ � p� or p0� � p+

Table 4.3: Table for must/may-assert in algorithm

execution of p0 in E(h), there is a t 0 where e0 attempts to assert c0 at t 0, and

ts(e)< t 0 < t f (e).

Algorithm: p0 2 P must-assert c0 in c if and only if for the row of Table 4.3

describing c0 and c, all of the corresponding ordering constraints are imposed

by (can be deduced from) order as described above using the point algebra

table.

Definition: p0 2 P may-assert c0 in c iff for some history h 2H, there exists a

p 2 P, e, e0, t, and t 0 such that c 2 insum(p); e is the top-level execution p in

E(h); e0 is top-level execution of p0 in E(h); e0 attempts to assert c0 at t 0; and

ts(e)< t 0 < t f (e).

Algorithm: p0 2 P may-assert c0 in c if and only if for the row of the table de-

scribing c0 and c, none of the corresponding ordering constraints are imposed

by (can be deduced from) order as described above using the point algebra

table.

In Figure 4.2b, move tool may-assert c0 = must, last f ree(transport1) in c = may,

sometimes: f ree(transport1) in produce G’s summary inconditions because in some his-

tory move tool attempts to assert c0 during the time that produce G is using transport1

64

p0 must-assert c0 when c
order must impose

c0 2 post(p0) c 2 post(p) these constraints
last last

1 T T p0+ = p+

2 T F f alse
3 F T f alse
4 F F f alse

p0 may-assert c0 when c
order cannot impose

c0 2 post(p0) c 2 post(p) these constraints
last last

1 T T p0+ 6= p+

2 T F p0+ � p� or p0+ � p+

3 F T p0+ � p+ or p0� � p+

4 F F p0+ � p� or p0� � p+

Table 4.4: Table for must/may-assert when algorithm

to move part A to machine M2. The algorithm determines this by finding that move tool

ends neither before the start of produce G nor after the end of produce G (row 2 in the

may-assert part of Table 4.3). It is not the case that move tool must-assert c0 in c because

c is sometimes and may only be required in a subinterval of produce G that does not

overlap the end of move tool. According to the algorithm, must-assert is false for this

case corresponding to row 2 in the must-assert part of Table 4.3.

Definition: p0 2 P must-assert c0 when c iff c0 2 postsum(p0); last(c0); and

for all histories h 2 H and all t where e is the top-level execution in E(h) of

some p 2 P that requires c to be met at t, and e0 is the top-level execution of

p0 in E(h), there is a t 0 where e0 attempts to assert c0 at t 0, and t = t 0.

Algorithm: p0 2P must-assert c0 when c if and only if for the row of Table 4.4

describing c0 and c, all of the corresponding ordering constraints are imposed

by (can be deduced from) order as described above using the point algebra

table.

Definition: p0 2 P may-assert c0 when c iff for some history h 2 H, there

exists a p 2 P, e, e0, t, and t 0 such that c 2 postsum(p); e is the top-level

execution p in E(h); e0 is top-level execution of p0 in E(h); e0 attempts to

assert c0 at t 0; and t = t 0.

Algorithm: p0 2 P may-assert c0 when c if and only if for the row of the

table describing c0 and c, none of the corresponding ordering constraints are

imposed by (can be deduced from) order as described above using the point

algebra table.

65

In Figure 4.2b, equip M2 tool must-assert c0 = must, last :available(M2) when c =

may, last available(M2) in produce G’s summary postconditions because equip M2 tool

attempts to assert c0 at the same time that produce G requires c to be met. The algo-

rithm agrees according to row 1 of the must-assert part of Table 4.4. It is not true that

equip M2 tool may-assert c0 = must, last :available(M2) when c = must, sometimes

available(M2) in produce H f rom G’s summary postconditions because there are no

histories where the end of equip M2 tool can be at the same time as the end of

produce H f rom G. The algorithm verifies this by finding that the end of equip M2 tool

is constrained to precede the end of produce H f rom G, falsifying the rule for row 2 in

the may-assert part of Table 4.4.

4.3.4 Definitions and algorithms for must/may clobber, achieve, and

undo

Since I have shown how an agent can detect particular orderings of assertions and re-

quirements of summary conditions, I can now specify how the agent can use these defini-

tions and algorithms to determine when clobbering, achieving, and undoing interactions

must or may occur. Below I give definitions for must/may achieve, clobber, and undo

and algorithms that an agent can use to discover such interactions. The use of “must”

and “may” in these definitions takes into account disjunctive orderings of abstract plans

as well as the existence of their summary conditions based on multiple decomposition

choices.

The soundness and completeness proofs of these are actually trivial given the lemmas

that established the soundness and completeness of must/may assert relations and the

fact that the algorithms for determining these properties directly follow their definitions.

Therefore, I only give a proof for the soundness of must-clobber and must-achieve (in

Appendix B). In Appendix D, I prove the circumstances under which summarized condi-

tions will be met depending on whether summary conditions are must- or may-clobbered.

These lemmas are central to the soundness and completeness proofs of the CanAnyWay

and MightSomeWay algorithms described in Section 5.1 that determine the potential suc-

cess or failure of a set of abstract plans.

Definition: Plan p0 2 P must-[achieve, clobber] c in presum(p) iff there is a

66

c0; `(c0), [`(c), :`(c)]; and for all histories h 2 H, where e is the top-level

execution of p in E(h), and e0 is the top-level execution of p0 2 P in E(h); if

e requires c to be met, e0 attempts to assert c0 before or at the time e requires

c to be met and after any other attempt to assert some c00 (where `(c00),

[:`(c), `(c)]) before or at the time e requires c to be met; and there are no

p00 2 P and c00 where p00 6= p0; `(c00), [`(c), :`(c)]; and for all histories

h00 2 H where e00 is the top-level execution p00 in E(h00), e0 attempts to assert

c0 before e00 attempts to assert c00, and e00 attempts to assert c00 before or at the

time e requires c to be met.

For example, in Figure 4.2c, p0 = build H must-achieve c = must, f irst available(H)

in the summary preconditions of p = move H. Here, c0 is must, last available(H) in the

summary postconditions of build H. In all histories, the execution of build H attempts

to assert c0 before the execution of move H requires c to be met, and there is no other exe-

cution (e00) that attempts to assert a condition (c00) on the availability of H. equip M2 tool

does not must-clobber c = must, f irst available(M2) in the summary preconditions of

build H even though equip M2 tool attempts to assert c0 = must, last :available(M1)

before c is required to be met for all histories. The reason that equip M2 tool does not

must-clobber c is not because there is a plan that could assert available(M2) (c00) after

equip M2 tool attempts to assert c0 and before c is required—produce G attempts to as-

sert c00 = must, last available(M2), but that happens before equip M2 tool attempts to

assert c0. The reason is that p00 = calibrate M2 attempts to assert the summary incondi-

tion c00 = must, always :available(M2) between the time that equip M2 tool attempts to

assert c0 and when c is required. This means that calibrate M2 must-clobber c. This last

restriction ensures that there is only one achiever or clobberer unless there are multiple

plans that achieve/clobber at the same time. In this way, a planner or coordinator can

identify the plan directly causing the achieving/clobbering.

Algorithm: p0 2 P must-[achieve, clobber] c in presum(p) if and only if there

is a c0 such that p0 2 P must-assert c0 by c; must(c0); `(c0), [`(c), :`(c)];

and by checking inside a loop through the plans in Psum, there is no p00 and

c00 such that p0 may-assert c0 before c00; p00 may-assert c00 by c; and `(c00),

[:`(c), `(c)]; or p0 must-assert c0 before c00; p00 must-assert c00 by c; `(c00),

67

[`(c), :`(c)]; and c00 is must.

The complexity of walking through the summary conditions checking for p 00 and

c00 is O(nc) for c summary conditions for each of n plans represented in Psum. It is

possible to improve the algorithm by hashing the summary conditions based on the literal

they summarize and only process plans with matching or contradicting literals. Then the

algorithm does not have to visit conditions summarizing different propositional variables.

However, in the worst case, all summary conditions summarize the same propositional

variable, and all O(nc) conditions must be visited, so the worst case complexity is not

further reduced. The complexity of the other must/may achieve/clobber/undo algorithms

described below is the same by similar argument.

Definition: Plan p0 2 P may-[achieve, clobber] c in presum(p) iff there is

a c0 where `(c0), [`(c), :`(c)], and for some history h 2 H, e is the top-

level execution p in E(h); e0 is the top-level execution of p0 2 P in E(h); e0

attempts to assert c0 before or at the time e requires c to be met and after any

other attempt to assert some c00 (where `(c00), `(c) or :`(c) before or at the

time e requires c to be met.

For example, in Figure 4.2a, p0 = equip M1 tool may-clobber c = may, sometimes

available(M2) in the summary preconditions of p = produce G because there is some

history where equip M1 tool ends before produceG starts, and calibrate M2 starts after

produce G starts. Thus, equip M1 tool attempts to assert c0=must, last :available(M2)

before c is required to be met, and no other plan (p00), such as calibrate M1, can as-

sert a condition (c00) on the availability of M1 in between p0 and p. In Figure 4.2c,

p0 = equip M1 tool does not may-clobber c = must, f irst available(M2) in the sum-

mary preconditions of p = build G because there is no history where p00 = calibrate M2

does not attempt to assert c00 = must, always available(M2) between equip M1 tool and

build G. Note that must-[clobber, achieve] implies may-[clobber, achieve], and, thus,

:may-[clobber, achieve] implies :must-[clobber, achieve].

Algorithm: p0 2 P may-[achieve, clobber] c in presum(p) if and only if there

is a c0 such that p0 2 P may-assert c0 by c; `(c0), [`(c), :`(c)]; and by

checking inside a loop through the plans in Psum, there is no p00 and c00 such

68

that p0 must-assert c0 before c00; p00 must-assert c00 by c; `(c00) , `(c) or

:`(c); and c00 is must.

Definition: Plan p0 2 P must-clobber c in insum(p) iff always(c); there is a

c0 where `(c0),:`(c); and for all histories h 2 H, where e is the top-level

execution p 2 P in E(h), and e0 is the top-level execution of p0 in E(h), if e

requires c to be met, e0 attempts to assert c0 within e.

Algorithm: p0 2 P must-clobber c in insum(p) if and only if there is a c0 such

that p0 must-assert c0 in c0; must(c0); and `(c0),:`(c).

Definition: Plan p0 2 P may-clobber c in insum(p) iff there is a c0 where

`(c0),:`(c); and for some history h2H, where e is the top-level execution

p 2 P in E(h), and e0 is the top-level execution of p0 in E(h), e0 attempts to

assert c0 within e.

Algorithm: p0 2 P may-clobber c in insum(p) if and only if there is a c0 such

that p0 may-assert c0 in c; and `(c0),:`(c).

For instance, in Figure 4.2c, the equip M2 tool plan may-clobber c=may, sometimes

available(M2) in the inconditions of produce G, but it is not true that equip M2 tool

must clobber the incondition because only in some histories equip M2 tool attempts to

assert must last :available(M2) during the time that produce G requires c to be met.

Definition: Plan p0 2 P must-clobber c in postsum(p) iff there is a c0 where

`(c0),:`(c), and for all histories h 2 H, where e is the top-level execution

p 2 P in E(h), and e0 is the top-level execution of p0 in E(h), if e requires c

to be met, e0 attempts to assert c0 at the same time e attempts to assert c.

Algorithm: p0 2 P must-clobber c in postsum(p) if and only if there is a c0

such that p0 must-assert c0 when c; must(c0); and `(c0),:`(c).

Definition: Plan p0 2 P may-clobber c in postsum(p) iff there is a c0 where

`(c0),:`(c); and for some history h2H, where e is the top-level execution

p 2 P in E(h), and e0 is the top-level execution of p0 in E(h), e0 attempts to

assert c0 at the same time e attempts to assert c.

Algorithm: p0 2 P may-clobber c in postsum(p) if and only if there is a c0

such that p0 may-assert c0 when c; and `(c0),:`(c).

69

For example, in Figure 4.2b, produce G may-clobber c = must, last :available(M2)

in the summary postconditions of equip M2 tool because in some history, the production

manager produces part G on M2 (instead of M1), and releases the machine at the same

time that equip M2 tool attempts to assert c. It is not true that produce G must-clobber c

because in some histories it uses machine M1 to produce G, resulting in no conflict. How-

ever, it is true that equip M2 tool must-clobber may, last available(M2) in produce G’s

summary postconditions because in all histories that produce G uses M2, equip M2 tool

attempts to assert must, last :available(M2) at the same time that produce G requires

may, last available(M2) to be met. This is why the algorithm for must-clobber only

requires that c0 is must and not c. This is necessary to ensure that may summary precon-

ditions are not propagated as external preconditions of the parent CHiP when they must

be achieved or clobbered.

As mentioned in Section 3.5, achieving inconditions and postconditions does not

make sense for this formalism. Therefore, we do not define must/may achieving of sum-

mary inconditions and postconditions.

Definition: Plan p0 2 P must-undo c in postsum(p) iff there is a c0 where

`(c0),:`(c), and for all histories h 2 H, where e is the top-level execution

p in E(h), and e0 is the top-level execution of p0 2 P in E(h); if e attempts

to assert c, it does so before or at the time e0 attempts to assert c0 and after

any other attempt to assert some c00 (where `(c00), `(c)) before e0 attempts

to assert c0; and there are no p00 2 P and c00, where p00 6= p0, `(c00),:`(c),

and for all histories h00 2 H where e00 is the top-level execution p00 in E(h00),

e attempts to assert c before or at the time e00 attempts to assert c00, and e00

attempts to assert c00 before e0 attempts to assert c0.

Algorithm: p0 2 P must-undo c in postsum(p) if and only if there is a c0 such

that p must-assert c by c0; must(c0); `(c0),:`(c); and by checking inside

a loop through the plans Psum, there is no p00 and c00 such that p may-assert

c by c00; p00 may-assert c00 before c0; and `(c00), `(c); or p must-assert c by

c00; p00 must-assert c00 before c0; `(c00),:`(c); and c00 is must.

In Figure 4.2, p0 = build H must-undo c = must, last available(G) in the summary

postconditions of p = move G because in all histories build H attempts to assert c 0 =

70

must, sometimes available(G) after move G asserts c, and there is no p00 that attempts to

assert a condition on the availability of G (c00) between move G and build H. In Figure

4.2c, it is not true that p0 = equip M2 tool must-undo c = may, last available(M2) in the

summary postconditions of p = produce G even though in all histories equip M2 tool

attempts to assert c0 = must, last :available(M2) after c is asserted, and no other plan

attempts to assert a condition about the availability of M2 inbetween. This may seem

counterintuitive, but since equip M2 tool attempts to assert its summary incondition c 00=

must, sometimes :available(M2) in some histories after c and before c0, c0 is not always

the first to undo c. Thus, even though equip M2 tool will undo c in all histories, because

the summary condition that undoes c is uncertain, must-clobber is false.

Definition: Plan p0 2 P may-undo c in postsum(p) iff there is a c0 where

`(c0),:`(c), and for some history h 2 H, e is the top-level execution p in

E(h); e0 is the top-level execution of p0 2 P in E(h); e attempts to assert c

before or at the time e0 attempts to assert c0 and after any other attempt to

assert some c00 (where `(c00), `(c) or :`(c)) before e0 attempts to assert c0.

Algorithm: p0 2 P may-undo c in post(p) if and only if there is a c0 such

that p 2 P may-assert c by c0; `(c0),:`(c); and by checking inside a loop

through the plans in Psum, there is no p00 and c00 such that p must-assert c by

c00; p00 must-assert c00 before c0; `(c00), `(c) or :`(c); and c00 is must.

For the must-undo example above referring to Figure 4.2c, equip M2 tool may-undo

c=may, last available(M2) in produce G’s summary postconditions either with its sum-

mary incondition or its summary postcondition. However, it is not true that calibrate M2

may-undo c because in all histories p00 = equip M2 tool attempts to assert its summary

postcondition (c00) after c is asserted and before calibrate M2 asserts its summary incon-

dition c0 = must, somtimes :available(M2).

4.4 Summary Resource Usage

In this section, I extend summary information to include metric resources. I define

a representation for capturing ranges of usage both local to the task interval and the de-

pleted usage lasting after the end of the interval. Based on this I introduce a summariza-

71

B

A D

C

F

E

Figure 4.3: Example map of established paths between points in a rover domain

tion algorithm that captures in these ranges the uncertainty represented by decomposition

choices in or plans and partial temporal orderings of and plan subtasks. This representa-

tion allows a coordinator or planner to reason about the potential for conflicts for a set of

tasks. This reasoning will be discussed later in Section 5.2.

4.4.1 Representation

As an example, I will focus on coordinating a collection of rovers as they explore

the environment around a lander on Mars. This exploration takes the form of visiting

different locations and making observations. Each traversal between locations follows

established paths to minimize effort and risk. These paths combine to form a network

like the one mapped out in Figure 4.3, where vertices denote distinguished locations, and

edges denote allowed paths. Thinner edges are harder to traverse, and labeled points

have associated observation goals. While some paths are over hard ground, others are

over loose sand where traversal is harder since a rover can slip.

Figure 4.4 gives an example of an abstract task. Imagine a rover that wants to make an

early morning trip from point A to point B on the example map. During this trip the sun

slowly rises above the horizon giving the rover the ability to progressively use soak rays

tasks to provide more solar power (a non-depletable resource) to motors in the wheels.

In addition to collecting photons, the morning traverse moves the rover, and the resultant

go tasks require path dependent amounts of power. While a rover traveling from point A

to point B can take any number of paths, the shortest three involve following one, two, or

three steps.

A summarized resource usage consists of ranges of potential resource usage amounts

during and after performing an abstract task, and I represent this summary information

72

high path

go(A,3) go(3,B)
use 4w use 6w
15 min 25 min

go(A,B)

50 min
use 4w

move(A,B)

take low pathsoak rays soak rays soak rays
use -4w
20 min

use -5w use -6w
20 min 20 min

go(2,B)
use 3w use 3w use 6w
10 min 10 min 20 min

go(A,1) go(1,2)

morning activities

middle path

Figure 4.4: and/or tree defining abstract tasks

using the structure

hlocal min range; local max range; persist rangei;

where the resource’s local usage occurs within the task’s execution, and the persistent

usage represents the usage that lasts after the task terminates for depletable resources.

The usage ranges capture the multiple possible usage profiles of a task with multiple

decomposition choices and timing choices among loosely constrained subtasks. For ex-

ample, the high path task has a h[4,4],[6,6],[0,0]i summary power use over a 40 minute

interval. In this case the ranges are single points due to no uncertainty – the task simply

uses 4 watts for 15 minutes followed by 6 watts for 25 minutes. The move(A,B) pro-

vides a slightly more complex example due to its decompositional uncertainty. This task

has a h[0,4],[4,6],[0,0]i summary power use over a 50 minute interval. In both cases the

persist range is [0,0] because solar power is a nondepletable resource.

While a summary resource usage structure has only one range for persistent usage

of a resource, it has ranges for both the minimum and maximum local usage because

resources can have minimum as well as maximum usage limits, and it is necessary to

detect whether a conflict occurs from violating either of these limits. As an example

of reasoning with resource usage summaries, suppose that only 3 watts of power were

available during a move(A,B) task. Given the [4,6] local max range, we know that there

is an unresolvable problem without decomposing further. Raising the available power to

4 watts makes the task executable depending on how it gets decomposed and scheduled,

and raising to 6 or more watts makes the task executable for all possible decompositions.

73

4.4.2 Resource Summarization Algorithm

The state summarization algorithm in Section 4.1 recursively propagates summary

conditions upwards from an and/or hierarchy’s leaves, and the algorithm for resource

summarization takes the same approach. Starting at the leaves, the algorithm finds primi-

tive tasks that use constant amounts of a resource. The resource summary of a task using

x units of a resource is h[x,x],[x,x],[0,0]i or h[x,x],[x,x],[x,x]i over the task’s duration for

nondepletable or depletable resources respectively.

Moving up the and/or tree the summarization algorithm either comes to an and or an

or branch. For an or branch the combined summary usage comes from the or computa-

tion

h[minc2children(lb(local min range(c)));

maxc2children(ub(local min range(c)))];

[minc2children(lb(local max range(c)));

maxc2children(ub(local max range(c)))];

[minc2children(lb(persist range(c)));

maxc2children(ub(persist range(c)))]i;

where lb() and ub() extract the lower bound and upper bound of a range respectively.

The children denote the branch’s children with their durations extended to the length of

the longest child. This duration extension alters a child’s resource summary information

because the child’s usage profile has a zero resource usage during the extension. For

instance, in determining the resource usage for move(A,B), the algorithm combines two

40 minute tasks with a 50 minute task. The resulting summary information describes a

50 minute abstract task whose profile might have a zero watt power usage for 10 min-

utes. This extension is why move(A,B) has a [0,4] for a local min range instead of [3,4].

Planners that reason about variable durations could use [3,4] for a duration ranging from

40 to 50.

Computing an and branch’s summary information is a bit more complicated due to

timing choices among loosely constrained subtasks. The take x path examples illustrate

the simplest sub-case, where subtasks are tightly constrained to execute serially. Here

profiles are appended together, and the resulting summary usage information comes from

74

the SERIAL-AND computation

h[minc2children(lb(local min range(c))+Σpre
lb (c));

minc2children(ub(local min range(c))+Σpre
ub (c))];

[maxc2children(lb(local max range(c))+Σpre
lb (c));

maxc2children(ub(local max range(c))+Σpre
ub (c))];

[Σc2children(lb(persist range(c)));

Σc2children(ub(persist range(c)))]i;

where Σpre
lb (c) and Σpre

ub (c) are the respective lower and upper bounds on the cumulative

persistent usages of children that execute before c. These computations have the same

form as the Σ computations for the final persist range.

The case where all subtasks execute in parallel and have identical durations is slightly

simpler. Here the usage profiles add together, and the branch’s resultant summary usage

comes from the PARALLEL-AND computation

h[Σc2children(lb(local min range(c)));

maxc2children(ub(local min range(c))+Σnon
ub (c))];

[minc2children(lb(local max range(c))+Σnon
lb (c));

Σc2children(ub(local max range(c)))];

[Σc2children(lb(persist range(c)));

Σc2children(ub(persist range(c)))]i;

where Σnon
ub (c) and Σnon

lb (c) are the respective sums of local max range upper bounds and

local min range lower bounds for all children except c.

To handle and tasks with loose temporal constraints, I consider all legal orderings

of child task endpoints. For example, in the rover’s early morning tasks, there are three

serial solar energy collection subtasks running in parallel with a subtask to drive to loca-

tion B. Figure 4.5 shows one possible ordering of the subtask endpoints, which breaks the

move(A,B) into three pieces, and two of the soak rays children in half. Given an ordering,

the summarization algorithm can (1) use the endpoints of the children to determine subin-

tervals, (2) compute summary information for each child task/subinterval combination,

(3) combine the parallel subinterval summaries using the PARALLEL-AND computa-

tion, and then (4) chain the subintervals together using the SERIAL-AND computation.

75

soak rays

<[0,4],[4,6],[0,0]>

move(A,B)

soak rays

soak rays

<[-6,-6],[-6,-6],[0,0]>
<[-5,-5],[-5,-5],[0,0]>

<[-4,-4],[-4,-4],[0,0]>

Figure 4.5: Possible task ordering for a rover’s morning activities, with resulting subin-
tervals.

Finally, the and task’s summary is computed by combining the summaries for all possible

orderings using an or computation.

Here I describe how step (2) generates different summary resource usages for the

subintervals of a child task. A child task with summary resource usage h[a,b],[c,d],[e, f]i

contributes one of two summary resource usages to each intersecting subinterval5:

h[a;b]; [c;d]; [0;0]i;h[a;d]; [a;d]; [0;0]i:

While the first usage has the tighter [a,b],[c,d] local ranges, the second has looser

[a,d],[a,d] local ranges. Since the b and c bounds only apply to the subintervals con-

taining the subtask’s minimum and maximum usages, the tighter ranges apply to one of

a subtask’s intersecting subintervals. While the minimum and maximum usages may not

occur in the same subinterval, symmetry arguments let us connect them in the computa-

tion. Thus one subinterval has tighter local ranges and all other intersecting subintervals

get the looser local ranges, and the extra complexity comes from having to investigate all

subtask/subinterval assignment options. For instance, there are three subintervals inter-

secting move(A,B) in Figure 4.5, and three different assignments of summary resource

usages to the subintervals: placing [0,4],[4,6] in one subinterval with [0,6],[0,6] in the

other two. These placement options result in a subtask with n subintervals having n pos-

sible subinterval assignments. So if there are m child tasks each with n alternate assign-

ments, then there are nm combinations of potential subtask/subinterval summary resource

usage assignments. Thus propagating summary information through an and branch is ex-

ponential in the number of subtasks with multiple internal subintervals. However since

the number of subtasks is controlled by the domain modeler and is usually bounded by

a constant, this computation is tractable. In addition, summary information can often be
5For summary resource usages of the last interval intersecting the child task, we replace [0;0] with [e; f]

in the persist range.

76

derived offline for a domain. The propagation algorithm takes on the form:

� For each consistent ordering of endpoints:

– For each consistent subtask/subinterval summary usage assignment:

� Use PARALLEL-AND computations to combine subtask/subinterval

summary usages by subinterval.

� Use a SERIAL-AND computation on the subintervals’ combined

summary usages to get a consistent summary usage.

� Use or computation to combine all consistent summary usages to get and task’s

summary usage.

4.5 Summary of Formalisms

In this section, I defined summary information in terms of the properties of sum-

mary conditions. A summary condition’s existence is either must or may depending on

whether it must hold for all or just some decompositions. The timing of a summary con-

dition is either f irst, last, always, or sometimes, specifying when the condition must

hold in the plan’s interval of execution. I described an algorithm for preprocessing a plan

library to derive summary conditions for each CHiP. This algorithm relies on support-

ing mechanisms for temporal reasoning and for identifying interactions between pairs of

plans based on their summary conditions and temporal constraints. I pointed to a proof

in Appendix C for the soundness and completeness of the algorithm to derive summary

conditions with their intended properties. I gave algorithms for determining the timing of

a summary condition using a point algebra table to reason about the partial orderings of

plan interval endpoints. In order to formalize higher level plan interactions, I first defined

what it means for a summary condition of a plan to summarize a condition in the plan’s

decomposition. I also defined what it means for a plan execution to require or assert a

summary condition.

Based on these definitions, I gave algorithms for determining when one plan execu-

tion asserts a summary condition with respect to the time that a summary condition of

another plan is required or asserted based on the temporal constraints among the plans.

These algorithms also determine whether these assertion relations must or may hold for

77

the plans. I used these algorithms as functional blocks of higher level algorithms for de-

termining whether one plan must or may achieve, clobber, or undo a summary condition

of another. All of these algorithms are proven sound and complete and are used to derive

summary conditions and identify threats in a set of partially ordered plans (as shown in

the next section).

Summary resource usage is represented as three value ranges, hlocal min range,

local max range, persist rangei, where the resource’s local usage occurs within the

task’s execution, and the persistent usage represents the usage that lasts after the task

terminates for depletable resources. The summarization algorithm for an abstract task

takes the summary resource usages of its subtasks, considers all legal orderings of the

subtasks, and all possible usages for all subintervals within the interval of the abstract

task to build multiple usage profiles. These profiles are combined with algorithms for

computing parallel, sequential, and disjunctive usages to give the resultant summary us-

age of the parent task.

78

CHAPTER 5

Identifying Threats at Abstract Levels

Up to this point, I have detailed sound and complete algorithms for deriving sum-

mary conditions and for reasoning about potential (may) and definite (must) interactions

between tasks in the context of those of other agents based on their summary information.

In addition, I have outlined algorithms for deriving summarized resource usage but have

not yet discussed interactions among tasks based on this information. In this chapter, I

show how the interactions of summary conditions and summarized metric resource us-

age identify potentially resolvable threats and unresolvable conflicts among the plans of

a group of agents. In Section 5.3, I summarize the main ideas developed in this chapter

and review the material for this first part of the thesis to carry into subsequent parts.

5.1 Summary Conditions

With the properties of summary information proven, agents can safely reason about

the interactions of their abstract plans without decomposing them. Agents can attempt to

resolve conflicts among their plans by considering commitments to particular decompo-

sitions and ordering constraints. In order to do this, the agents must be able to identify

remaining conflicts among their plans. Here I present an algorithm for identifying threats

between abstract plans and their required conditions and show that it is sound and com-

plete.

Formally, for a set of CHiPs P with ordering constraints order, a threat between an

abstract plan p 2 P and a summary condition c0 of another plan p0 2 P exists iff p may-

79

clobber c0. The threat is unresolvable if p must-clobber c0 and must(c0).1 According

to the lemmas in Appendix D, if there is no plan that may-clobber c0, then any condition

summarized by c0 will be met no matter how the plans in P are decomposed and executed.

However, if c0 is must-clobbered, then all conditions summarized by c0 will be clobbered

for any execution of P. Thus, the potential success of an agent’s plans depends on whether

their conditions are threatened and whether those threats are resolvable.

So, a simple algorithm for identifying threats is to check to see if each of the O(nc)

summary conditions of n plans in Psum is must- or may-clobbered by any other plan. Since

the complexity of checking to see if a particular condition is must- or may-clobbered is

O(nc), this algorithm’s complexity is O(n2c2). This algorithm is sound and complete

because the must/may-clobber algorithms are proven sound and complete, and the al-

gorithms check for all cases where pre-, in-, or postconditions are clobbered from the

assertion of inconditions or postconditions.

In many coordination tasks, if agents could determine that under certain temporal

constraints their plans can be decomposed in any way (CanAnyWay) or that under those

constraints there is no way they can be successfully decomposed (:MightSomeWay),

then they can make coordination decisions at abstract levels without entering a potentially

costly search for valid plan merges at lower levels. These relations over CHiPs with

ordering constraints are dependent on the potential for threats among the plans—if there

are no threats, the CanAnyWay property is true; if there are no unresolvable conflicts, then

MightSomeWay is true. Not only can agents potentially make coordination decisions at

abstract levels, but they can also focus their planning/coordination on resolving the threats

and avoid reasoning about details of plans where there are no conflicts. In this section, I

present sound and complete algorithms for determining CanAnyWay and MightSomeWay

relations based on summary information. For convenience, I will abbreviate Can with C,

Any with A, Way with W , and so on.

Informally, [CAW(order, Psum), MSW (order, Psum)] says that the temporal rela-

tions in order [can, might] hold for the set of plans P whose corresponding summary

information is in the set Psum for [any way, some way] that the plans may be exe-

cuted. I could also describe CanSomeWay(order,Psum) and MightAnyWay(rel,Psum) in

the same fashion, but because these relations depend on both decomposition choices
1It is possible for a plan to must-clobber a may condition. (See Section 4.3.4.)

80

and how the subexecutions are synchronized, their meanings are not clear. For exam-

ple, MightAnyWay(fdg;fpsum;qsumg) could mean that the during relation might hold

for some decompositions of the plans in such a way that the subplans can be synchro-

nized in any way (within the constraints of during at the top level). However, it could

also mean that for any way the plans are decomposed, there might be a synchronization

of the plans such that they will succeed. One might call the former interpretation the

MightAnyWaySynchronize relation, and the latter the MightAnyWayDecompose relation.

CanSomeWay is similar, but CanAnyWay and MightSomeWay do not have such ambigu-

ity.

For example, in Figure 5.1a, the three top-level plans of the managers are unordered

with respect to each other. The leaf plans of the partially expanded hierarchies comprise

Psum. Arrows represent the constraints in order. CAW (fg,fproduce G, maintenance,

move partsg) is false because there are several conflicts over the use of machines and

transports that could occur for certain executions of the plans as described in Section

4.3.4 for Figure 4.2. However, MSW (fg, fproduce G, maintenance, move partsg) is true

because the plans might in some way execute successfully as shown in Figure 5.1b. With

the ordering constraints in Figure 5.1b, CAW (fbefore(1,0)2, before(0,2)g,fproduce G,

maintenance, move partsg) is true because the plans can execute in any way consistent

with these ordering constraints without conflict. Here are the formal definitions of CAW

and MSW :

Definition: [CAW (order, Psum), MSW (order, Psum)] iff for [all, some] sets

of plans P with summary information Psum and [all, some] histories h where

E(h) includes an execution of each plan in P as well as its subexecutions,

and all executions meet the constraints in order, then all executions in E(h)

succeed.

I assume here that each of the plans in P would successfully execute by itself (i.e.

they cannot clobber their own conditions) and that the initial state of h is such that it does

not conflict with any preconditions external to the plans in P. In other words, we assume

that the external preconditions of the plans do not conflict with each other.3 So the task
2The 1 and 0 here are indices of the summarized plans. 0 refers to produce G, 1 refers to maintenance,

and 2 refers to move parts.
3One could additionally check the summary preconditions of the plans against each other or against a

81

maintenance

move_parts

maintenance

move_parts

produce H

produce H

tool

moveservice

produce H

M2

service M1 M2

service

move_parts

M1

maintenance

produce G produce H from G

c)

b)

a)

Figure 5.1: The top-level plans of each of the managers for the manufacturing domain

of determining whether CAW or MSW is true is basically to detect whether any plan may

or must clobber a condition of another. In practice, if a planner/coordinator agent cannot

assume that there are no conflicts within a plan, then conflicts can be resolved internally

before reasoning about interactions with other plans.

Algorithm: [CAW (order, Psum), MSW(order, Psum)] is false if and only if

by checking inside two nested loops through the Psum, there is a psum and

p0sum in Psum and a summary condition c of psum such that one or more of the

procedures for determining p0 [may-clobber, must-clobber] c (using p0sum as

the summary information for p0) returns true, and c is [may or must, must].

Figure 4.2c is an example where MSW is false because calibrate M2 must-clobber

the must, f irst available(M2) summary precondition of build H. The complexity of this

particular initial state for conflicts. This could be simply done by treating the initial state as the external
postconditions of a plan ordered before any plan in P.

82

p

p’

p’’

lll

l l l

-l

Figure 5.2: :MSW is not complete for partially ordered CHiPs

algorithm is O(n2c2) since the O(nc) procedures for determining must/may-clobber must

be run for each of nc conditions (c summary conditions in each of n plans represented by

Psum).

Soundness and completeness proofs of CAW and MSW are in Appendix D. For a par-

tial ordering of plans in Psum, CAW is sound and complete, but determining that MSW

is false is only sound. This is because the algorithm for determining must-clobber only

considers pairs of summary conditions in conflict and ignores cases where a plan that can

come between the clobberer and requirer may also be clobbered. For example consider

the partial ordering of plans in Figure 5.2. Plan p with a must, :` summary postcondition

is ordered before both p0 and p00 with must ` summary pre-, in-, and postconditions, and

p0 and p00 are unordered with respect to each other. In this case, the algorithm for must-

clobber returns f alse because either p0 or p00 can achieve the summary preconditions

before p can clobber either of them. Thus, the algorithm for determining :MSW returns

false. However, in no histories can any set of plans with these summary conditions exe-

cute successfully, so :MSW is true, and the algorithm is not complete. In order for the

algorithm for :MSW to be complete, it must assume that the plans are totally ordered

(but potentially overlapping).4 Therefore, I push the responsibility of detecting :MSW

for partially ordered plans onto the planner/coordinator that can search the possible syn-

chronizations of the plans. The planner/coordinator can still use the :MSW algorithm

at each search state to discover unresolvable conflicts and backtrack. Section 6.1 details

this approach. The algorithm for determining CAW is sound and complete for partially

ordered plans because it is sufficient to only search for conflicts among pairs of summary

conditions among the plans.
4A total ordering is one where each endpoint of a plan’s execution interval is constrained to one temporal

relation (precedes, follows, or same) with every other endpoint of every other plan’s execution.

83

5.2 Summary Resource Usage Conflicts

Ignoring summary resource usage for a moment, resource conflicts are detected in

different ways depending on the type of planner. If the planner reasons about partially

ordered actions, it must consider which combinations of actions can overlap and exceed

(or fall below) the resource’s maximum capacity (or minimum value). A polynomial al-

gorithm for doing this for the IxTeT planner is described in [Laborie and Ghallab, 1995].

Other planners that consider total order plans can more simply project the levels of the

resource from the initial state through the plan to see if there are conflicts. This is done

by applying the usages summed for concurrent actions for each subinterval between start

and end times to the resource level and propagating depletions (or restorations) from the

previous subinterval to the following one. ASPEN [Chien et al., 2000b] is an example of

a planner that does this.

Finding conflicts involving summarized resource usages can work in the same way.

For the partial order planner, the resultant usage of clusters of actions are tested using

the PARALLEL-AND algorithm in Section 4.4. For the total order planner, the level of

the resource is represented as a summarized usage initially h[x, x], [x, x], [x, x]i for a

depletable resource with an initial level x and h[x, x], [x, x], [0, 0]i for a non-depletable

resource. Then, for each subinterval between start and end times of the schedule of tasks,

the summary usage for each is computed using the PARALLEL-AND algorithm. Then

the level of the resource is computed for each subinterval while propagating persistent

usages using the SERIAL-AND algorithm.

5.3 Summary of Foundations

This chapter explained how threats can be detected for summary information using

the algorithms developed in Chapter 4. The basic threat detection algorithms for summary

conditions determine whether CanAnyWay(order,Psum) and MightSomeWay(order,Psum)

properties hold for the summary information (Psum) for a set of plans under a set of par-

tial temporal ordering constraints (order). Informally, CanAnyWay (abbreviated CAW) is

true if the plans can be decomposed and ordered in any way (while respecting the con-

straints in order) successfully. MightSomeWay (MSW) is true if there might be some

84

successful decomposition and ordering for the tasks. A threat exists if CAW is false. The

threat is unresolvable under ordering if MSW is false—in other words, there is no way

to decompose and order the tasks consistently. CAW is proven sound and complete. The

algorithm that determines if MSW is false is sound but only complete when ordering is

a complete ordering (i.e. there are no disjuncts, or partially specified constraints, infer-

able from ordering). The MSW algorithm can be used to identify all threats and any

unresolvable threats for summary conditions.

For summarized metric resources, we point to the IxTeT partial-order planner that

uses graph techniques to efficiently detect and resolve resource conflicts [Laborie and

Ghallab, 1995] for refinement-based planning. Our algorithms for determining may-

clobber relationships can be integrated into this algorithm in a straightforward way to

detect conflicts among abstract tasks. Local search planners such as ASPEN [Chien et

al., 2000b] efficiently detect and resolve metric resources by tracking resource levels over

a time horizon by computing local and persistent usages of tasks with grounded start and

end times. The component algorithms for deriving summarized metric resource usage can

be substituted into this computation for determining a summarized state of the resource

level over time to similarly detect resource conflicts.

In summary, Part I of this dissertation formalizes the concurrent execution of CHiPs

(concurrent hierarchical plans), specifies the properties of summary conditions and sum-

mary metric resource usage, and introduces algorithms that derive this summary infor-

mation, that determine many different interactions (such as clobbering and achieving)

between tasks and their constraints, and that identify threats among partially expanded

plans that can determine that either

� the plans are threat-free;

� the plans have unresolvable conflicts; or

� the plans may potentially be decomposed and ordered to resolve the threats.

These formalisms and algorithms are the foundations for the rest of this dissertation.

The extensive formalization is necessary to ensure that agents reason clearly and correctly

about their abstract plans in the context of others’ plans while inferring as much about

the potential and definite interactions of these tasks as possible.

85

In doing this, system designers can be assured that the agents will make sound coor-

dination decisions and that they will reach these decisions efficiently at the highest level

of abstraction possible without introducing irrelevant details in the decompositions of

these tasks. This chapter described how agents can identify threats among their partially

expanded plans hierarchies but makes no mention of how they should decompose their

hierarchies and resolve their conflicts.

That is the purpose of the next two parts of this dissertation. Part II describes and

evaluates a multiagent coordination algorithm based on the foundations of summary con-

ditions built in this first part of the thesis. Part III describes how this algorithm can be

adapted for single-agent planning and how summarized state and metric resource infor-

mation is efficiently used in a local search planner. Part IV summarizes contributions and

results and describes future research directions.

86

PART II

Multiagent Coordination

87

CHAPTER 6

Coordination Algorithm and Analyses

With the earlier defined algorithms for reasoning about a group of agents’ plans at

multiple levels of abstraction, I now describe how agents can efficiently coordinate based

on summary information. I describe a coordination algorithm that searches for ways to

restrict the decomposition and ordering of the collective actions of the agents in order

to resolve conflicts while maximizing the utilities of the individual agents or the global

utility of the group.

My approach to coordinating agents at multiple levels of abstraction starts by trying

to coordinate at the most abstract level and, as needed, decomposes the agents’ plans in

a top-down fashion. The idea is that agents should not divulge any more information

than is needed. Introducing irrelevant details only increases communication and com-

plicates the coordination. After describing the top-down coordination algorithm, this

chapter describes search techniques and heuristics that the algorithm can use to further

exploit summary information. Then, analyses describe how coordinating at multiple lev-

els can exponentially reduce search and maximize the performance of combined search

and execution.

6.1 Coordinating from the Top Down

The formalism of summary conditions in Part I culminated in algorithms determin-

ing if a set of plans (abstract or primitive) under a partial set of ordering constraints is

definitely conflict-free (CanAnyWay) or has unresolvable conflicts (:MightSomeWay).

Here I integrate the CanAnyWay and MightSomeWay procedures into an algorithm that

88

searches for a consistent coordinated plan for a group of agents. The particular algorithm

I describe here is sound and complete. The search starts out with the top-level plans of

each agent, which together represent the coordinated plan. The algorithm tries to find a

solution at this level and then expands the hierarchies deeper and deeper until the optimal

solution is found or the search space has been exhausted. A pseudocode description of

the algorithm is given in Figures 6.1 and 6.2.

A state of the search is a partially elaborated plan that we represent as a set of and

plans (one for each agent), a set of temporal constraints, and a set of blocked plans.

The subplans of the and plans are the leaves of the partially expanded hierarchies of the

agents. The set of temporal constraints includes synchronization constraints added dur-

ing the search in addition to those dictated by the agents’ individual hierarchical plans.

Blocked subplans keep track of pruned or subplans. Decisions made during the search

can be made decentrally. The agents can negotiate over ordering constraints to impose,

choices of subplans to accomplish higher level plans, and which decompositions to ex-

plore first. While the algorithm described here does not comment on specific negotiation

techniques, it does provide the mechanisms for identifying the choices over which the

agents can negotiate. Although search decisions can be made decentrally, the algorithm

given here is described as a centralized process that requests summary information from

the agents being coordinated.

The operators of the search are expanding non-primitive plans, blocking or subplans,

and adding temporal constraints on pairs of plans. When an agent expands one of its

plans, the plan’s summary conditions are replaced with only the original conditions of

the parent plan. Then the subplans with their summary conditions are added to the search

state, and the ordering information is updated in the coordinated plan. A subplan of an

or plan is added only when all other subplans are blocked. Blocking an or subplan can

be effective in resolving a constraint in which the other or subplans are not involved.

For example, if the inventory manager plans to only use transport2, the production man-

ager could block subplans using transport2 leaving subplans using transport1 that do

not conflict with the inventory manager’s plan. This can lead to least commitment ab-

stract solutions that leave the agents flexibility in selecting among the multiple applicable

remaining subplans. The agents can take another approach by selecting subplans (effec-

tively blocking all of the others) to investigate choices that are given greater preference

89

or are more likely to resolve conflicts.

In the pseudocode in Figure 6.1, the coordinating agent collects summary information

about the other agents’ plans as it decomposes them. The queue keeps track of expanded

search states. If the CanAnyWay relation holds for the search state, the Dominates func-

tion determines if the current solutions are better for every agent than the solution rep-

resented by the current search state and keeps it if the solution is not dominated. If

MightSomeWay is false, then the search space represented by the current search state can

be pruned; otherwise, the operators mentioned above are applied to generate new search

states (shown in Figure 6.2). Nondeterministic Choose functions determine how these

operators are applied. The implementation of the algorithm uses heuristics specified in

Section 6.2 to determine what choices are made. When a plan is expanded or selected (by

the Decompose function shown in Figure 6.3), the ordering constraints must be updated

for the subplans that are added. The UpdateOrder function accomplishes this.

Adding temporal constraints should only generate new search nodes when the order-

ing is consistent with the other global and local constraints. In essence, this operator

performs the work of merging non-hierarchical plans since it is used to find a synchro-

nization of the individual agents’ plans that are one level deep. In the pseudocode, the

ChooseConstraint function nondeterministically investigates all orderings (represented

by point algebra constraints over the Start and End points of action intervals), and incon-

sistent ordering constraints are pruned using a point algebra table as discussed in Section

4.3.1. However, in the implementation, I only investigate legal ordering constraints that

resolve threats that are identified by algorithms determining must/may achieves and clob-

bers relations among CHiPs. (By choosing only these constraints, fewer search states are

generated, and the search more directly resolves conflicts.) In the experiments, the search

for synchronizations is separated from the expansion and selection of subplans. An outer

search is used to explore the space of plans at different levels of abstraction. For each

state in the outer search, an inner search explores the space of plan merges by resolving

threats with ordering constraints.

The soundness and completeness of the coordination algorithm depends on the sound-

ness and completeness of identifying solutions and the complete exploration of the search

space. Soundness and completeness is not defined with respect to accomplishing partic-

ular goals but resolving conflicts in the plan hierarchies. While goals can be represented

90

Concurrent Hierarchical Coordination Algorithm

Input: set of agents

Output: set of solutions

begin function

plans = /0
for each agent ai

pi = get summary information for ai's top-level plan

plans = plans [fpig

end for

queue = f(plans, /0, /0)g
solutions = /0
loop

if queue == /0
return solutions

end if

(plans, order, blocked) = Pop(queue)
if CanAnyWay(initial state, plans, order, blocked)

solution = (plans, order, blocked)
solutions = solutions [fsolutiong
for each sol1 and sol2 in solutions

if Dominates(sol1, sol2)
solutions = solutions - fsol2g

end if

end for

end if

if MightSomeWay(initial state, plans, order, blocked)
operator = Choose(fexpand, select, block, constraing)

ApplyOperator(operator, plans, order, blocked, queue) (see Figure 6.2)

end if

end loop

return solutions
end function

Figure 6.1: A concurrent hierarchical coordination algorithm.

91

ApplyOperator Function

Input: operator, plans, order, blocked, queue
Output: queue
begin function

if operator == expand

plan = ChooseAndPlan(plans)
subplans = get summary information for subplans of plan
Decompose(plans, plan, subplans, order) (Figure 6.3)

else if operator == select

plan = ChooseOrPlan(plans)
plan:subplans = get summary information for subplans of plan
for each subplan 2 plan:subplans

newblocked = blocked [plan:subplans - fsubplang
neworder = order
newplans = plans
Decompose(newplans, plan, fsubplang, neworder) (Figure 6.3)

InsertStateInQueue(queue, newplans, neworder, newblocked)
end for

else if operator == block

plan = ChooseOrPlan(plans)
subplans = get summary information for subplans of plan
for each subplan 2 subplans where subplan 62 blocked

newblocked = blocked [subplan
neworder = order
newplans = plans
if 9! subplan0 2 plan:subplans, subplan0 62 blocked

Decompose(newplans, plan, fsubplan0g, neworder) (Figure 6.3)

end if

InsertStateInQueue(queue, newplans, neworder, newblocked)
end for

else if operator == constrain

plan = ChoosePlan(plans)
plan0 = ChoosePlan(plans - fplang)
constraint = ChooseConstraint(fStart, Endg � f<, �, =, �, >g � fStart, Endg)

neworder = order [(plan, plan0, constraint)
if Consistent(neworder)

InsertStateInQueue(queue, plans, neworder, blocked)
end if

end if

end function

Figure 6.2: ApplyOperator subprocedure for expanding a search state.

92

Decompose Function

Input: plans, plan, subplans, order
Output: plans, order
begin function

Replace summary conditions of plan with original conditions

plans = plans [subplans
UpdateOrder(order, plan, subplans, plan:order)

end function

Figure 6.3: Decompose subprocedure of ApplyOperator().

as abstract CHiPs that decompose into possible plans that accomplish them, the goals

of the planner/coordinator may be only to execute a series of actions successfully. Each

search state is tested by the CanAnyWay procedure to determine whether it is a solution.

The CanAnyWay procedure is shown to be sound and complete in Appendix D. Although

the algorithm for determining :MightSomeWay is only complete for a total ordering of

CHiPs, it is used to prune invalid branches in the search space, so it is enough that it

is sound (proof in Appendix D). In order to explore the search space completely, the

coordinator would need to consider all synchronizations of all possible decompositions

of each of the agents’ top-level plans. We assume that the plan hierarchy of each agent

is finite in its decomposition, so when the coordinator nondeterministically expands ab-

stract plans, eventually all abstract plans will be replaced with primitive decompositions.

Likewise, eventually all or plans will be replaced with subplan choices, and since new

search states are generated and added to the queue for each subplan of an or plan, all pos-

sible combined decompositions of the agents’ top-level plans are explored. The Choose

function for selecting operators nondeterministically explores any synchronization of the

expanded plans in conjunction with the ChooseConstraint function, so the search is

complete. Note that this search assumes that each agent’s hierarchical plan is internally

consistent. This means that the hierarchies have the CanAnyWay property. If they did

not, then the agents would also need to do planning to resolve internal conflicts. A plan-

ning algorithm is given in Chapter 8 that is a modification of the coordination algorithm

presented here.

Consider how the algorithm would find coordinated plans for the manufacturing

agents. At the beginning of the search, a coordinating agent gathers the summary infor-

mation for the top-level plans of the three agents in plans. At first, there are no ordering

93

constraints, so order is empty in the first search state (shown in Figure 5.1a) popped from

the queue. CanAnyWay is false, and MightSomeWay is true for this state as described ear-

lier in this section, so the coordinator chooses an operator to apply to the search state. It

could choose constrain and order the maintenance plan before produce H to resolve

all conflicts between those two plans. So, plan = maintenance, plan0 = produce G&H,

and constraint =(End, <, Start). The order is updated with the new constraint, and the

new search state is inserted into the queue by the InsertStateInQueue function that

determines how search states are ordered in the queue. On the next iteration of the loop,

the only search state in the queue that was just inserted is popped. The coordinator again

finds that CanAnyWay is false, and MightSomeWay is true since move parts can still

conflict with other plans over the use of transports. It can choose to constrain produce H

before move parts to resolve the remaining conflicts. This is detected on the next cycle

of the search loop where CanAnyWay is found to be true for this search state (shown

in Figure 5.1a). The plans, the two constraints in order, and the empty set of blocked

plans are added as a solution since there is no previously found solution that Dominates

it. The Dominates function uses domain specific criteria for determining when a solu-

tion has value as an alternative and should be kept or is inferior compared to another and

should be dropped. In this manufacturing domain, one solution dominates another if the

finish time for at least one agent is earlier and none are later. The search then continues

to find alternative or superior solutions, although the agents may wish to terminate the

search in the interest of time.

Another coordination solution to this problem from the manufacturing domain is

shown in Figure 5.1c. To generate this solution search state, the coordinator could first

choose to expand produce H (an and plan) into produce G and produce H f rom G.

These subplans are added to plans; produce H is removed from plans; and the order-

ing constraint that produce G is before produce H f rom G is added to order. Then,

with this search state, the coordinator can choose select on the or plan maintenance to

create two new search states: one where maintenance decomposes into service M1 M2

and one where maintenance decomposes into service M2 M1. The first search state is

created by adding service M2 M1 to the blocked set and replacing maintenance with

service M1 M2 in plans. When this new search state is popped from the queue, the co-

ordinator can then expand service M1 M2 into service M1 and service M2. To arrive at

94

the solution, the coordinator then adds the ordering constraints as shown by the arrows in

Figure 5.1c in successive iterations through the search loop.

6.2 Search Techniques and Heuristics

Although summary information is valuable for finding conflict free or coordinated

plans at abstract levels, this information can also be valuable in directing the search to

avoid branches in the search space that lead to inconsistent or suboptimal coordinated

plans. Inconsistent coordinated plans can be pruned away at the abstract level by doing a

quick check to see if MightSomeWay is false. In terms of the number of states expanded

during the search, employing this technique will always do at least as well as not using it,

and pruning the search space at abstract levels greatly reduces search effort. For example,

if the search somehow reached the state shown in Figure 4.2b, the coordinator could

backtrack before expanding the hierarchies further and avoid reasoning about details of

the plans where they must fail.

Another strategy is to first expand plans involved in the most threats. For the sake

of completeness, the order of plan expansions does not matter as long as they are all

expanded at some point when the search trail cannot be pruned. But, employing this “ex-

pand on most threats first” (EMTF) heuristic aims at driving the search down through the

hierarchy to find the subplan(s) causing conflicts with others so that they can be resolved

more quickly. This is similar to a most-constrained variable heuristic often employed

in constraint satisfaction problems. For example, if the facilities and inventory man-

agers wished to execute their plans concurrently as shown in Figure 6.4a, at the most

abstract level, the coordinator would find that there are conflicts over the use of trans-

ports for moving parts. Instead of decomposing produce H and reasoning about plan de-

tails where there are no conflicts, the EMTF heuristic would choose to decompose either

maintenance or move parts which have an equal number of conflicts. By decomposing

maintenance the agents can resolve the remaining conflicts and still execute concurrently.

Another heuristic that a coordinator can use in parallel with EMTF is “fewest threats

first” (FTF). Here the search orders nodes in the search queue by ascending numbers

of threats left to resolve. In effect, this is a least-constraining value heuristic used in

constraint satisfaction approaches. As mentioned in Section 5.1, threats are identified

95

maintenance

produce H

produce H

move_parts

maintenance

M1

move_parts

M2 tool

move

service M1 M2

service service

b)

a)

Figure 6.4: EMTF heuristic resolving conflicts by decomposing the maintenance plan

by the :MightSomeWay algorithm. By trying to resolve the threats of coordinated plan

search states with fewer conflicts, it is hoped that solutions can be found more quickly.

So, EMTF is a heuristic for ordering and subplans to expand, and FTF, in effect, orders or

subplan choices. For example, the production manager has a choice of using machine M1

or M2 to produce part G. In decomposing produce G, the coordinator creates two search

states for these two choices: one where produce G is replaced by produce G on M1 and

one that selects produce G on M2. If these plans overlap with the inventory manager’s

service M1 plan, the search state with produce G on M2 will have fewer conflicts since

there will be no conflicts over the use of machine M1. Therefore, by first searching the

state with produce G on M2 selected as dictated by the FTF heuristic, the coordinator is

likely closer to finding a solution because there are fewer conflicts left to resolve. This

heuristic can be applied not only to selecting or subplan choices but also to choosing

temporal constraints and variable bindings or even the set of all possible search state

expansions.

In addition, in trying to find optimal solutions in the style of a branch-and-bound

search, I use the cost of abstract solutions to prune away branches of the search space

whose minimum cost is greater than the maximum cost of the current best solution. This

is the role of the Dominates function in the description of the coordination algorithm in

Section 6.1. This usually assumes that cost/utility information is decomposable over the

hierarchy of actions. This means that the cost of any abstract action is a function of its

96

decompositions.

For example, if the coordinator is trying to minimize the makespan (duration) of each

of the agents, each plan’s summary information can keep track of the minimum and max-

imum makespans for its possible decompositions. During the computation of summary

information, these ranges can be computed for an abstract plan as follows. If a plan

is an and plan, the planner can simulate the execution of its subplans (without decom-

posing them) according to the ordering constraints among them starting each subplan as

soon as the constraints allow and keep track of the time passed. Simulating with the

subplans’ minimum makespans as their durations gives the minimum makespan of the

parent, and simulating with the maximum makespans of the subplans computes the max-

imum makespan of the parent. If it is an or plan, its minimum makespan is simply the

minimum of its subplans’ minimum makespans, and the maximum makespan is the max-

imum of the subplans’ maximums. The coordinator can use the and plan simulation to

estimate the minimum and maximum makespans of each agent’s plan in a search state by

considering the state’s set of plans and their constraints as the decomposition of a parent

representing the coordinated plan. In this way, the coordinator can evaluate the cost of

different options during search and prune those whose minimum makespans are greater

than those of an already found solution. This computation of cost is used in this work’s

implementations.

Horty and Pollack have developed a theory for estimating the collective costs of com-

binations of actions within a context in order to evaluate plan choices [Horty and Pollack,

2001]. A domain expert can apply this research to develop more complex mechanisms

for deriving summarized costs for abstract plans and for determining when a search state

or solution is dominated by another. The branch-and-bound pruning technique can be

used without summarized costs, but then only solutions at the primitive level can be used

to prune search states at the primitive level. Again, pruning abstract plans can only help

improve the search and can do so greatly. I report experimental results in Chapter 7

that show that the techniques and heuristics reported in this section can greatly improve

coordination performance.

97

6.3 Coordination Performance and Complexity

While the coordinator can use the search techniques described in the Section 6.2 to

prune the search space, simply being able to find solutions at multiple levels of abstrac-

tion can reduce the combined computation and execution cost. In this section I give an

example of this and then analyze the complexity of coordination to characterize this cost

reduction and the conditions under which it occurs.

6.3.1 Improving the Performance of Search and Execution

An agent that interleaves execution with planning/coordination often must limit the

total computation and execution cost required to achieve its goals. The coordinator de-

scribed in Section 6.1 is able to search for solutions at different levels of abstraction.

While less effort is needed to find a solution at a high level of abstraction, better plans

(with lower cost) may be found at lower levels. For example, if the cost of execution

depends on the time to complete execution and if an agent must react quickly to the cur-

rent situation, it may not have much time to deliberate about its plan before acting. In

this case, it is important to reduce the total time for the agent to both plan and execute its

actions.

For the manufacturing example, the coordinator finds a solution at the top level of the

agents’ plans as shown in Figure 5.1b and described in Section 6.1. For the implemen-

tation, the coordinator takes 1.9 CPU seconds to find this solution. If we define the cost

of execution as the makespan (completion time) of the coordinated plan, the cost of this

solution is 210 where the makespan of the production manager’s plan is 90, the facilities

manager’s is 90, and the inventory manager’s is 30. For the solution in Figure 5.1c, the

implementation required 667 CPU seconds, and the makespan of the coordinated plan is

170. Another solution is found at an intermediate level of abstraction, taking 69 CPU

seconds and having a makespan of 180. So, with a little more coordination effort, the co-

ordinator expanded the hierarchy to an intermediate level where the cost of the solution

was reduced by 30. By digging a little deeper into the hierarchy and spending a lot more

effort, the coordinator was able to further reduce the cost of the solution by 10.

Figure 6.5 shows how the total cost of computation and execution (y-axis) for the

three solutions varies with different ratios of the computation unit cost with execution unit

98

100

120

140

160

180

200

220

240

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T
ot

al
 C

os
t =

 C
om

pu
ta

tio
n

C
os

t +
 E

xe
cu

tio
n

C
os

t

Computation Unit Cost / Execution Unit Cost

intermediate level solution

top level solution

lower level solution

Figure 6.5: Tradeoffs of computation and execution costs

cost (x-axis). The total cost for each solution is plotted as wc�computation cost +we�

execution cost where wc and we are relative unit costs such that wc +we = 1, and the x-

axis is the ratio wc=we. Therefore, when the ratio is zero, the total cost is the computation

cost, and as the ratio approaches infinity, the total cost approaches the execution cost. By

order of increasing slope the curves correspond to the top-level solution, the intermediate

level solution, and the lower level solution. When this ratio is 0.6 (1 unit of execution

cost is equal to 0.6 units of computation cost), the total cost is lowest when stopping the

search after the top-level solution is found and then executing. If the computation cost is

insignificant (the ratio is close to zero), then it is better to allow the coordinator to find

the lower cost solution before executing. If the ratio of the costs is 0.3, then using the

intermediate solution gives the best performance.

Thus, depending how costly execution is compared to computation, the depth to

which coordinator should search varies. Without the ability to find solutions at abstract

levels, the coordinator would be forced to search at the bottom (primitive) level of the

hierarchies where the problem could be intractable. So, the goal of the coordinator is to

search until the cost of finding the next best solution is too expensive to continue. While

it is not always possible to predict the execution cost of a solution at any particular level,

the next section describes the worst case complexity of finding a solution at a particular

99

level that can be used to estimate computation costs.

6.3.2 Complexity of Summarization and Finding Abstract Solutions

In the previous section, anecdotal evidence was given to show that coordinating at

higher levels of abstraction is less costly because there are fewer plan steps. But, even

though there are fewer plans at higher levels, those plans may have greater numbers of

summary conditions to reason about because they are collected from the much greater set

of plans below. Here I argue that even in the worst case where the number of summary

conditions per plan increases exponentially up the hierarchy, finding solutions at abstract

levels is expected to be exponentially cheaper than at lower levels. This analysis shares

some similarity to those of others that show that hierarchical problem solving, under cer-

tain restrictions, can reduce the size of the search space by an exponential factor [Korf,

1987; Knoblock, 1991]. I show the potential for even greater speedups without these

restrictions. This discussion is saved for the end of the section. I first analyze the com-

plexity of the summarization algorithm to help the reader understand how the summary

conditions can collect in greater sets at higher levels.

Consider a hierarchy with n total plans, b subplans for each non-primitive plan, and

depth d as shown in Figure 6.6.1 The procedure for deriving summary conditions works

by basically propagating the conditions from the primitives up the hierarchy to the most

abstract plans. Because the conditions of any non-primitive plan depend only on those

of its immediate subplans, deriving summary conditions can be done quickly. The sum-

mary information algorithm mainly involves checking for achieve and undo interactions

between subplans (as described in Section 4.1). Checking for one of these relations for

one summary condition of one subplan is O(bs) for b subplans, each with s summary

conditions (as discussed in Section 4.3.4). Since there are O(bs) conditions that must be

checked in the set of subplans, deriving the summary information of one plan from its

subplans is O(b2s2).

However, the maximum number of summary conditions for a subplan grows expo-

nentially up the hierarchy since, in the worst case, no summary conditions merge during

summarization.2 As shown in the third column of the table in Figure 6.6, a plan at the
1We consider the root at depth level 0 and the leaves at level d.
2This happens when the conditions of each plan are completely different than those of any other plan.

100

lowest level d has s = c summary conditions derived from its c pre-, in-, and postcondi-

tions. A plan at level d� 1 derives c summary conditions from its own conditions and

c from each of its b subplans giving c+ bc summary conditions, or s = O(bc). So, in

this worst case s = O(bd�ic) for a plan at level i in a hierarchy for which each plan has c

(non-summary) conditions. Thus, the complexity of summarizing a plan at level i (with

subplans at level i+1) is O(b2b2(d�(i+1))c2) = O(b2(d�i)c2). There are bi plans at level i

(second column in the figure), so the complexity of summarizing the set of plans at level

i is O(bib2(d�i)c2) = O(b2d�ic2) as shown in the fourth column in the figure. Thus, the

complexity of summarizing the entire hierarchy of plans would be O(∑d�1
i=0 bib2(d�i)c2).

In this summation level i = 0 dominates, and the complexity can be reduced to O(b2dc2).

If there are n = O(bd) plans in the hierarchy, we can write this simply as O(n2c2), which

is the square of the size of the hierarchy.

In order to resolve conflicts (and potentially arrive at a solution) at a particular level

of expansion of the hierarchy, the coordination algorithm checks for threats between the

plans under particular ordering constraints at that level. Checking for threats involves

finding clobber relations among the plans and their summary conditions. The complexity

of finding threats among n plans each with s summary conditions is O(n2s2) as shown

in Section 5.1 for the MightSomeWay algorithm. For a hierarchy expanded to level i,

there are n = O(bi) plans at the frontier of expansion, and each plan has s = O(bd�ic)

summary conditions. So, as shown in the fifth column of the table in Figure 6.6, the

complexity of checking for threats for one synchronization of a set of plans at level i

is O(b2i(bd�ic)2) = O(b2dc2). Notice that i drops out of the formula, meaning that the

complexity of checking a candidate solution is independent of the depth level.

However, the algorithm may check many synchronizations at a particular level before

finding a solution or exhausting the search space. In fact this search complexity grows

exponentially with the number of plans. As shown in the last column of the table in Figure

6.6, the search space is kn = O(kbi
) for n plans at level i and constant k.3 Thus, the search

space grows doubly exponentially down the hierarchy despite the worst case when the

number of conditions grows exponentially up the hierarchy. I formally show that finding

In this case, a separate summary condition will be generated for each summary condition of each subplan.
3This is why Georgeff chose to cluster multiple operators into “critical regions” and synchronize the

(fewer) regions since there would be many fewer interleavings to check [Georgeff, 1983]. By exploiting
the hierarchical structure of plans, I use the “clusters” predefined in the hierarchy to this kind of advantage
without needing to cluster from the bottom up.

101

d O(1) O(kbd)3cbd O(b2dc2)

i O(b2d-ic2) O(kbi)O(bd-ic)bi O(b2dc2)

1 2 b

1 2 b

...

......

...

.................................

d-1

d-2

2

1

0

level

O(bd-1b2c2)
= O(bd+1c2)

O(bd-2b2(bc)2)
= O(bd+2c2)

O(b2b2(bd-3c)2)
= O(b2d-2c2)

O(bb2(bd-2c)2)
= O(b2d-1c2)

O(b2(bd-1c)2)
= O(b2dc2)

#operations to
derive summ. info.

O(kbd-1)

O(kbd-2)

O(kb2)

O(kb)

1

solution
space

3c+b3c
= O(bc)

bd-1

O(b2c)bd-2

O(bd-2c)b2

O(bd-1c)b

O(bdc)1

#conds /
plan

#plans

1 2 b...

..........

............ O(b2(d-1)(bc)2)
= O(b2dc2)

O(b2(d-2)(b2c)2)
= O(b2dc2)

O(b4(b(d-2)c)2)
= O(b2dc2)

O(b2(b(d-1)c)2)
= O(b2dc2)

O(1)

#test operations /
solution candidate

Figure 6.6: Complexity of threat identification and resolution at abstract levels

a valid synchronization is intractable for larger numbers of plan steps by proving that it is

actually NP-complete. In Appendix E, I reduce HAMILTONIAN PATH to the THREAT

RESOLUTION problem for STRIPS planning and describe how a similar reduction can

be done for the problem that allows concurrent execution.

There are only and plans in this worst case. In the case that there are or plans, by

similar argument, being able to prune branches at higher levels based on summary in-

formation will greatly improve the search despite the overhead of deriving and using

summary conditions. As will be discussed in Section 9.3, the computational savings of

using summary information will be even greater when there are conditions common to

plans on the same level, and the number of summary conditions does not grow exponen-

tially up the hierarchy. Still, surely there are cases where none of the details of the plan

hierarchy can be ignored, and summary information would incur unnecessary overhead,

but when the size of problem instances are scaled, dealing with these details will likely

be infeasible anyway.

As stated earlier, other complexity analyses have shown that, under certain restric-

tions, different forms of hierarchical problem solving can reduce the size of the search

space by an exponential factor [Korf, 1987; Knoblock, 1991]. These restrictions are ba-

sically that the algorithm never needs to backtrack from lower levels to higher levels.

Backtracking across abstraction levels occurs within the planner described in 6.1 when

102

the current search state is :MightSomeWay and another or subplan on the same or higher

level can be selected. I demonstrated that the search space grows doubly exponentially

down the hierarchy because the number of plans grows exponentially, and resolving con-

flicts grows exponentially with the number of plans. Thus, as long as the coordinator does

not have to fully expand all abstract plans to the primitive level, the search complexity is

reduced at least by a factor of kbd
�bi

where i is the level where the search completed, and

d is the depth of the hierarchy. In Section 9.3 we show how further improvements can be

made when summary information does collapse during summarization.

103

CHAPTER 7

Performance Experiments and Applications

The mechanisms for reasoning about plans of multiple agents at abstract levels in Part

I and the coordination algorithm in Section 6.1 can apply to a wide range of applications

involving interacting planning (or plan execution) agents. In support of this, in this chap-

ter I describe the application of multi-level coordination to three different domains: the

manufacturing domain described in the Introduction, an evacuation domain, and a mili-

tary peace-keeping scenario. In these domains, performance is defined in different ways

to show a range of benefits offered by abstract reasoning.

In Section 6.3, I analytically explained how agents can coordinate much more quickly

at abstract levels than at the most detailed level. But, what if they cannot resolve conflicts

at abstract levels? Or, what if the agents need to find optimally coordinated plans that

may only exist at lower levels in the agents’ hierarchies? In the latter case, performance

is then measured more in terms of execution rather than coordination computation time.

In the next section I report experiments for an evacuation domain that show how abstract

reasoning using summary information can find optimal coordination solutions much more

quickly than conventional search strategies. Optimal solutions in the evacuation domain

have minimal global execution times because evacuees must be transported to safety as

quickly as possible.

In some domains, computation time may be insignificant to communication costs.

These costs could be in terms of privacy for self-interested agents, security for sensitive

information that could obtained by malicious agents, or simply communication delay. In

Section 7.2, I show how multi-level coordination fails to reduce communication delay

for the manufacturing domain example but, for other domains, can be expected to reduce

104

communication overhead exponentially.

Then I describe how this technology is wrapped in an agent that continually coor-

dinates coalitions of UN forces in maintaining peace between two warring factions in a

fictional state of Africa, called Binni (Section 7.3). Performance for this domain is based

on presenting Combat Operations with several options that tradeoff makespans (comple-

tion times) of different coalition forces.

7.1 Evacuation Experiments

In this section, I describe experiments that evaluate the use of summary information

in coordinating a group of evacuation transports that must together retrieve evacuees from

a number of locations with constraints on the routes. In comparing the EMTF and FTF

search techniques described in Section 6.2 against conventional HTN approaches, the

experiments show that reasoning about summary information finds optimally coordinated

plans much more quickly than the prior HTN techniques.

I compare different techniques for ordering the expansion of subplans of both and and

or plans to direct the decomposition of plan hierarchies in the search for optimal solu-

tions. This corresponds to the application of expand (for and subplans) and select (for or

subplans) operators of the algorithm described in Section 6.1. I compare EMTF’s expan-

sion of and plans to the ExCon heuristic and to a random selection heuristic. The ExCon

heuristic [Tsuneto et al., 1998] first selects plans that can achieve an external precondi-

tion, or if there are no such plans, it selects one that threatens the external precondition. In

the case that there are neither achieving or threatening plans, it chooses randomly. Note

that EMTF will additionally choose to expand plans with only threatened external precon-

ditions but has no preference as to whether the plan achieves, threatens, or is threatened.

For the expansion of or plans, I compare FTF to a depth-first (DFS) and a random heuris-

tic. I also compare the combination of FTF and EMTF to an FAF heuristic and to the

combination of DFS and ExCon. The FAF heuristic does not employ summary informa-

tion but rather uses an FAF (“fewest alternatives first”) heuristic [Currie and Tate, 1991;

Tsuneto et al., 1997] to decide both the order in which subplans are expanded and the

order in which or subplans (and search states) are investigated. This simply means it

chooses to expand and and select or plans that have the fewest subplans. Since no sum-

105

5

s0
0

1 2

3

4

s3
t2t1

Figure 7.1: Evacuation problem

mary information is used, threats are only resolved at primitive levels. While it has been

shown that the FAF heuristic can be effectively used by an HTN planner [Tsuneto et al.,

1997], the combination of DFS and ExCon has been shown to make great improvements

over FAF in a domain with more task interactions [Tsuneto et al., 1998]. I show in one

such domain that the FTF and EMTF heuristics can together outperform combinations of

FAF, DFS, and ExCon.

The problems were generated for an evacuation domain where transports are respon-

sible for visiting certain locations along restricted routes to pick up evacuees and bring

them back to safety points. To avoid the risk of oncoming danger (from a typhoon or

enemy attack), the planner must ensure that transports avoid collisions along the single

lane routes and accomplish their goals as quickly as possible. Transports are allowed to

be at the same location at the same time.

Suppose there are two transports, t1 and t2, located at safety points s0 and s3 re-

spectively, and they must visit the locations 0, 1, and 2 and 2, 3, and 4 respectively and

bring evacuees back to safe locations as shown in Figure 7.1. Because of overlap in the

locations they must visit, the planner must synchronize their actions in order to avoid col-

lision. The planner’s goal network includes two unordered tasks, one for each transport to

evacuate the locations for which it is responsible. As shown in Figure 7.2, the high-level

task for t1 (evacuate) decomposes into a primitive action of moving to location 0 on the

ring and an abstract plan to traverse the ring (makerounds). t1 can travel in one direction

around the ring without switching directions, or it can switch directions once. t1 can then

either go clockwise or counterclockwise and, if switching, can switch directions at any

location (f irst route) and travel to the farthest location it needs to visit from where it

switched (second route). Once it has visited all the locations, it continues around until it

reaches the first safety point in its path (go back and goto sa f e loc). (The no move plan

106

move 0-1 move 1-2

first route goto safe locgo back

move 3-s3cw0-1

clockwise counterclockwise

one switch

evacuate

make roundsmove s0-0

no switch

move 0-s0no moveccw2-0ccw2-0ccw1-2cw0-2

second route

Figure 7.2: The plan hierarchy for transport t1

is for the case where t1 is already at location 0.) The task for t2 can be refined similarly.

Suppose the planner derives summary information for the plan hierarchy and attempts

to resolve conflicts. Looking just at the summary information one level from the top, the

planner can determine that if t1 finishes evacuating before t2 even begins, then there will

be no conflicts since the external conditions of t1’s evacuate plan are that none of the

routes are being traversed. This solution has a makespan (total completion time) of 16

steps. The optimal solution is a plan of duration seven where t1 moves clockwise until

it reaches location s3, and t2 starts out clockwise, switches directions at location 4, and

then winds up at s0. For this solution t1 waits at location 2 for one time step to avoid a

collision on the route from location 2 to location 3.

A solution is simply a conflict-free plan. The cost of a solution is the makespan (com-

pletion time) of the coordinated plan for the transports where each move has a uniform

time cost. Thus, an optimal plan has the minimum makespan. I generated 24 problems

with four, six, eight, and twelve locations; with two, three and four transports; and with

no, some, and complete overlap in the locations the transports visit. Performance was

measured as the number of search nodes expanded to find the optimal solution or to find

the best solution of common quality to the compared heuristics within memory and time

107

Search States Expanded

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

FTF-EMTF

F
T

F
-R

A
N

D

Figure 7.3: FTF-EMTF vs. FTF-RAND in searching for optimal solutions for 24 prob-
lems

bounds. We chose this instead of CPU time as the measure of performance in order to

avoid fairness issues with respect to implementation details of the various approaches.

The scatter plot in Figure 7.31 shows the relative performance of the combination of

FTF and EMTF (FTF-EMTF) and the combination of FTF and random and expansion

(FTF-RAND). While performance is similar for most problems, there are a few cases

where FTF-EMTF outperformed FTF-RAND by an order of magnitude or more. Figure

7.4 exhibits a similar effect for FTF-EMTF and FTF-ExCon.2 While performance is sim-

ilar for most problems, there are four points along the top2 where FTF-ExCon finds no

solution. Thus, although EMTF does not greatly improve performance for many prob-

lems, it rarely performs much worse, and almost always avoids getting stuck in fruitless

areas of the search space compared to the ExCon and the random heuristic. This is to be

expected since EMTF focuses on resolving conflicts among the most problematic plans

first and avoids spending a lot of time reasoning about the details of less problematic

plans.

The combination of FTF with EMTF, pruning inconsistent abstract plan spaces, and

branch-and-bound pruning of more costly abstract plan spaces (all described in Section
1Note that for all scatter plots, the axes are scaled logarithmically.
2Runs were terminated after the expansion of 3,500 search states. Data points at 3,500 indicate that no

solution was found within memory and time constraints.

108

Search States Expanded

1

10

100

1000

10000

1 10 100 1000 10000

FTF-EMTF

F
T

F
-E

xC
o

n

Figure 7.4: FTF-EMTF vs. FTF-ExCon in searching for optimal solutions

Search States Expanded

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

FTF-RAND

D
FS

-R
A

N
D

Figure 7.5: FTF-RAND vs. DFS-RAND in searching for optimal solutions

109

Search States Expanded

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 10000
0

1E+06

FTF-EMTF

F
A

F
-F

A
F

Figure 7.6: FTF-EMTF vs. FAF-FAF in searching for optimal solutions

6.2) outperforms techniques that do not reason at abstract levels much more dramati-

cally.3 Figure 7.5 shows DFS-RAND expanding between one and three orders of mag-

nitude more states than FTF-RAND.4 By avoiding search spaces with greater numbers

conflicts, FTF finds optimal or near-optimal solutions much more quickly. In Figures

7.65 and 7.76, FTF-EMTF outperforms FAF-FAF (FAF for both selecting and and or

plans) and DFS-ExCon by one to two orders of magnitude for most problems. These last

two comparisons especially emphasize the importance of abstract reasoning for finding

optimal solutions. Within a maximum of 3500 expanded search states (the lowest cutoff

point in the experiments), FTF-EMTF and FTF-RAND found optimal solutions for 13 of

the 24 problems. FTF-ExCon and FAF-FAF found 12; and DFS-ExCon and DFS-Rand

only found three.

A surprising result is that FAF-FAF performs much better than DFS-ExCon for the

evacuation problems contrary to the results in [Tsuneto et al., 1998] that show DFS-

ExCon dominating for problems with more goal interactions. I believe that this result
3The planners for the other techniques (DFS-RAND, FAF-FAF, and DFS-ExCon) do prune more costly

primitive-level plan spaces.
4Runs were terminated after the expansion of 25,000 search states. Data points at 25,000 indicate that

no solution was found within memory and time constraints.
5One of the 24 problems that neither could solve is omitted.
6Runs were terminated after the expansion of 3,500 search states. Data points at 3,500 indicate that no

solution was found within memory and time constraints.

110

Search States Expanded

1

10

100

1000

10000

1 10 100 1000 10000

FTF-EMTF

D
F

S
-E

xC
o

n

Figure 7.7: FTF-EMTF vs. DFS-ExCon in searching for optimal solutions

was not reproduced here because those experiments involved hierarchies with no or plans.

The experiments show that the selection of or subplans more greatly affects performance

than the order of and subplans to expand. So, I believe DFS-ExCon performed worse than

FAF-FAF not because FAF is better at choosing and subplans than ExCon but because

FAF is stronger at selecting or subplans than DFS.

However, the main point of this section is that each of the heuristic combinations that

use summary information to find solutions and prune the search space at abstract levels

(FTF-EMTF, FTF-ExCon, and FTF-RAND) greatly outperform all of those that do not

(FAF-FAF, DFS-ExCon, and DFS-RAND) when searching for optimal solutions.

7.2 Manufacturing Experiments

Here I show that, depending on bandwidth, latency, and how summary information

is communicated among the agents, delays due to communication overhead vary. If only

communication costs are a concern, then in one extreme sending the plan hierarchy with-

out summary information makes the most sense. In another extreme it makes sense to

send the summary information for each task in a separate message as each is requested.

Still, there are cases when sending the summary information for tasks in groups makes

the most sense. This section will explain how a system designer can choose an appro-

111

priate level of granularity to send summary information that will reduce communication

overhead exponentially.

Consider a simple protocol where agents request coordination from a central coordi-

nating agent. During the search for a feasible solution, whenever it decomposes a task,

the coordinator requests summary information for the subtasks that it has not yet received.

For the manufacturing domain, the coordinator may already have summary information

for a task to move a part, but if it encounters a different instantiation of the same task

schema, it still must request the parameters for the new task. If a coordinator needs the

subplans of an or plan, the client agent sends the required information for all subplans

specifying its preferences for each. The coordinator then chooses the most preferred sub-

plan, and in the case it must backtrack, it chooses the next most preferred subplan. Once

the coordinator finds a feasible solution, modifications are sent to each agent specifying

which or subplans are blocked and where it must send and wait for synchronization mes-

sages. An agent can alternatively send summary information for the whole plan hierarchy

up front, for single tasks as they are requested, or for some number of levels of expansion

of the requested task’s hierarchy.

For the manufacturing problem described in Section 1.2, communication data in terms

of numbers of messages and the size of each was collected up to the point that the coor-

dinator found the solution in Figure 5.1c. This data was collected for cases where agents

sent summary information for tasks in their hierarchies, one at a time, two levels at a

time, and all at once. The two levels include the requested task and its immediate sub-

plans. The following table below summarizes the numbers and total sizes of messages

sent for each granularity level of information:

number of messages total size (bytes)

one at a time 9 8708

two at a time 4 10525

all at once 3 16268

Assuming that the coordinator must wait for requested information before continuing

its search and can request only one task of one agent at a time, the coordination will

be delayed for an amount of time depending on the bandwidth and latency of message

passing. The total delay can be calculated as (n� 2)`+ s=b, where n is the number of

112

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

C
om

m
un

ic
at

io
n

D
el

ay
 (

s)

Latency (s)

one at a time
two at a time

all at once

Figure 7.8: Delay of communicating different granularities of summary information with
varying latency

messages sent; ` is the latency in seconds; s is the total size of all messages; and b is the

bandwidth in bytes per second. We use n� 2 instead of n because we assume that the

agents all transmit their first top-level summary information message at the same time,

so three messages actually only incur a delay of ` instead of 3`.

Figure 7.8 shows how the communication delay varies for the three granularities of

information for a fixed bandwidth of 100 bytes/second. When the latency is less than

3 seconds, sending summary information for each task in separate messages results in

the smallest communication overhead. For latencies greater than 58 seconds, sending

the entire hierarchy is best; and in between sending summary information two levels at a

time is best. If the latency is fixed at 100 seconds, then the communication delay varies

with bandwidth as shown in Figure 7.9. When the bandwidth is less than 3 bytes/second,

sending one at a time is best; sending it all at once is best for bandwidths greater than 60

bytes/second; and sending two levels at a time is best for bandwidths in between.

Admittedly, these values for bandwidth and latency are unrealistic for the manufac-

turing domain. The manufacturing problem itself is very simple and provided mainly as

113

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

C
om

m
un

ic
at

io
n

D
el

ay
 (

s)

Bandwidth (bytes/s)

one at a time
two at a time

all at once

Figure 7.9: Delay of communicating different granularities of summary information with
varying bandwidth.

an interesting domain for coordination. More realistic problems involving the manufac-

turing domain could have much larger hierarchies and require much larger scales of data

to be sent. In that case more realistic bandwidth and latency values would exhibit similar

tradeoffs.

To see this, suppose that the manufacturing managers’ hierarchies had a common

branching factor b and depth d. If tasks generally had reservations on similar resources

throughout the hierarchies, the amount of summary information derived for the tasks at

particular levels would grow exponentially down the hierarchy just as would the number

of tasks. If the agents agreed on a feasible solution at depth level i in the hierarchy, then

the table for messages and size would appear as follows:

number of messages total size

one at a time O(bi) O(bi)

two at a time 3i=2 O(bi)

all at once 3 O(bd)

Now suppose that the branching factor b is 3; the depth d is 10; the solution is found

114

0

500

1000

1500

2000

2500

0 2 4 6 8 10

C
om

m
un

ic
at

io
n

D
el

ay
 (

s)

Latency (s)

one at a time
two at a time

all at once

Figure 7.10: Delay with varying latency for hypothetical example

at level i = 5; and the summary information for any task is 1 Kbyte. Then the table would

look like this:

number of messages total size (Kbytes)

one at a time 363 1089

two at a time 9 3276

all at once 3 246033

Now, if we fixed the bandwidth at 100 Kbyte/second and varied the latency, more

realistic tradeoffs are seen in Figure 7.10. Here, we see that unless the latency is very

small, sending summary information two levels at a time is best. As shown in Figure 7.11,

if we fix latency to be one second and vary the bandwidth, for all realistic bandwidths

sending summary information two levels at a time is again best.

This simple protocol illustrates how communication can be minimized by sending

summary information at particular levels of granularity. If the agents chose not to send

summary information but the unsummarized hierarchies instead, they would need to send

their entire hierarchies. As the experiment shows, as hierarchies grow large, sending the

entire hierarchy (“all at once”) cause great communications delay. Thus, using summary

115

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000

C
om

m
un

ic
at

io
n

D
el

ay
 (

s)

Bandwidth (Kbytes/s)

one at a time
two at a time

all at once

Figure 7.11: Delay with varying bandwidth for hypothetical example

information (as opposed to not using it) can reduce communication exponentially when

solutions can be found at abstract levels.

At the other extreme, if the agents sent summary information one task at a time,

the latency for sending so many messages can grow large for larger task hierarchies. If

solutions could only be found at primitive levels, then sending summary information one

task at a time would cause an exponential latency overhead compared to sending the

entire hierarchy at once. But, if solutions can be found at intermediate levels, being able

to send summary information at different levels of granularity can minimize total delay.

However, this argument assumes that summary information collapses at higher levels

in the hierarchy. Otherwise, sending summary information at some intermediate level

could be almost as expensive as sending the entire hierarchy and cause unnecessary over-

head. For the actual manufacturing domain, tasks in the agents’ hierarchies mostly have

constraints on different resources, and summarization is not able to reduce summary in-

formation significantly because constraints do not collapse. The result is that it is better,

in this case, to send the entire hierarchy at once to minimize delay (unless there are

unusual bandwidth and latency constraints, as shown in the experiment). Even so, the

116

coordination agent can still summarize the hierarchies itself to take advantage of the

computational advantages of abstract reasoning.

This section shows how a domain modeler can minimize communication overhead

by communicating summary information at the proper level of granularity. If bandwidth,

latency, and a common depth for coordination solutions is known, the domain modeler

can perform a hypothetical experiment like the one above for varying granularities of

summary information to determine which granularity is optimal. If summary informa-

tion collapses up the hierarchy, and solutions can be found at intermediate levels, then

communication can be exponentially reduced in this manner.

7.3 Multi-Level Coordination of Military Coalitions

In order to motivate potential applications for multi-level coordination, here I de-

scribe how I embedded the coordination algorithm (from Section 6.1) in a Multi-level

Coordination Agent (MCA) that continually coordinates a group of planning agents with

hierarchical plan libraries in successive episodes. I describe how it has been demon-

strated in a fictional United Nations (UN) peace-keeping scenario (“Binni Scenario”) for

the CoABS (Control of Agent Based Systems) DARPA Program.7

Initially, I characterize the MCA and its interactions with client task agents. Then I

describe two demonstrations of the MCA’s capabilities for the Binni Scenario. The first

is a stand-alone demonstration of the coordination of coalitions. Then, I explain how

the coordinator is integrated into a larger demonstration integrating the software of many

other institutions.

7.3.1 Multi-Level Coordination Agent

The MCA centrally coordinates the plans of requesting task agents in episodes. When

a task agent requests coordination, the MCA collects the current plans of all agents it

knows about. If the collected plans are not pre-summarized, the MCA derives the sum-

mary information. Then, the MCA coordinates the summarized plans according to the
7The demonstrations discussed here were developed by graduate students under the direction of Ed-

mund Durfee, the Principal Investigator for the Coalition Agents eXperiment (CoAX) TIE at the University
of Michigan. Specific names are given in the Acknowledgments.

117

algorithm in Section 6.1. If the MCA decomposes an abstract plan and has not received

the summary information for a subplan, it requests it from the task agent and waits until it

has received it. The task agent can refuse to provide more detailed information, in which

case the MCA must choose another subplan (if an or decomposition) or choose another

abstract plan to decompose.

The MCA generates solutions in the form of synchronization and decomposition con-

straints for each task agent. By default, the MCA evaluates solutions according to the

makespan (or completion time) for each agent and prunes the search space where solu-

tions have costs greater than some previously found solution. Because the coordination

algorithm is complete, all Pareto-optimal solutions will eventually be found.

Because the agents may not be able to wait long for solutions to be collected, each

solution is posted to a list for selection at any time. Because this software was developed

for application to the Binni Scenario, the solutions are graphically posted to window for

a military commander who has authority to select and issue a coordinated plan.

Solutions at the highest level of abstraction are found very quickly, and more efficient

solutions are posted with less frequency as the MCA digs deeper into the hierarchies, giv-

ing the coordination the flavor of an anytime algorithm [Zilberstein and Russell, 1992].

Whenever the user selects a solution, the coordinator aborts its search for more solutions

and sends the corresponding plan synchronization and decomposition constraints to the

agents. Alternatively, the MCA may find no solutions, or the user may decide no pre-

sented solutions are feasible, and a fail message is sent to the agents in conflict. Once it

sends messages back to the task agents, the MCA processes the next coordination request,

starting a new episode.

7.3.2 Coordinating Coalitions in Binni

The peace-keeping scenario involves coalitions of UN forces that must try and main-

tain a Total Exclusion Zone (TEZ) between two warring factions (Gao and Agadez) in a

fictional city-state in Africa called Binni. Details of the scenario are given in a compre-

hensive document developed for the DARPA CoABS (Control of Agent Based Systems)

program [Rathmell, 2001].

Figure 7.12 shows the layout of locations and routes through which the UN forces

118

$&$&

33

5555

**

+�+�

7(=�7(=�

7(=�7(=�7(=�7(=�

+�+�

<<

''

SEASEA

ROADROAD

RAILRAIL

TEZTEZ

AIRFIELDAIRFIELD

;;

..

--

Figure 7.12: UN forces in Binni

travel. An AIRFORCE commanding agent is responsible for making air strikes along the

TEZ from an aircraft carrier (AC) to ensure that the opposing forces are separated. An

army division, ARMYDIV1, is responsible for reaching the Agadez forces at location

X with supplies. Another army division, ARMYDIV2, has a similar task of moving to

K where the Gao forces are located. The motivation is to monitor the opposing forces

and keep them from crossing the TEZ while providing humanitarian aid. In addition,

a LOGISTICS agent has goals to provide humanitarian aid to refugees at locations H1

and H2. All agents are originally on the aircraft carrier (AC), and each has choices

of different ways to accomplish its goals. AIRFORCE must avoid bombing the TEZ

while ARMYDIV2 passes through. ARMYDIV2 cannot travel through TEZ2 after the

bombing which destroys its roads. There is also contention for sea (AC to P) and rail (P

to RR) transport among army divisions and logistics.

In the demonstration, task agents (representing coalition partners) each derive sum-

mary information for their abstract plans offline and then share the summary information

119

Figure 7.13: Window for selecting coordination solutions

of their current plans with the MCA.8 The MCA posts several solutions at different levels

of abstraction to the selection panel shown in Figure 7.13. The solution at the highest level

of abstraction shows that as long as ARMYDIV2 begins its journey after the AIRFORCE

makes its strikes, and the LOGISTICS team transports supplies after ARMYDIV1 has

reached its destination, the coalitions can execute their plans freely. Successive solutions

show improved completion times for the group, and the optimal solution (in terms of

overall makespan) is shown at the bottom.

When the commander chooses a solution from the selection window, the MCA sends

plan modifications (temporal constraints and blocked or subplans) for the selected coor-

dination solution to the task agents. The task agents incorporate these into procedures

that they execute using UMPRS (University of Michigan Procedural Reasoning System)

[Lee et al., 1994]. They add signal and wait communication primitives to their UMPRS

procedures for the synchronization constraints and remove blocked or subgoals. The

agents then execute their plans.
8The communication framework is built upon the CoABS (Control of Agent Based Systems) Grid

[Grid, 1999] that serves as an infrastructure for building flexible agent based systems.

120

Figure 7.14: Multiagent simulator

A simulator demonstrates execution as it receives commands from UMPRS primitive

actions and gives feedback on the effects of each action. The simulator is used to visualize

and debug the plan execution and interactions of the agents. Figure 7.14 is a screen shot

of the simulator illustrating the coalition agents’ execution.

7.3.3 Integrated Binni Demonstration

In another CoAX demonstration of the Binni Scenario, more than twenty types of

agents (including the MCA) developed at eighteen different organizations are integrated

to show that coalitions can interoperate dynamically and decentrally with the support

of current agent software technology in the face of realistic military challenges. These

challenges involve commanding military coalitions while taking a number of factors into

consideration: political pressures, media coverage, and cultural sensitivities, to name a

few.

The MCA’s role is to find alterations to the plans of humanitarian aid and medical

evacuation teams in response to changes in the flight plans for air squadrons that main-

121

Figure 7.15: Binni, a fictional city-state in Africa

tain the TEZ. In the demonstration, observers detect that the opposing forces have been

misleading the UN on their locations and are in position to move around the TEZ. The

TEZ must be relocated, but a herd of elephants in a nearby safari park must be protected.

Once observers determine the location of the herd and its direction of travel, the Master

Battle Planner (MBP) determines how the air squadrons will be deployed to relocate the

TEZ.9 The MBP application is used to visualize and command military forces as shown

in Figure 7.15.

The MBP requests coordination from the MCA and sends plans for the air squadrons

with hard time constraints. The MCA collects these and the plans of the humanitarian

aid and medical evacuation teams and coordinates their movements to avoid potential

friendly fire at the new TEZ and air collisions. Solutions in Figure 7.16 show how the

MCA finds alternate solutions favoring different agents (in terms of minimizing com-

pletion time). The results are passed to the I-DEEL agent (provided by the Artificial
9This is an application provided by QinetiQ.

122

Figure 7.16: Solution selection window

Intelligence Applications Institute) that tracks events and interfaces back to the MBP to

plan combat operations. Meanwhile the humanitarian aid and medical evacuation teams

are re-tasked based on the selected coordination solution.

The implementation of the MCA and its use in the Binni demonstrations show how

multi-level reasoning can be simply used in a realistic application to continually coordi-

nate a group of agents. In the MCA’s interactions with the task agents, solutions selected

at abstract levels are passed to a robust execution system (UMPRS), taking advantage of

the common hierarchical task representation and preserving decomposition choices for

flexible execution. In the integrated CoAX demonstration, multi-level coordination is

used as a tool to support logistical commanding of coalitions when plans change. This

validates the MCA as a viable tool for continual coordination.

123

PART III

Planning

124

CHAPTER 8

Concurrent Hierarchical Planning

In Parts I and II, I have described and evaluated a framework for coordinating a group

of agents with interacting hierarchical plans. Many of these abstract reasoning techniques

and benefits also benefit single-agent planning and scheduling. The coordination algo-

rithm described in Section 6.1 is based on refinement planning similar to that of HTN

planning. However, I claim that abstract reasoning techniques can be applied to a wide

range of single-agent planning and scheduling approaches, which coordinating agents

can also exploit.

In Section 2.3.1, I explained how refinement and local search planners differ. In this

chapter, I describe a concurrent hierarchical refinement planning algorithm as well as the

use of abstraction in ASPEN [Chien et al., 2000b], a local search planner with representa-

tions for concurrent action and abstract tasks. I also explain how decomposition heuristics

and complexity advantages of using summary information differ for local search planners

like ASPEN.

8.1 A Concurrent Hierarchical Refinement Algorithm

The coordination algorithm described in Figure 6.1 assumes that each agent’s plan is

internally consistent—no conflicts can occur in the execution of any task in any agent’s

plan without a task of another agent causing them. The coordination algorithm can eas-

ily be modified to work as a concurrent hierarchical single-agent planning algorithm by

dropping the assumption that a task is internally consistent.

In order to do this, the CanAnyWay test must be extended to make sure that each

125

plan in plans is internally consistent. This is determined offline when summary condi-

tions are derived. If any summary condition is may-clobbered, then the parent task is

not internally consistent and labeled as such. Then, during planning, tasks that are not

internally consistent are decomposed until the conflicts at lower levels can be resolved.

If a condition is discovered to be must-clobbered, then the parent task is inconsistent and

:MightSomeWay is true causing the planning algorithm to backtrack and choose another

or subplan to avoid the inconsistent branch. If no such or subplan is available, then the

planner soundly recognizes that there are no solutions to the problem.

With this modification, the algorithm can be used for hierarchical refinement planning

for a single agent or also for interleaving single agent planning with coordination. As the

plans of the agents are expanded, the algorithm detects and resolves internal conflicts and

inter-agent conflicts.

Since the single-agent hierarchical refinement planning algorithm only differs from

the coordination algorithm (Section 6.1) in that it may need to resolve conflicts internal

to an abstract task, it can use the same search techniques and heuristics described in

Section 6.2. Inconsistent search spaces are pruned by detecting :MightSomeWay, and

previously found solutions are used to prune spaces where the solution cost must be

worse. In addition, the EMTF and FTF heuristics can guide the decomposition to find

solutions more quickly.

For the same reason, the complexity advantages of the coordination algorithm also

transfer to the planning algorithm. Summarizing Section 6.3.2, these advantages occur

when a solution is a partially elaborated hierarchy that has not been fully expanded. The

partially expanded hierarchy has exponentially fewer tasks, which serve as input to a

threat resolution algorithm whose complexity is exponential with the number of tasks.

Thus, the worst case complexity of finding the abstract solution is a factor of a composite

of two exponentials less than finding the fully expanded solution.

8.2 Abstraction in Iterative Repair Planning

In this section, I describe techniques for using summary information in local search

planners to reason at abstract levels effectively. In iterative repair planning, a tech-

nique called aggregation, which involves scheduling hierarchies of tasks, outperforms

126

the movement of tasks individually [Knight et al., 2000]. But, can summary information

be used in an iterative repair planner to improve performance when aggregation is already

used to exploit hierarchy? I demonstrate that summarized state and resource constraints

makes exponential improvements by collapsing constraints at abstract levels. First, I de-

scribe how I use aggregation and summary information to schedule tasks within an itera-

tive repair planner. Next, I analyze the complexity of moving abstract and detailed tasks

using aggregation and summary information. Then I describe how a heuristic iterative

repair planner can exploit summary information.

Moving tasks is a central scheduling operation in iterative repair planners. A planner

can more effectively schedule tasks by moving related groups of tasks to preserve con-

straints among them. Hierarchical task representations are a common way of representing

these groups and their constraints. Aggregation involves moving a fully detailed abstract

task hierarchy while preserving the temporal ordering constraints among the subtasks.

Moving individual tasks independent of their parent, siblings, and subtasks is shown to

be much less efficient [Knight et al., 2000]. Valid placements of the task hierarchy in the

schedule are computed from the state and resource usage profiles for the hierarchy and

for the other tasks in the context of the movement. A hierarchy’s profile represents one

instantiation of the decomposition and temporal ordering of the most abstract task in the

hierarchy.

The approach taken here involves reasoning about summarized constraints in order

to schedule abstract tasks before they are decomposed. As I will show in Section 8.2.2,

scheduling an abstract task is computationally cheaper than scheduling the task’s hier-

archy using aggregation when the summarized constraints more compactly represent the

constraint profiles of the hierarchy. This improves the overall performance when the plan-

ner/scheduler resolves conflicts and finds solutions at abstract levels before fully decom-

posing tasks. However, because these summarized constraints abstract away information

about the timing of constraints and choices of decomposition, solutions may not be found

until tasks are refined to a lower level of abstraction. In this case, aggregation can be still

be used to move partially elaborated hierarchies based on their summarized constraints.

The heuristics in the next section describe how to efficiently find solutions at abstract

levels.

127

8.2.1 Decomposition Heuristics for Iterative Repair

Reasoning about summarized constraints only translates to better performance if the

movement of summarized tasks resolves conflicts and advances the search toward a solu-

tion. There may be no way to resolve conflicts among abstract tasks without decomposing

them into more detailed ones. So when should summary information be used to reason

about abstract tasks, and when and how should they be decomposed? Here, I describe

techniques for reasoning about summary information as abstract tasks are detailed.

I explored two approaches that reason about tasks from the top-level of abstraction

down in the manner described in Section 6.2. Initially, the planner only reasons about the

summary information of fully abstracted tasks. As the planner manipulates the schedule,

tasks are gradually decomposed to open up new opportunities for resolving conflicts using

the more detailed child tasks. One strategy (that I will refer to as level-decomposition) is

to interleave repair with decomposition as separate steps. Step 1) The planner repairs the

current schedule until the number of conflicts cannot be reduced. Step 2) It decomposes

all abstract tasks one level down and returns to Step 1. By only spending enough time

at a particular level of expansion that appears effective, the planner attempts to find the

highest decomposition level where solutions exist without wasting time at any level. The

time spent searching for a solution at any level of expansion is controlled by the rate at

which abstract tasks are decomposed.

Another approach is to use decomposition as one of the repair methods that can be

applied to a conflict so that the planner gradually decomposes conflicting tasks. This

strategy tends to decompose the tasks involved in more conflicts since any task involved

in a conflict is potentially expanded when the conflict is repaired. The idea is that the

scheduler can break overconstrained tasks into smaller pieces to offer more flexibility in

rooting out the conflicts. This resembles the EMTF (expand-most-threats-first) heuristic

for the refinement planner that expands (decomposes) tasks involved in more conflicts

before others. (Thus, I will refer to this heuristic as EMTF also for local search planners.)

This heuristic avoids unnecessary reasoning about the details of non-conflicting tasks.

Tasks that are not involved in conflicts are rarely expanded because they are less likely

chosen for repair.

A local search planner can also use the FTF heuristic described in Section 6.2. Using

summary information, the planner can test each child task by decomposing to the child

128

and replacing the parent’s summarized constraints that summarize the children with the

particular child’s summarized constraints. For each child, the number of conflicts in the

schedule are counted, and the child creating the fewest conflicts is chosen with greater

probability. The experiments in Chapter 9 report that using FTF can find solutions much

more quickly when decomposition choices cause significantly varying numbers of con-

flicts.

Note that the techniques to prune spaces of inconsistent and higher cost plans de-

scribed for refinement planning and coordination (Section 6.2) do not apply to local

search planning. These techniques rely on the planner to use backtracking to avoid or

focus the search on particular plan spaces. While a local search planner does not typ-

ically keep any memory of previous search states in order to backtrack, heuristics can

guide the search away from unfruitful plan spaces. This thesis does not investigate this

topic. An open question for iterative repair planners is how to appropriately interleave

conflict repair with optimization. A common practice is to optimize the plan after resolv-

ing conflicts [Chien et al., 2000b].

8.2.2 Scheduling Complexity

A local search planner (as described in Section 2.3.1) does not backtrack, but the

problem to be solved is the same, so one might expect that complexity advantages are the

same as for the refinement planner. However, the search operations for the local search

planner can be very different. As mentioned earlier in this section, a previous study

of a technique called aggregation uses hierarchy to its advantage to eliminate search

inefficiencies at lower levels of detail in task hierarchies [Knight et al., 2000]. Thus, it

is not immediately clear what additional improvements can be obtained using summary

information.

Consider a schedule of n task hierarchies with a maximum branching factor b ex-

panded to a maximum depth of d as shown in Figure 8.1. Suppose each hierarchy has

c constraints on each of v variables (states or metric resources). To move a hierarchy

of tasks using aggregation, valid intervals must be computed for each resource variable

affected by the hierarchy.1 These valid intervals are intersected for the valid placements
1The analysis also applies to state constraints, but I restrict the discussion to resource usage constraints

for simplicity.

129

. . .

level
0
1

d
1 2 n

branching
factor b

c constraints
per hierarchy

v
variables

Figure 8.1: Schedule of n task hierarchies each with c constraints on v variables

for the abstract tasks and their children. The complexity of computing the set of valid

intervals for a resource is O(cC) where c is the number of constraints (usages) an abstract

task has with its children for the variable, and C is the number of constraints of other

tasks in the schedule on the variable [Knight et al., 2000]. With n similar task hierarchies

in the entire schedule, then C = (n�1)c, and the complexity of computing valid intervals

is O(nc2). But this computation is done for each of v resource variables (often constant

for a domain), so moving a task will have a complexity of O(vnc2). The intersection of

valid intervals across variables does not increase the complexity. Its complexity is O(tnr)

because there can be at most nr valid intervals for each timeline; intersecting intervals for

a pair of timelines is linear with the number of intervals; and only t�1 pairs of timelines

need to be intersected to get the intersection of the set.

The summary information of an abstract task represents all of the constraints of its

children, but if the children share constraints over the same resource, this information

is collapsed into a single summary resource usage in the abstract task. Therefore, when

moving an abstract task, the number of different constraints involved may be far fewer

depending on the domain. If the scheduler is trying to place a summarized abstract

task among other summarized tasks, the computation of valid placement intervals can

be greatly reduced because the c in O(vnc2) is smaller. I now consider two extreme cases

where constraints can be fully collapsed and where they cannot be collapsed at all.

In the case that all tasks in a hierarchy have constraints on the same variable, the

number of constraints in a hierarchy is O(bd) for a hierarchy of depth d and branching

factor (number of child tasks per parent) b. In aggregation, where hierarchies are fully

detailed first, this means that the complexity of moving an task is O(vnb2d) because

130

c = O(bd). Now consider using aggregation for moving a partially expanded hierarchy

where the leaves are summarized abstract tasks. If all hierarchies in the schedule are

decomposed to level i, there are O(bi) tasks in a hierarchy, each with one summarized

constraint representing those of all of the yet undetailed subtasks beneath it for each

constraint variable. So c = O(bi), and the complexity of moving the task is O(vnb2i).

Thus, moving an abstract task using summary information can be a factor of O(b2(d�i))

times faster than for aggregation. In Appendix E, I show that resolving conflicts among

state state variable constraints is NP-complete in the number of plans. The addition of

metric resources cannot make the problem easier in the worst case, so the worst case

number of moves to resolve conflicts at level i is O(kbi
). This is a factor of O(kbd�i

)

smaller than at the primitive level d. Thus using summary information can make speedups

of O(kbd�i
b2(d�i)) when summary information fully collapses.

The other extreme is when all of the tasks place constraints on different variables. In

this case, c = 1 because any hierarchy can only have one constraint per variable. Fully

detailed hierarchies contain v = O(bd) different variables, so the complexity of moving a

task in this case is O(nbd). If moving a summarized abstract task where all tasks in the

schedule are decomposed to level i, v is the same because the abstract task summarizes

all constraints for each subtask in the hierarchy beneath it, and each of those constraints

are on different variables such that no constraints combine when summarized. Thus, the

complexity for moving a partially expanded hierarchy is the same as for a fully expanded

one. However, finding solutions at an abstract level i can still give speedups of O(kbd
�bi

)

because the number of moves grows exponentially in the worst case (as described ear-

lier). Experiments in Chapter 9 exhibit great improvement for cases when tasks have

constraints over common resource variables, but when solutions cannot be found at ab-

stract levels, and summary information does not collapse, reasoning at abstract levels can

cause unnecessary overhead.

Along another dimension, scheduling summarized tasks is exponentially faster be-

cause there are fewer temporal constraints among higher level tasks. When task hierar-

chies are moved using aggregation, all of the local temporal constraints are preserved.

However, there are not always valid intervals to move the entire hierarchy. Even so, the

scheduler may be able to move less constraining lower level tasks to resolve the conflict.

In this case, temporal constraints may be violated among the moved task’s parent and sib-

131

lings. The scheduler can then move and/or adjust the durations of the parent and siblings

to resolve the conflicts, but these movements can affect higher level temporal constraints

or even produce other conflicts. At a depth level i in a hierarchy with decompositions

branching with a factor b, the task movement can affect bi siblings in the worst case and

produce a number of conflicts exponential to the depth of the task. Thus, if all conflicts

can be resolved at an abstract level i, a factor of O(bd�i) scheduling operations may be

avoided. In Chapter 9, empirical data shows the exponential growth of computation with

respect to the depth at which ASPEN finds solutions.

Other complexity analyses have shown that under certain restrictions different forms

of hierarchical problem solving can reduce the size of the search space by an exponential

factor [Korf, 1987; Knoblock, 1991]. Basically, these restrictions are that an algorithm

never needs to backtrack from lower levels to higher levels in the problem. In other

words, subproblems introduced in different branches of the hierarchy do not interact.

This assumption is unnecessary when using summary information. However, the speedup

described above does assume that the hierarchies need not be fully expanded to find

solutions.

132

CHAPTER 9

Mars Rovers Experiments

The experiments I describe here show that summary information improves perfor-

mance significantly when tasks within the same hierarchy have constraints over the same

resource, and solutions are found at some level of abstraction. At the same time, there

are cases where abstract reasoning incurs significant overhead when solutions are only

found at deeper levels. However, in domains where decomposition choices are criti-

cal, I show that this overhead is insignificant when the FTF heuristic quickly guides the

search to solutions at deeper levels. These experiments also show that the EMTF heuris-

tic outperforms level-decomposition for certain decomposition rates, raising new research

questions. In addition, I show that the time to find a solution increases dramatically with

the depth where solutions are found, supporting the analysis at the end of Section 8.2.2,

which claims that more constraints at deeper levels exponentially complicate the schedul-

ing problem. At the end of this chapter, I compare the results for the refinement-based

coordination and local search planning algorithms.

9.1 Problem Domains

The domain involves a team of rovers that must resolve conflicts over shared re-

sources. I generate two classes of maps within which the rovers move. For one, I ran-

domly generate a map of triangulated waypoints (Figure 9.1). For the other, I generate

corridor paths from a circle of locations with three paths from the center to points on the

circle to represent narrow paths around obstacles (Figure 9.2). This “corridor” map is

used only for an experiment evaluating the FTF heuristic. I then select a subset of the

133

Figure 9.1: Randomly generated rectangular field of waypoints

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
�� ��

��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

Figure 9.2: Randomly generated waypoints along corridors

points as science locations (where the rovers study rocks/soil) and use a simple multi-

ple traveling salesman algorithm to assign routes for the rovers to traverse and perform

experiments. The idea is that a map of the area around a lander is constructed from an

image taken upon landing on Mars.

Paths between waypoints are assigned random capacities such that either one, two, or

three rovers can traverse a path simultaneously; only one rover can be at any waypoint;

and rovers may not traverse paths in opposite directions. These are metric resources.

State variables are also used to ensure rovers are at locations from which they leave. In

addition, rovers must communicate with the lander for telemetry using a shared channel

of fixed bandwidth (metric resource). Depending on the terrain between waypoints the

required bandwidth varies. 80 problems were generated for two to five rovers, three to

six science locations per rover, and 9 to 105 waypoints. In general, problems that contain

fewer waypoints and more science goals are more difficult because there are more inter-

134

actions among the rovers. Schedules ranged from 180 to 1300 tasks. Note that I use a

prototype interface for summary information, and some of ASPEN’s optimized schedul-

ing techniques could not be used because the interface is not yet fully implemented.

Schedules consist of an abstract task for each rover that decomposes into tasks for

visiting each assigned science location. Those tasks decompose into the three shortest

paths through the waypoints to the target science location. The paths decompose into

movements between waypoints. Additional levels of hierarchy were introduced for longer

paths in order to keep the offline resource summarization tractable.

9.2 Empirical Results

I compare ASPEN using aggregation with and without summarization for three vari-

ations of the domain. When using summary information, ASPEN also uses the EMTF

and FTF decomposition heuristics. One domain excludes the communications channel

resource (no channel); one excludes the path capacity restrictions (channel only); and

the other includes all mentioned resources (mixed). Since all of the movement tasks re-

serve the channel resource, greater improvement in performance is expected when using

summary information according to the complexity analyses in Section 8.2.2. This is be-

cause constraints on the channel resource collapse in the summary information derived

at higher levels such that any task in a hierarchy only has one constraint on the resource.

When ASPEN uses aggregation without summary information, the hierarchies must be

fully expanded, and the number of constraints on the channel resource is equivalent to

the number of leaf movement tasks.

However, tasks within a rover’s hierarchy rarely place constraints on the other path

variables more than once, so the no channel domain corresponds to the case where sum-

marization collapses no constraints. Here the complexity of moving an abstract task is

the same for aggregation without summary information for the fully expanded hierarchy

as it is for aggregation with summary information for a partially expanded hierarchy.

Figure 9.3 (top) exhibits two distributions of problems for the no channel domain.

In most of the cases (points along the y-axis), ASPEN with summary information finds

a solution quickly at some level of abstraction. However, in many cases, summary in-

formation performs notably worse (points along the x-axis). I discovered that for these

135

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU Seconds

A
g

g
re

g
at

io
n

C
P

U
se

co
n

d
s

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

A
g

g
re

g
at

io
n

C
P

U
se

co
n

d
s

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + Aggregation CPU seconds

A
g

g
re

g
at

io
n

C
P

U
se

co
n

d
s

Figure 9.3: Plots for the no channel, mixed, and channel only domains

136

problems finding a solution requires the planner to dig deep into the rovers’ hierarchies,

and once it decomposes the hierarchies to the level of the solution, the difference in the

additional time to find a solution between the two approaches is negligible (unless the

use of summary information found a solution at a slightly higher level of abstraction

more quickly). Thus, the time spent reasoning about summary information at higher lev-

els incurred unnecessary overhead. This overhead is rarely significant in backtracking

planners because summary information can prune inconsistent search spaces at abstract

levels. However, in non-backtracking planners like ASPEN, the only opportunity I found

to prune the search space at abstract levels was using the FTF heuristic to avoid greater

numbers of conflicts in particular branches. But, for these problems, the FTF did not give

summary information an advantage. Later, I will explain why FTF is not helpful for the

field problems but very effective for the corridor problems.

Figure 9.3 (middle) shows significant improvement for summary information in the

mixed domain compared to the no channel domain. Adding the channel resource rarely

affects the use of summary information because the collapse in summary constraints

incurs insignificant additional complexity. However, the channel resource makes the

scheduling task noticeably more difficult for ASPEN when not using summary infor-

mation. In the channel only domain (Figure 9.3 bottom), summary information finds

solutions at the abstract level almost immediately, but the problems are still complicated

when ASPEN does not use summary information. These results support the complexity

analysis in the previous section that argues that summary information exponentially im-

proves performance when tasks within the same hierarchy have constraints over the same

resource and when solutions are found at some level of abstraction.

Because summary information is generated offline, the domain modeler knows up

front whether or not constraints are significantly collapsed. Thus, an obvious approach

to avoiding cases where reasoning about summary information causes unnecessary over-

head is to fully expand the hierarchies of tasks where summary information does not

collapse at the start of scheduling. Because the complexity of moving a task hierarchy

is the same in this case whether fully expanded or not, ASPEN does not waste time by

duplicating its efforts at each level of expansion before reaching the level at which it finds

a solution. Evaluating this approach is a subject of future work.

Figure 9.4 shows the CPU time required for ASPEN using summary information

137

0

1000

2000

3000

4000

5000

6000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Average Depth of Hierarchies in Solution

S
u

m
m

ar
y

In
fo

rm
at

io
n

+
A

g
g

re
g

at
io

n
C

P
U

se
co

n
d

s

Figure 9.4: CPU time for solutions found at varying depths

for the mixed domain for the depths at which the solutions are found. The depths are

average depths of leaf tasks in partially expanded hierarchies. The CPU time increases

dramatically for solutions found at greater depths. This supports the claim in the previous

section that finding a solution at more abstract levels is exponentially easier as a result of

an exponential increase in the number of constraints at lower levels. This also explains

why there were cases for the no channel domain where ASPEN performed better using

summary information to find solutions higher up in the hierarchy. Although moving

the most abstract tasks using aggregation would have enabled ASPEN to find solutions

quickly for fully expanded hierarchies, ASPEN must choose to move lower level tasks

independently of their parents and siblings with a small probability of causing temporal

constraint violations. Using summary information to find a solution at higher levels of

abstraction protects ASPEN against any adverse effects from this.

Earlier I mentioned that the FTF heuristic is not effective for the rectangular field

problems. This is because the choice among different paths to a science location usually

does not make a significant difference in the number of conflicts encountered—if the

rovers cross paths, all path choices usually still lead to conflict. For the set of corridor

problems, path choices always lead down a different corridor to get to the target location,

so there is usually a path that avoids a conflict and a path that causes one depending on the

path choices of the other rovers. When ASPEN uses the FTF heuristic, the performance

dominates that of when it chooses decompositions randomly for all but two problems

138

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Information + FTF CPU Seconds

S
u

m
m

ar
y

In
fo

rm
at

io
n

C
P

U
S

ec
o

n
d

s

Figure 9.5: Performance using the FTF heuristic

(Figure 9.5). This reflects experiments for the coordination algorithm in Chapter 7 that

show that FTF is crucial for reducing the search time required to find solutions.

Figure 9.6 shows the performance of EMTF vs. level decomposition for different rates

of decomposition for three problems selected from the set. The plotted points are aver-

ages over ten runs for each problem. Depending on the choice of rate of decomposition

(the probability that a task will decompose when a conflict is encountered), performance

varies significantly. However, the best decomposition rate can vary from problem to

problem making it potentially difficult for the domain expert to choose. For example,

for problem A in the figure, all tested decomposition rates for EMTF outperformed the

use of level decomposition. At the same time, for problem C using either decomposition

technique did not make a significant difference while for problem B choosing the rate

for EMTF made a big difference in whether to use EMTF or level decomposition. Al-

though these examples show varied performance, results for most other problems tested

showed that a decomposition rate of around 15% was most successful. This suggests that

a domain modeler may be able to choose a generally successful decomposition rate by

running performance experiments for a set of example problems.1

A better strategy may be to combine these task expansion heuristics. If the planner

repairs the schedule to the point where it cannot make further progress easily, instead of

decomposing all tasks, the planner can expand the task that the EMTF heuristic chooses.
1For other experiments, I used a decomposition rate of 20%.

139

Future work will include investigating this approach and the relation of decomposition

rates to performance based on problem structure.

In summary, the complexity analyses and experiments show that summary informa-

tion can offer speedups in single-agent iterative repair planning unless the problem (or

domain) has the following characteristics:

� solutions cannot be found at abstract levels;

� summarization does not reduce the constraints derived at higher levels of abstrac-

tion; and

� choices of decompositions (or branches) lead to similar numbers of conflicts.

If solutions are found at abstract levels, temporal constraint violations are exponen-

tially fewer resulting in exponentially fewer scheduling operations. If summarization

collapses constraints on common variables, scheduling operations are exponentially less

complex. Even if the planner only finds solutions found at lower levels, the search at

higher levels will be insignificant compared to that of lower levels where the schedule’s

state, resource, and temporal constraints exponentially explode. If neither of these con-

ditions hold, but the number of conflicts in choosing different decompositions of tasks

significantly vary, choosing branches with fewer conflicts (the FTF heuristic) will direct

the search away from greater numbers of conflicts and make it easier for the planner to

find solutions at whatever depth the solutions exist.

In addition to showing speedups in planning and scheduling, the experiments reveal

tradeoffs in using the EMTF and level-decomposition heuristics for choosing tasks to

expand. Results suggest that if an appropriate decomposition rate is chosen, EMTF will

outperform level-decomposition. As mentioned earlier, this investigation raises research

questions in how to choose a decomposition rate and how to construct other heuristics

based on these.

140

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35
EMTF Decomposition Rate

C
P

U
se

co
n

d
s

A

A level-decomp

B

B level decomp

C

C level decomp

Figure 9.6: Performance of EMTF vs. level-decomposition heuristics

9.3 Comparing Refinement and Iterative Repair Plan-

ning

As stated in Section 8.1, the complexity analysis for the coordination algorithm in

Section 6.3 applies directly to the refinement planner based on the coordination algo-

rithm. In this section, I compare the complexity analyses and experimental results for

these two planning approaches to explain the performance advantages of abstract reason-

ing that can be expected for different classes of planners and schedulers.

The complexity analyses and experiments show that abstract reasoning in the iterative

repair planner is sensitive to the size of summary information derived for abstract tasks.

If the size is too large (because of no collapse in summary information), using summary

information at abstract levels can be a waste of effort. But, if it sufficiently collapses in

size up the hierarchy, then performance improves exponentially. In contrast, the evalu-

ation of refinement planning reveals no sensitivity to the size of summary information,

but the number of expanded tasks greatly affects performance. The evaluation of local

search planning reveals no sensitivity to the number of tasks. Are these planners really

this different?

The answer is no. The sensitivity to the size of summary information did not appear in

the evaluation of refinement-based coordination because it was not varied. Section 8.2.2

analyzes the worst case, where no summary information collapses. In that case, for a hi-

141

erarchy of depth d, branching factor b, and c conditions per task, the number of summary

conditions for a task at depth level i is C = O(bd�ic), and the complexity of detecting

conflicts in an ordering of plans (at level i) is O(b2iC2) = O(b2dc2). If the summary con-

ditions were to completely collapse because all plans in the hierarchy had conditions on

the same c variables, the number of summary conditions per task would be simply c, and

the complexity of testing would be O(b2ic2). Thus, the complexity differs by a factor of

O(b2(d�i)). In our refinement coordination and planning algorithm, this conflict detec-

tion is a basic operation that is done for resolving conflicts. So, by collapsing summary

information, resolving conflicts at abstract levels gains another exponential performance

improvement. This makes the complexity of resolving conflicts O(kbi
b2dc2) when sum-

mary information does not collapse, O(kbi
b2ic2) when summary information collapses,

and O(kbd
b2dc2) when reasoning at the primitive level (no summary information). Thus,

planning at level i can be as much as a factor of O(kbd
�bi

b2(d�i)) times faster than plan-

ning at level d. This is the same result found for the iterative repair planner. Although

both planners described here experience this exponential speedup, without more analy-

sis it is uncertain whether there is some planning algorithm that would not experience

similar performance gains. Thus, future work is needed to analyze the complexity of

planning based on the number of constraints (conditions) instead of just the number of

plan operators.

But how could summary information cause unnecessary overhead for the iterative

repair planner and not for the refinement coordinator? In the experiments for the evacu-

ation domain (Chapter 7), summary information does not collapse up the hierarchy be-

cause each task usually has travel constraints on different locations/paths. This is the

worst case for using summary information. However, in finding optimal solutions, the

FTF-EMTF coordinator completely dominates the FAF-FAF planner, that represents the

state-of-the-art HTN planning heuristic that does not reason about conditions at abstract

levels. Other experiments suggest that the FTF heuristic makes the difference in direct-

ing the search away from costly search. This, in conjunction with branch-and-bound

pruning, eliminates unfruitful search spaces, explaining why using summary information

never introduced unnecessary overhead. It is possible that if the FTF heuristic was in-

effective, and abstract solutions could not be found at higher levels and used to prune

costlier search spaces, reasoning at abstract levels would be duplicating effort at lower

142

Summary Information + Aggregation vs. Myopic

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Summary Inforamtion + Aggregation CPU seconds

M
yo

p
ic

C
P

U
se

co
n

d
s

Figure 9.7: Performance of summary information with aggregation vs. myopic

levels causing unnecessary overhead. However, if the domain modeler is aware of these

characteristics of the domain, the planner can skip reasoning at abstract levels and use

summary information at a level where it can find solutions.

There is also another explanation for why summary information did not appear as

effective in the iterative repair planner. The comparisons were made against the planner

that still used aggregation. As mentioned before, aggregation already exploits hierar-

chy to avoid many potential temporal constraints, and previous work evaluating aggrega-

tion shows that the manipulation of tasks outside the context of their hierarchy (myopic

scheduling) results in very poor performance [Knight et al., 2000]. Figure 9.7 shows that

this myopic scheduling indeed performs much worse than the combination of summary

information and aggregation for the mixed domain.

Thus, the performance advantages of using summary information do not differ greatly

between the refinement and iterative repair planners described in this thesis. These plan-

ners are plan-based in that they manipulate plans (or schedules). This evaluation does not

directly apply to state-based planners, but it suggests that reasoning at abstract levels can

generally reduce the complexity of search in planning. Planning problems in general are

intractable in the number of steps in the generated solution plan [Bylander, 1994]. Sum-

mary information enables a planner to reason about fewer abstract tasks that represent

all potential (or desirable) action combinations. For example, forward-expanding state-

143

space planners could search through expansions of top-level tasks first using summary

information. Then, if no feasible solution is found, the subtasks in the decompositions

of one (or all) of the high-level tasks can be added (or substituted), and the search can

be repeated. The search space reductions due to fewer operators and collapsed summary

information for plan-space planners can also apply to state-space planning.

144

PART IV

Conclusions and Future Directions

145

CHAPTER 10

Contributions and Results

This dissertation presents a collection of algorithms to efficiently coordinate a group

of agents with hierarchical plans, generate a plan for a single-agent, and interleave plan-

ning and coordination. The formalization of summary information and the lower-level

algorithms that reason about them also facilitate the construction of other coordination

and planning systems that efficiently reason about plans at multiple levels of abstraction.

The complexity analyses and experiments in a variety of problem domains quantify the

benefits of using summary information in different classes of coordination, planning,

and scheduling algorithms. My approach also supports flexible execution of coordi-

nated plans. In summary, using techniques provided by this dissertation for reasoning

efficiently about plans at multiple levels of abstraction enables researchers and system

designers to scale the capabilities of interleaved coordination, planning, and execution.

10.1 Summary Information

The first contribution of this thesis is the algorithms for deriving and reasoning about

summary information for the propositional state and metric resource constraints of ab-

stract tasks. The formalism of the concurrent execution of CHiPs serves as a founda-

tion upon which sound and complete algorithms are constructed for deriving summary

conditions and determining whether one task must or may achieve, clobber, or undo a

condition of another task. Based on these algorithms, others determine whether a group

of agents can decompose and execute a set of abstract tasks under particular ordering

constraints in any way (CanAnyWay), might decompose and execute them in some way

146

(MightSomeWay), or cannot execute them consistently in any way (:MightSomeWay).

Like the algorithms for summary conditions, the components of the metric resource

summarization algorithm allow an agent to determine whether resource usages of abstract

tasks must or may conflict. Local search algorithms can directly use these component al-

gorithms to calculate resource profiles for fixed orderings of tasks. Existing refinement

planners offer techniques for determining whether a set of actions under partial ordering

constraints have resource usage conflicts. Those planners can also use these summa-

rization algorithms for efficiently detecting and resolving conflicts at multiple levels of

abstraction.

A domain modeler can run the summarization algorithms offline for a library of plan

hierarchies so that summary information is available for the coordination and planning

of any set of goal tasks supported by the library. Using algorithms for reasoning about

summary information, agents can discover with whom they should coordinate and over

which states and resources they must coordinate/negotiate. These formalisms and al-

gorithms serve as a toolbox for building coordination and planning algorithms that can

effectively reason about concurrent action at multiple levels of abstraction.

10.2 Coordination and Planning Algorithms

Another contribution is a sound and complete coordination algorithm built on the

algorithms for summary conditions. Given a separately constructed plan for each of a

group of agents, this algorithm is able to potentially find solutions or determine that

there are no solutions at multiple levels of abstraction. The ability to find solutions at

abstract levels can preserve decomposition choices for agents for more flexible execution

using many existing robust execution systems that exploit similar representations of task

hierarchies. A small modification to this algorithm results in a concurrent hierarchical

planner that efficiently refines a single agent’s top level goals and tasks into consistent

plans at multiple levels of abstraction. This planner extends existing HTN planners to

reason more efficiently at abstract levels about activities that may execute in parallel with

interval temporal constraints. This enables these kinds of refinement-based coordination

and planning algorithms to handle a wider class of domains where several tasks may

execute during the interval of another. The algorithm is applied to an evacuation domain,

147

a military coalition scenario, and a manufacturing domain to demonstrate its effectiveness

in coordinating a group of concurrently executing agents.

The use of summary information in a local search planner is another contribution

of this thesis. The strength of local search algorithms is their ability to efficiently rea-

son about large numbers of tasks with constraints on metric resources, state variables,

and other complex resource classes. By integrating algorithms for reasoning about sum-

marized propositional state and metric resource constraints into ASPEN (a heuristic it-

erative repair, local search planner/scheduler), we enable a powerful system to scale to

even larger problem domains by reasoning about tasks at multiple levels of abstraction,

as shown in its application to planning the actions for a team of Mars rovers. This use

of summary information in a different style of planner demonstrates the applicability of

abstract reasoning in improving the performance of different kinds of planning (and plan

coordination) systems. I also explain how complexity advantages can be extended to

other classes of planners.

10.3 Decomposition Search Techniques and Heuristics

Coordination and planning algorithms that use summary information can find so-

lutions at higher levels of abstraction more quickly, but a system may require optimal

solutions that only exist at lower levels. For these systems, making decisions about how

to decompose task hierarchies is crucial. Another contribution of this thesis is a search

strategy involving several techniques for decomposing task hierarchies based on sum-

mary information. One search strategy is to find abstract solutions and use them to prune

away (in a branch-and-bound style) search spaces that are worse (according to utility or

cost) than those found. Another is to prune away search spaces where there are unre-

solvable conflicts. The EMTF heuristic decomposes tasks involved in greater numbers

of conflicts first in order to “root out” conflicts more quickly without introducing unnec-

essary details of non-conflicting tasks. When decomposing an or task, the FTF heuristic

prefers tasks involved in fewer conflicts. In selecting subtasks causing fewer conflicts

(or blocking tasks involved in more conflicts), conflicts are easily avoided to enable the

coordinator/planner to find solutions more quickly. The combination of these effectively

avoids unfruitful search spaces, guides the search to solutions more quickly, and finds op-

148

timal solutions much more quickly than existing HTN heuristics as shown in experiments.

These heuristics are adapted for both the refinement coordination/planning algorithm and

iterative repair in ASPEN with similar experimental results.

10.4 Complexity Analyses and Experiments

The complexity analyses and experiments in this dissertation comprise another con-

tribution in their quantitative explanation of the benefits of using summary information

in different coordination and planning systems. One analysis shows that finding a solu-

tion at a higher level of abstraction is easier by a factor of O(kbd
�bi

) where k is some

constant; b is the branching factor of the hierarchy; i is the level at which a solution

is found; and d is the depth of the hierarchy, where previous hierarchical planning ap-

proaches can only find solutions by fully decomposing plans to the primitive level. This

complexity reduction occurs in the worst case where the summary information for a plan

grows exponentially up the hierarchy because there is no collapse of information dur-

ing summarization. If summary information fully collapses, our refinement coordination

and planning algorithm is sped up by another factor of O(b2(d�i)), resulting in a total

improvement factor of O(kbd
�bi

b2(d�i)).

For iterative repair (local search), another analysis shows that scheduling operations

are exponentially cheaper at higher levels of abstraction when using summary informa-

tion. Resolving a conflict by moving a task at level i in the schedule is as much as a factor

of O(b2(d�i)) times faster than moving a task in fully decomposed schedule, even when

the scheduler uses aggregation to efficiently schedule task hierarchies. However, this best

case occurs when summary information fully collapses in the hierarchy during summa-

rization because all tasks have constraints on the same state or resource variable. If there

is no collapse in summary information because tasks in each hierarchy have constraints

on different variables, then summary information offers no speedup. But, scheduling

at abstract levels achieves a speedup along another dimension. Because temporal con-

straints between tasks grow exponentially as a hierarchy is decomposed, rescheduling a

task at the lowest level d, creates a factor of O(bd�i) more temporal conflicts than at an

abstract level i. But, just as with the refinement-based search, the number of scheduling

operations could grow exponentially with the number of tasks that grow exponentially

149

down the hierarchy as well, making an even more dramatic improvement (O(kbd
�bi

)).

Thus, the combined complexity speedup of using summary information is potentially

O(kbd
�bi

b2(d�i)) for both planners.

These results quantify the advantages of abstract reasoning over non-hierarchical plan

merging approaches, such as [Georgeff, 1983]. This extends previous results [Korf, 1987;

Knoblock, 1991] that demonstrate exponential search space reductions for hierarchical

problem solving when assuming hierarchies do not have interacting subgoals. My analy-

ses make no such harsh assumptions about the problem structure.

I also show that coordination at multiple levels of abstraction minimizes the overall

performance in terms of combined computation and execution cost. Moreover, commu-

nicating summary information at different levels of abstraction reduces communication

costs exponentially during coordination when summary information collapses up the hi-

erarchy and solutions can be found at abstract levels. This is shown in a experiment with

the manufacturing domain where summary information is transmitted at different levels

of granularity, and bandwidth and latency vary.

Experiments reflect the complexity analyses in this thesis, showing where the use of

summarization dominates previous approaches that do not reason at abstract levels about

the constraints found in the decompositions of tasks. This is shown for the refinement-

based coordinator in the evacuation domain where full decomposition using the FAF

heuristic performs worse by orders of magnitude. Experiments for the iterative repair

planning (ASPEN) in the Mars rovers domain show even greater improvements when

summary information collapses up the hierarchy. However, these experiments also show

that scheduling at abstract levels using summary information creates unnecessary over-

head resulting in poorer performance in the worst case when summary information does

not collapse. This occurs when solutions can only be found at lower levels of decomposi-

tion because scheduling at higher levels is just as costly at lower levels and does not lead

to a solution.

However, other experiments show that this overhead is insignificant when decomposi-

tion search strategies prune the search space. The result is that reasoning about summary

information finds solutions even at lower levels much faster than previous approaches. In

the evacuation experiments, the combination of the FTF and EMTF heuristics with prun-

ing of costlier and inconsistent search spaces leads to optimal solutions more quickly than

150

previous heuristics. Local search planning cannot take advantage of pruning techniques,

but in planning for the team of Mars rovers, ASPEN finds solutions much more quickly

when using summary information in combination with the FTF heuristic for problems

where or branches lead to varied numbers of conflicts.

The refinement and local search coordinators and planners that I evaluated search in

the space of plans. However, state-space planning and coordination systems can also reap

the benefits of abstraction using summary information in similar ways. My evaluation of

summary information explains the potential and expected benefits of its use in the coor-

dination and planning systems presented in this thesis based on domain characteristics.

It argues for the use of abstraction in all classes of planning and plan coordination sys-

tems and provides analyses that can be applied to predict their potential and expected

performance improvements in terms of computation and communication.

151

CHAPTER 11

Future Directions

This work raises a number of new research problems. In general, future work is

needed to develop techniques for applying summary information to wider classes of co-

ordination, planning, and scheduling problems; for summarizing other kinds of infor-

mation; for handling uncertainty and risk; for interleaving coordination, planning, and

execution; for scaling the numbers of agents that can be coordinated; for exploiting syn-

ergistic actions; and for learning from previous episodes of coordination, planning, and

execution.

There are many ways in which the techniques here can be applied to other classes of

problems. One way of doing this is to integrate summary information into other kinds of

planners and schedulers and to use these planning techniques in plan coordination. Re-

cently developed planning algorithms have shown much greater performance and more

sophisticated task and resource representations compared to planners developed in previ-

ous years [Weld, 1999]. Most of these planners do not use hierarchical representations,

and none can reason at abstract levels to the extent of the work presented in this the-

sis. While some of these planners provide ways for a user to infuse domain knowledge

to guide the search, hierarchical representations provide qualitatively different domain

knowledge that is natural for humans to specify; abstract tasks are like procedures in

a programming language that specify the physics of some application. The integration

of summary information with more recent planning algorithms can improve the perfor-

mance of planning and coordination as well as apply to more expressive plan execution

systems.

One aspect of this integration with other planners and schedulers involves expanding

152

summary information to include more complex resources. Metric resource usage is cur-

rently commonly represented as an instantaneous depletion, but for many applications,

representing this usage as some function over time may be necessary. In addition, the

usage of one resource may have interactions with other resources. For example, a so-

lar array on a spacecraft may recharge a battery, and actions that deplete all of the solar

power will use battery energy as well. Other complex representations of resources in-

clude geometrical constraints, variable capacity resources, and volatile objects (e.g. a

file system). ASPEN provides a generalized timeline interface for a domain expert to

specify the physics of arbitrary resource representations that can use iterative repair for

planning and scheduling [Knight et al., 2001]. Many of the resource representations just

mentioned have been implemented in ASPEN using this interface. How to summarize

constraints and effects on these resources to exploit the benefits of abstract reasoning is

an open research question.

Another parameter of expressiveness in planning domain descriptions is the temporal

model. My approach is based on point-based interval temporal reasoning. This has the

same expressiveness as Allen’s temporal relations [Allen, 1983]. As mentioned in the

related work on plan merging (Section 2.2), simple temporal networks (STNs) represent

time ranges within which endpoints of task intervals must execute. For example, task

A must begin executing between five and ten seconds before task B ends. Adapting the

algorithms here to handle this representation only involves substituting the algorithms

for updating and checking the consistency of temporal constraints [Meiri, 1992]. An

extension to this representation involves differentiating between constraints that are con-

trollable and uncontrollable. For example, a planner may determine that A start 5 to 10

seconds before B ends, but the duration of B may uncontrollably vary between 20 and 30

seconds, making it impossible for the planner to determine an appropriate time point to

start A. Handling these constraints efficiently remains an open problem.

It is also important to consider other ways of summarizing task information to further

exploit abstract reasoning. For example, I showed that abstract reasoning with summary

information can cause unnecessary overhead in a local search planner when tasks in a

hierarchy have constraints on different variables, and summarization does not collapse

information at higher levels. If variables could be grouped in class hierarchies, then

constraints over different variables in the same class may be summarized as a single con-

153

straint on the set of variables. Thus, a coordination or planning algorithm could interleave

the decomposition of the class of variables involved in a constraint with the decomposi-

tion of the task hierarchy. By further reducing the information at abstract levels with this

different kind of summary information, algorithms should be able to further reduce the

size of the search space at higher levels of abstraction since the complexity of resolving

conflicts at any level of abstraction grows with the number of constraints. Exploring new

ways to reason at abstract levels like this one promises better performance for coordina-

tion, planning, and scheduling.

Specific to coordination, more work is needed to understand the effects of communi-

cating summary information for different coordination protocols. My study of one proto-

col in the manufacturing domain only provides preliminary results. Communication can

be constrained with respect to bandwidth, latency, windows of availability, and privacy.

For example, coordinating Mars surface explorers and orbiters depends greatly on these

variables—communication on the surface, between the surface and orbiters, and between

both to Earth varies greatly for all these parameters except there are no privacy concerns.

More efficient protocols may not be possible without communicating at multiple levels

of abstraction.

As mentioned in related work (Chapter 2), other research has provided theories based

on models of agents that have joint-intentions, beliefs, and goals [Grosz and Kraus, 1996;

Rao and Georgeff, 1995; Fagin et al., 1995]. This dissertation models agents based on

more traditional models of planning and makes few references to these more sophisticated

mental states. Making a tie with this other work can bring the benefits of hierarchy to

higher level multiagent reasoning techniques.

Summary information offers a natural representation of uncertainty. Instead of as-

suming that primitive level tasks have only must, f irst, always, and last conditions, the

domain expert may encode may and sometimes conditions in tasks to represent uncertain

constraints and effects. If information about the likelihood of these constraints and effects

is available, probabilities can be included in the summary information representation of

tasks and states. Similarly, metric resources could be specified as probability distribu-

tions of values over local and persistent ranges. At abstract levels, summary information

can then represent the likelihood of achieving goals, the expected cost or utility of ab-

stract plans, and the risk of failure. At the same time, durations of abstract and primitive

154

actions can be represented as distributions over a range and calculated during summariza-

tion and coordination/planning, taking into account execution failures. Investigating how

coordination, planning, and execution can exploit summary information to better handle

uncertainty and risk of failure can enable autonomous systems to better evaluate choices

of accomplishing goals and subgoals in an uncertain environment.

Integrating planning and execution systems for particular domains has long been a

subject of research for robotics. A three-tier approach of interfacing planning at the

decision-level, a reactive execution system, and a reactive control system is a common

approach [Gat, 1998]. General approaches to this integration has been the subject of

more recent research. This involves providing state updates to the planner and passing

schedules from the planner to the execution system that must interact with the control

system to sense and manipulate effectors. The capability is needed to also integrate coor-

dination with execution. CASPER (Continuous Activity Scheduling Planning Execution

and Replanning) is a continuous planner/scheduler built on top of ASPEN that constantly

reacts to state updates sent from the execution system underneath to replan activities in

real time to react to changes in the environment and failure [Chien et al., 2000a]. A

moving commit window determines which activities have been passed to the execution

layer and which activities can still be modified. The use of abstraction can enable contin-

ual planners such as this to focus on the details of more important near-term tasks while

reasoning at higher levels about the ramifications on long-term activities. Future work

should also investigate how to continuously coordinate planning agents using summary

information to reason at multiple levels of abstraction appropriately.

With respect to plan execution, the use of summary information can preserve decom-

position choices in the hierarchy that can be exploited by robust plan execution systems.

This is one tie in the deliberative level to the execution level. The interactions with

a continuous coordination or planning system (mentioned in the preceding paragraph)

is another. However, more interactions promise more streamlined interleaved planning

and execution. Recent research has developed robust execution for multiagent teams in

TEAMCORE [Tambe, 1997; Pynadath et al., 1999] based on a joint-intention model.

This work provides execution monitoring and failure recovery for a group of agents col-

laborating in a common team plan including the possibility of agent role re-assignment.

This dissertation discusses an approach to generating coordinated plans that agents can

155

expect to execute successfully. However, future work is needed to evaluate and adapt the

task representations here to better exploit the capabilities of multiagent execution systems

like TEAMCORE.

The coordination examples in this thesis involve handfuls of agents. Being able to

scale to numbers of agents of higher orders of magnitude may be essential for some ap-

plications, such as coordinating a large constellation of space probes. Certainly, if the

plans of each agent are complex and have tight interactions with many others, finding a

consistent coordination solution would be intractable for an arbitrarily large set of agents.

However, for agents that have limited interactions with others summary information can

be used to determine which agents must coordinate and over which constraint variables

they must coordinate. One approach would be to divide the agents into interaction groups

or resource groups to localize coordination problems. Of course, interactions may extend

across groups, so groups may be organized hierarchically with coordination agents han-

dling groups at different levels. Understanding the tradeoffs of alternative organizations

of agents and alternative protocols among agents and their groups can provide insight in

scaling coordination to applications involving greater numbers of agents. Work in dis-

tributed constraint satisfaction problems (DCSP) provides insights on how this might be

done [Yokoo and Hirayama, 1998].

This dissertation provides algorithms and search techniques for resolving conflicts

among agents, but agents may have synergistic tasks where one agent achieves a subgoal

of another. In addition, an agent may depend on others to achieve some state or produce a

resource required for its actions to be executed successfully. My algorithms can support

this if phantomization is included in the task hierarchies. This would involve introduc-

ing additional or branches with subtasks that only require a precondition that the task

is achieved (by another agent or other task in the local plan hierarchy) with no actions.

So, if the subgoal is achieved by some other task, the agent can choose that branch and

do nothing. Otherwise, the preconditions fail for that branch and the agent must choose

another subtask that achieves the goal. However, introducing such branches trades com-

putation time for plan quality. Future work is needed to study this tradeoff in hierarchical

planning and coordination and understanding implications for coordination/negotiation

protocols.

Given that agents can coordinate single instances of their plans, remembering the re-

156

sults can improve the performance of coordination and execution for future coordination

problems. Agents could store solutions to coordinating tasks throughout the hierarchy

and retrieve them when coordinating similar tasks in new problem instance. Thus, they

can learn from their previous experiences to efficiently handle future conflicts. However,

it may be unlikely that the same instances of tasks will occur in the future. Therefore,

being able to generalize coordinated tasks to apply to variations of the coordination prob-

lem promises greater success in applying the learned knowledge. This has been studied

in case-based planning in systems like CHEF [Hammond, 1986]. Extending this work to

apply to coordination within this framework is needed in future work.

157

APPENDICES

158

APPENDIX A

Summary Conditions for Selected CHiPs

Here I give the derived summary information for tasks from the manufacturing do-

main. This supplements summary information given as examples to explain the summa-

rization algorithm in Section 4.1.

Production manager’s produce G f rom H plan:

Summary preconditions:

at($srcG, G)MuF, available(G)MuF, free(transp2)MuF, :full(M2 tray1)MuF,

available(M2)MuS

Summary inconditions:

at(M2 tray1, G)MaS, available(G)MuS, full(M2 tray1)MuS, :at($srcG, G)MuS,

:full($srcG)MuS, free(transp2)MuS, :available(G)MuS, :full(M2 tray1)MuS,

:free(transp2)MuS, available(M2)MuS, at(M2 tray1, H)MaS, available(H)MuS,

:at(M2 tray1, G)MuS, :available(M2)MuS, :at(M2 tray1, H)MuS,

:available(H)MuS, full($srcG)MuS

Summary postconditions:

:at($srcG, G)MuS, :available(G)MuS, :at(M2 tray1, G)MuS, available(M2)MuS,

at($srcG, H)MuL, available(H)MuL, full($srcG)MuL, :at(M2 tray1, H)MuL,

:full(M2 tray1)MuL, free(transp2)MuL

Production manager’s produce G on M1 plan:

Summary preconditions:

at(bin1, A)MuF, at(bin2, B)MuF, available(A)MuF, free(transp1)MuF,

:full($srcG)MuF, available(B)MuS, :full(M1 tray2)MaS, available(M1)MuS

159

Summary inconditions:

at(bin2, B)MuS, available(B)MuS, :full(M1 tray2)MuS, at($srcG, A)MuS,

available(A)MuS, full($srcG)MuS, :at(bin1, A)MuS, :full(bin1)MuS,

at(M1 tray2, B)MaS, full(M1 tray2)MuS, :at(bin2, B)MuS, :full(bin2)MuS,

free(transp1)MuS, :available(A)MuS, :full($srcG)MuS, :free(transp1)MuS,

:available(B)MuS, available(M1)MuS, :available(M1)MuS

Summary postconditions:

full($srcG)MaS, :at(bin1, A)MuS, :full(bin1)MuS, :at(bin2, B)MuS,

:full(bin2)MuS, free(transp1)MuS, at($srcG, G)MuL, available(G)MuL,

:available(A)MuL, :available(B)MuL, :at($srcG, A)MuL,

:at(M1 tray2, B)MuL, :full(M1 tray2)MuL, available(M1)MuL

Production manager’s produce G on M2 plan:

Summary preconditions:

at(bin1, A)MuF, at(bin2, B)MuF, available(A)MuF, free(transp2)MuF,

:full($srcG)MuF, available(B)MuS, :full(M2 tray2)MaS, available(M2)MuS

Summary inconditions:

at(bin2, B)MuS, available(B)MuS, :full(M2 tray2)MuS, at($srcG, A)MuS,

available(A)MuS, full($srcG)MuS, :at(bin1, A)MuS, :full(bin1)MuS,

at(M2 tray2, B)MaS, full(M2 tray2)MuS, :at(bin2, B)MuS, :full(bin2)MuS,

free(transp2)MuS, :available(A)MuS, :full($srcG)MuS, :free(transp2)MuS,

:available(B)MuS, available(M2)MuS, :available(M2)MuS

Summary postconditions:

full($srcG)MaS, :at(bin1, A)MuS, :full(bin1)MuS, :at(bin2, B)MuS,

:full(bin2)MuS, free(transp2)MuS, at($srcG, G)MuL, available(G)MuL,

:available(A)MuL, :available(B)MuL, :at($srcG, A)MuL,

:at(M2 tray2, B)MuL, :full(M2 tray2)MuL, available(M2)MuL

Facility manager’s maintenance plan:

Summary preconditions:

at(bin4, tool)MuF, available(tool)MuF, free(transp1)MaF,

:full(M1 tray2)MuF, available(M1)MuS, :full(M2 tray2)MuF,

available(M2)MuS, :full(dock5)MuS, free(transp2)MaF

Summary inconditions:

160

available(M1)MuS, at(M1 tray2, tool)MuS, full(M1 tray2)MuS,

:at(bin4, tool)MuS,:full(bin4)MuS, free(transp1)MaS,

available(tool)MuS, :available(tool)MuS, :full(M1 tray2)MuS,

:free(transp1)MaS, :available(M1)MuS, :full(M2 tray2)MuS,

available(M2)MuS, at(M2 tray2, tool)MuS, full(M2 tray2)MuS,

:at(M1 tray2, tool)MuS, :available(M2)MuS, :full(dock5)MuS,

:at(M2 tray2, tool)MuS, full(dock5)MuS, free(transp2)MaS,

:free(transp2)MaS

Summary postconditions:

:at(bin4, tool)MuS, :full(bin4)MuS, available(M1)MuS,

:at(M1 tray2, tool)MuL, :full(M1 tray2)MuL, available(M2)MuS,

at(dock5, tool)MuL, available(tool)MuL, full(dock5)MuL,

:at(M2 tray2, tool)MuL, :full(M2 tray2)MuL, free(transp1)MaL,

free(transp2)MaL

Inventory manager’s move parts plan:

Summary preconditions:

at(bin3, C)MuF, available(C)MuF, free(transp1)MuF, :full(dock4)MuF,

at(dock1, D)MuS, available(D)MuS, free($imtransp)MaS, at(dock2, E)MuS,

available(E)MuS, :full(bin4)MuS

Summary inconditions:

at(dock4, C)MuS, available(C)MuS, full(dock4)MuS, :at(bin3, C)MuS,

:full(bin3)MuS, free(transp1)MuS, :available(C)MuS, :full(dock4)MuS,

:free(transp1)MuS, at(dock1, D)MuS, available(D)MuS, free($imtransp)MuS,

at(dock2, E)MuS, available(E)MuS, :full(bin4)MuS, at(bin3, D)MuS,

full(bin3)MuS, :at(dock1, D)MuS, :full(dock1)MuS, :available(D)MuS,

:free($imtransp)MuS, :at(dock2, E)MuS, :available(E)MuS, full(bin4)MuS,

:full(dock2)MuS

Summary postconditions:

at(dock4, C)MuS, available(C)MuS, full(dock4)MuS, :at(bin3, C)MuS,

free(transp1)MaS, at(bin3, D)MuS, available(D)MuS, full(bin3)MuS,

:at(dock1, D)MuS,:full(dock1)MuS, at(bin4, E)MuL, available(E)MuL,

full(bin4)MuL, :at(dock2, E)MuL, :full(dock2)MuL, free($imtransp)MuL

161

APPENDIX B

Soundness and Completeness Proofs for Must/May

Assert, Clobber, Achieve, and Undo

These proofs show the soundness and completeness of algorithms given in Section

4.3 that determine potential (may) and definite (must) interactions among summarized

tasks.

Lemma The algorithm for determining that p0 2 P must-assert c0 [by, before] c is sound;

i.e. if we determine that p0 must-assert c0 [by, before] c, then such is the case.

Proof by contradiction. If it were not the case that p0 2 P must-assert c0 [by, before]

c, then there must be a history where for all t 0 where e0 attempts to assert c0 at t 0, there

is a t where e requires c to be met at t and [t 0 > t, t 0 � t] since we assume that there

exists a plan p 2 P for which there is a summary condition c; thus, there must be some

t where e requires c to be met at t. We need to show that this is false for any c and

c0. We claim that the table describing the constraints checked by the algorithm does this

as it describes all cases of assertions by summary inconditions and postconditions and

all cases of required summary conditions. For rows 1-4 in the table, the algorithm finds

that the constraint [p0+ � p�, p0+ < p�] can be derived from order. Since all histories

must have to meet the constraints in order, [t f (e0) � ts(e), t f (e0) < ts(e)] must be true.

Because the summary postconditions of p0 are derived from its own postconditions or

the summary postconditions of its subplans; and the summary preconditions of p 0 are

derived from its own preconditions or the summary preconditions of its subplans, these

summary conditions are ultimately derived from postconditions of plans executed within

e0 and preconditions of plans executed within e according to the semantics of subplan

162

executions. This means that ts(e0) < t 0 � t f (e0) and ts(e) � t < t f (e), and [t 0 > t, t 0 � t]

is, thus, false. Therefore the rules for rows 1-4 are sound in determining must-assert for

their respective cases. 1 For row 5 by similar argument, ts(e0) < ts(e). As explained at

the beginning of this section on Supporting Mechanisms, we assume that the summary

conditions of p, p0, and all other subplans in P have their intended properties, so since

c0 2 insum(p0), always(c), and e0 attempts to assert c0 at t 0, there is such t 0 where ts(e0)< t 0,

and t 0 is less than all ts > ts(e0) and all t f > ts(e0) for any execution in E(h) including e by

the semantics of subplan executions and always. Similarly, ts(e)� t < t f (e) since `(c) is

an external precondition of p, and e requires c to be met at t. Thus, [t 0 > t, t 0 � t] is false.

In this manner, all rows of the table used by the algorithm have been verified to show that

[t 0 > t, t 0 � t] is false for all cases and are, thus, sound. 2

Lemma The algorithm for determining that p0 2 P must-assert c0 [by, before] c is com-

plete; i.e. if p0 must-assert c0 [by, before] c, then the algorithm determines this to be

true.

Proof by contradiction. If the algorithm did not determine that p0 2 P must-assert c0 [by,

before] c, then it must have found the constraints in the must-assert table to differ from

those in the point algebra table. So, we need to show that that could not be the case if

p0 2 P actually must-assert c0 [by, before] c for any c0 and c. For rows 1-4 in the table, the

algorithm finds that the constraint [p0+ � p�, p0+ < p�] cannot be proven from order.

Since all histories have to meet the constraints in order, [t f (e0) > ts(e), t f (e0) � ts(e)]

must be true for some histories. However, e0 attempts to assert c0 at t 0 such that t 0= t f (e0),

and e requires c to be met at t where t = ts(e), so [t 0 > t, t 0 � t] in such histories. This

contradicts the assumption that p0 must-assert c0 [by, before] c, so the rules in rows 1-4

in the table are complete in determining must-assert for their respective cases. For row 5

by similar argument, ts(e0)� ts(e) for some histories. However, e0 attempts to assert c0 at

t 0 such that ts(e0)< t 0, and e requires c to be met at t = ts(e). Thus, t < t 0; the definition

of must-assert is again contradicted; and the algorithm is complete for this case. In rows

7, 11, 18, and 19, c0 is sometimes incondition, which could be summarizing only some

precondition of a plan in p0’s decomposition. In this case no plan can attempt to assert c0,
1Notice that whether c and c0 are must or may does not make a difference since must-assert describes

a temporal relation among executions only for cases when the conditions must be met in the executions of
their respective plans.

163

so must-assert is false, contradicting the assumption that it was true. 2 In this manner, all

rows of the table used by the algorithm have been verified to contradict the assumption

for all cases and are, thus, complete. 2

Lemma The algorithm for determining that p0 2 P may-assert c0 [by, before] c is sound;

i.e. if we determine that p0 may-assert c0 [by, before] c, then such is the case.

Proof by contradiction. If it were not the case that p0 2P may-assert c0 [by, before] c, then

there is no history where e is the top-level execution of p in E(h); e0 is top-level execution

of p0 in E(h); e0 attempts to assert c0 at t 0; e requires c to be met at t; and [t 0 � t, t 0 < t].

Since our algorithm assumes that there exists a plan p 2 P for which there is a summary

condition c, we know that in all histories there is a top-level execution of p, e, in E(h)

and a top-level execution of p0, e0, in E(h), and we know that in some history for some set

of plans with summary information Psum, e0 attempts to assert c0 at t 0, and e attempts to

assert c at t. Thus, [t 0> t, t 0� t] for any such history. So, we must find a contradiction by

showing that [t 0� t, t 0 < t] for any c and c0 in some history using the corresponding cases

in the table used by the algorithm. For row 1 in the table, the algorithm would find that the

constraint [p0+ > p�, p0+ � p�] cannot be derived from order. Since all histories must

have to meet the constraints in order, [t f (e0)� ts(e), t f (e0)< ts(e)] must be true for some

history. By the same argument in the soundness proof for must-assert, t 0 = t f (e0) and

t = ts(e). However, this means that in [t 0 � t, t 0 < t] in h, so we have a contradiction for

this case. For row 7 by similar argument, [ts(e0)� ts(e), ts(e0) < ts(e)] for some history

h. Because c0 2 insum(p0), c 2 insum(p), and always(c), ts(e0) < t 0 < t f (e0), ts(e) < t,

and t is less than ts > ts(e) and t f > ts(e) for any execution in E. Thus, there must be a

history where t 0< t for any such c and c0. In this manner, all rows of the table used by the

algorithm have been verified to show that [t 0� t, t 0 < t] for all cases and are, thus, sound.

2

Lemma The algorithm for determining that p0 2 P may-assert c0 [by, before] c is com-

plete; i.e. if p0 may-assert c0 [by, before] c, then the algorithm determines this to be true.

Proof by contradiction. If the algorithm did not determine that p0 2 P may-assert c0 [by,

before] c, then it must have found the constraints in the may-assert table to differ from
2It would be easy to add a flag to the summary information indicating whether c 0 summarizes an in- or

postcondition or not. Then we could alter the f alse entries in Table 4.1 to specify the ordering constraints
under which must-assert is true for the cases when p 0 does attempt to assert c0. These constraints would be
p0+ � p� for rows 7, 11, and 19 and p 0+ � p+ for row 18.

164

those in the point algebra table. So, we need to show that that could not be the case if

p0 2 P actually may-assert c0 [by, before] c. For row 1 in the table, the algorithm finds that

the constraint [p0+ > p�, p0+ � p�] is actually proved by order. Since all histories must

have to meet the constraints in order, [t f (e0) > ts(e), t f (e0) � ts(e)] must be true for all

histories. But, since last(c0) and f irst(c), t 0 = t f (e0) and t = ts(e), so [t 0 > t, t 0� t] for all

histories, contradicting the definition of may-assert [by, before]. Thus, the rule in row 1

in the table is complete in determining may-assert [by, before] for this case. For row 7 by

similar argument, [ts(e0) > ts(e), ts(e0) � ts(e)] for all histories. But, ts(e0)< t 0 < t f (e0),

ts(e) < t, and t is less than ts > ts(e) and t f > ts(e) for any execution in E. Thus, again

[t 0 > t, t 0� t] for all histories, and we have a contradiction. In this manner, all rows of the

table used by the algorithm have been verified to contradict the assumption for all cases

and are, thus, complete. 2

Lemma The algorithm for determining that p0 2 P must-assert c0 in c is sound; i.e. if we

determine that p0 must-assert c0 in c, then such is the case.

Proof by contradiction. If it were not the case that p0 2 P must-assert c0 in c, then there

must be a history where for all t 0 where e0 attempts to assert c0 at t 0, there is a t where

e requires c to be met at t and either t 0 � ts(e) or t 0 � t f (e). We need to show that this

is false for any c and c0. For row 1 in the table, the algorithm finds that the constraints

p0+> p� and p0+< p+ can be derived from order. Thus, t f (e0)> ts(e), and t f (e0)< t f (e)

for all histories. But, t 0 = t f (e0), so ts(e) < t 0 < t f (e), contradicting the assumption that

must-assert is false. Therefore, the rule in the table for this case is sound. Similarly, for

row 5 ts(e0)� ts(e), and ts(e0)< t f (e) for all histories. But, since always(c0), p0 attempts

to assert c0 just after ts(e0), so ts(e) < t 0 < t f (e), again contradicting the assumption. In

this manner, all rows of the table used by the algorithm have been verified to show that

t 0 � ts(e) and t 0 � t f (e) are false for all cases and are, thus, sound. 2

Lemma The algorithm for determining that p0 2 P must-assert c0 in c is complete; i.e. if

p0 must-assert c0 in c, then the algorithm determines this to be true.

Proof by contradiction. If the algorithm did not determine that p0 2 P must-assert c0 in

c, then it must have found the constraints in the must-assert table to differ from those in

the point algebra table. So, we need to show that that could not be the case if p0 2 P

actually must-assert c0 in c for any c0 and c. For row 1 the algorithm finds that the

constraints p0+ > p� and p0+ < p+ cannot be proven from order. Thus, t f (e0)� ts(e), or

165

t f (e0)� t f (e) for some histories. But, t 0 = t f (e0), so it is not the case that ts(e)< t 0< t f (e)

for such histories, contradicting the definition of must-assert. For row 5 ts(e0)< ts(e) or

ts(e0) � t f (e) for some histories. But, p0 attempts to assert c0 just after ts(e0), so there

are some histories where t 0 < ts(e) and some where t 0 > t f (e), again contradicting the

assumption. As explained in the must-assert by completeness proof, c 0 for row 7 could be

summarizing only a precondition, so must-assert is false for this case. In this manner, all

rows of the table used by the algorithm have been verified to show that ts(e)< t 0 < t f (e)

is false for some histories for all cases and are, thus, complete. 2

Lemma The algorithm for determining that p0 2 P may-assert c0 in c is sound; i.e. if we

determine that p0 may-assert c0 in c, then such is the case.

Proof by contradiction. If it were not the case that p0 2 P may-assert c0 in c, then there

is no history where e is the top-level execution of p in E(h); e0 is top-level execution of

p0 in E(h); e0 attempts to assert c0 at t 0; and ts(e)< t 0 < t f (e). Thus, in any history where

e0 attempts to assert c0 at t 0, t 0 � ts(e) or t 0 � t f (e). So, we must find a contradiction by

showing that ts(e)< t 0 < t f (e) for any c and c0 in some history using the corresponding

cases in the table used by the algorithm. For row 1 in the table, the algorithm would find

that the constraints p0+ � p� and p0+ � p+] can neither be derived from order. Thus,

t f (e0)> ts(e) and t f (e0)< t f (e) must be true for some histories. But, t 0 = t f (e0) for such

histories, so ts(e) < t 0 < t f (e), contradicting the definition of may-assert. Similarly, for

rows 5-8 t f (e0) > ts(e) and ts(e0) < t f (e) must be true for some histories. But, ts(e0) <

t 0 < t f (e0), so again ts(e) < t 0 < t f (e), and we have a contradiction. In this manner, all

rows of the table used by the algorithm have been verified to show that ts(e)< t 0 < t f (e)

for some histories for all cases and are, thus, sound. 2

Lemma The algorithm for determining that p0 2 P may-assert c0 in c is complete; i.e. if

p0 may-assert c0 in c, then the algorithm determines this to be true.

Proof by contradiction. If the algorithm did not determine that p0 2 P may-assert c0 in

c, then it must have found the constraints in the may-assert table to differ from those in

the point algebra table. So, we need to show that that could not be the case if p0 2 P

actually may-assert c0 in c. For row 1 in the table, the algorithm finds that either the

constraint p0+ � p� or p0+ � p+ is actually proved by order. Thus, t f (e0) � ts(e) or

t f (e0)� t f (e) must be true for all histories. But, since last(c0), t 0 = t f (e0) so in no history

could ts(e)< t 0 < t f (e) be true, contradicting the definition of may-assert. Thus, the rule

166

in row 1 in the table is complete in determining may-assert for this case. For rows 5-8 by

similar argument, t f (e0)� ts(e) or ts(e0)� t f (e) for all histories. But, ts(e0)< t 0 < t f (e0),

so again ts(e) < t 0 < t f (e) is false for all histories, and we have a contradiction. In this

manner, all rows of the table used by the algorithm have been verified to contradict the

assumption for all cases and are, thus, complete. 2

Lemma The algorithm for determining that p0 2 P must-assert c0 when c is sound; i.e. if

we determine that p0 must-assert c0 when c, then such is the case.

Proof by contradiction. If it were not the case that p0 2 P must-assert c0 in c, then there

must be a history where for all t 0 where e0 attempts to assert c0 at t 0, there is a t where e

requires c to be met at t, and t 6= t 0. We need to show that this is false for any c and c0.

For row 1 in the table, the algorithm finds that the constraint p0+ = p+ can be derived

from order. Thus, t f (e0) = t f (e) for all histories. But, t = t f (e), and t 0 = t f (e0), so t = t 0,

contradicting the assumption that must-assert is false. The other rows are sound because

the “if” part of the lemma is false. Therefore, all rows of the table used by the algorithm

have been verified for all cases to be sound. 2

Lemma The algorithm for determining that p0 2 P must-assert c0 when c is complete;

i.e. if p0 must-assert c0 when c, then the algorithm determines this to be true.

Proof by contradiction. If the algorithm did not determine that p0 2 P must-assert c0

when c, then it must have found the constraints in the must-assert table to differ from

those in the point algebra table. So, we need to show that that could not be the case if

p0 2 P actually must-assert c0 in c for any c0 and c. For row 1 the algorithm finds that

the constraint p0+ = p+ cannot be proven from order. Thus, t f (e0) 6= t f (e) for some

histories. But, t = t f (e), and t 0 = t f (e0), so it is not the case that t = t 0 for such histories,

contradicting the definition of must-assert. For row 2 there are no constraints on the

executions. But, since t and t 0 could be at any point within e and e0 respectively, so

certainly there are histories where t 6= t 0, again contradicting the assumption. In this

manner, all rows of the table used by the algorithm have been verified to show that t = t 0

is false for some histories for all cases and are, thus, complete. 2

Lemma The algorithm for determining that p0 2 P may-assert c0 when c is sound; i.e. if

we determine that p0 may-assert c0 when c, then such is the case.

Proof by contradiction. If it were not the case that p0 2 P may-assert c0 when c, then there

167

is no history where e is the top-level execution of p in E(h); e0 is top-level execution of

p0 in E(h); e attempts to assert c at t; e0 attempts to assert c0 at t 0; and t = t 0. Thus, in

any history where e attempts to assert c at t, and e0 attempts to assert c0 at t 0, t 6= t 0. So,

we must find a contradiction by showing that t = t 0 for any c and c0 in some history using

the corresponding cases in the table used by the algorithm. For row 1 in the table, the

algorithm would find that the constraint p0+ 6= p+ cannot be derived from order. Thus,

t f (e0) = t f (e) must be true for some histories. But, t = t f (e), and t 0 = t f (e0), for such

histories, so t = t 0, contradicting the assumption that may-assert is false. Similarly, for

row 2 t f (e0) > ts(e) and t f (e0) < t f (e) must be true for some histories. But, t 0 = t f (e0),

and ts(e) < t < t f (e), so again t = t 0 for some histories, and we have a contradiction. In

this manner, all rows of the table used by the algorithm have been verified to show that

t = t 0 for some histories for all cases and are, thus, sound. 2

Lemma The algorithm for determining that p0 2 P may-assert c0 when c is complete;

i.e. if p0 may-assert c0 when c, then the algorithm determines this to be true.

Proof by contradiction. If the algorithm did not determine that p0 2 P may-assert c0

when c, then it must have found the constraints in the may-assert table to differ from

those in the point algebra table. So, we need to show that that could not be the case if

p0 2 P actually may-assert c0 when c. For row 1 in the table, the algorithm finds that the

constraint p0+ 6= p+ is actually proved by order. Thus, t f (e0) 6= t f (e) must be true for all

histories. But, since t 0 = t f (e0), and t 0 = t f (e0), t 6= t 0 for all histories, contradicting the

definition of may-assert. Thus, the rule in row 1 in the table is complete in determining

may-assert for this case. For row 2 by similar argument, t f (e0)� ts(e) or t f (e0)� t f (e) for

all histories. But, ts(e)< t < t f (e), and t 0 = t f (e0), so again t = t 0 is false for all histories,

and we have a contradiction. In this manner, all rows of the table used by the algorithm

have been verified to contradict the assumption for all cases and are, thus, complete. 2

Lemma The algorithm for determining that p0 2P must-[achieve, clobber] c in presum(p)

is sound; i.e. if p0 must-[achieve, clobber] c 2 presum(p), then the algorithm determines

this to be true.

Proof by contradiction. First, note that as explained in the beginning of this section on

Supporting Mechanisms, we assume that the summary conditions in Psum have their in-

tended properties. If the algorithm determines that it is not the case that p 0 must-[achieve,

clobber] c 2 presum(p), then either p0 does not must-assert c0 by c; c0 is not must; `(c0),

168

[:`(c), `(c)]; or there is a p00 and c00 that has the properties described in the algorithm.

p0 must-assert c0 by c because otherwise there would be no execution of p0 to attempt to

assert c0 before or at the time c is required to be met. c0 has to be must since e0 attempts

to assert c0 in all h 2 H. There must be a c0 such that `(c0), [`(c), :`(c)] because oth-

erwise there would not be an e0 that attempts to assert c0. Now we must show that there

can be no p00 and c00. If there were a p00 and c00 such that p0 may-assert c0 before c00; p00

may-assert c00 by c; and `(c00), [:`(c), `(c)], then there would have to be an execution

to attempt to assert c00 (where `(c00), [:`(c), `(c)]) after e0 and before or at the time e

requires c to be met. There can also be no p00 and c00 such that p0 must-assert c0 before c00;

p00 must-assert c00 by c; and `(c00), [`(c), :`(c)] since that would entail having an e00 in

E(h00) for all h00 2 H where e0 attempts to assert c0 before e00 attempts to assert some c00

(where `(c00), [`(c), :`(c)]), and e00 attempts to assert c00 before or at the time e requires

c to be met. The truth of all of the above statements rests on the proofs of the lemmas that

priorly established the soundness and completeness of must/may assert relations. Thus,

the assumption is false, and the algorithm for must-[achieve, clobber] is sound. 2

169

APPENDIX C

Proof of Summary Information Properties

This proof shows that the algorithm for deriving summary conditions is sound and

complete with respect to the specified propoerties of summary conditions given in Section

4.1. This proof is co-dependent on the proofs in Appendix B that determine interactions

between the conditions of summarized tasks.

Theorem The following properties of summary information are met by using the proce-

dure for deriving summary conditions for plans. The set of external [pre, post] conditions

for a plan is equivalent to the set of all literals in the plan’s summary [pre, post] con-

ditions. The set of conditions that must hold within (in the interval (t s; t f) of) some

execution of a plan in order for it to be successful is equivalent to the set of all literals in

the plan’s summary inconditions. A summary [pre, post] condition is must iff it is a must

external [pre, post] condition of the plan. Otherwise, it is may.1 A summary incondition

c is must iff `(c) must hold within all executions of the plan for it to be successful; oth-

erwise, it is may. A summary [pre, post] condition c is [f irst, last] iff `(c) must hold at

[ts, t f] of some execution of the plan for it to be successful; otherwise, sometimes(c). A

summary incondition c is always iff `(c) must hold throughout (ts; t f) for all executions

of the plan in order for them to be successful; otherwise, sometimes(c).2

1This means that a may condition is one that must hold for some but not all executions of the plans
that have this summary condition. However, a particular plan may have a decomposition such that the may
condition holds for all of its executions. In this case, this fact is lost in the summary information but can be
discovered by looking deeper into the plan hierarchy.

2This requires that always summary inconditions are also must. Summary inconditions could have
been derived so that always conditions could also be may, and mechanisms for determining legal tem-
poral relations among plans would be constructed differently. We have not analyzed the advantages and
disadvantages of these options.

170

Proof by induction over the maximum subplan depth. The base case is a primitive plan p

(subplan depth zero). According to the first step of the procedure, the summary [pre, post]

conditions include a condition c = h`;must; [f irst, last]i for every [pre, post] condition

` of p, which must be an external [pre, post] condition of p. According to the semantics

for successful execution, these conditions have to hold at [ts, t f]. Likewise, the summary

inconditions include a condition c = h`;must;alwaysi for every incondition ` of p, and

the inconditions must hold throughout (ts; t f) for all executions of p. Thus, the base case

is satisfied.

Assume that the theorem is true for all plans of maximum depth � k. Any plan p of

maximum depth k+ 1 must have subplans with maximum depths � k. According to the

first step of the procedure, summary conditions for non-primitive p are added in the same

way as in the base case for primitive plans based on p’s pre, in, and postconditions. The

semantics for a successful execution based on these conditions is the same as for primi-

tive plans, so the properties for these summary conditions are met. Additional summary

conditions are derived from p’s subplans based on whether type(p) is and or or.

Case 1—type(p) = and:

In the step of the procedure for adding summary [pre, post] conditions for an and

plan, summary conditions of the p’s subplans are added if they are not [must-achieved,

must-undone] or must-clobbered by some other subplan or have already been added in

the first step of the procedure. Any newly added condition c is an external [pre, post]

condition because it could not be [achieved, undone] or clobbered by a subplan of p’s

subplan since c is an external [pre, post] condition according to the inductive hypothesis,

and if c were [achieved, undone] or clobbered by another subplan of p, the procedures

for determining [must-achieve, must-undo] and must-clobber would have identified such

a subplan, and c would not have been added. The existence of c is set to must by the

procedure iff it is a must external [pre, post] condition of p because the procedure ensures

that it is an external [pre, post] condition of all executions of p by making sure it is a must

summary [pre, post] condition (thus, a must external [pre, post] condition according to

the inductive hypothesis) in a subplan and ensuring that there is no other subplan of p that

[may-achieve, may-undo] or may-clobber c. Otherwise, the procedure sets existence(c)

to may. The timing of c is set to [f irst, last] by the procedure iff `(c) must hold at [ts(e),

t f (e)] of some execution e of p by identifying a subplan p0 that is potentially [least,

171

greatest] temporally ordered according to order(p) with `(c) as the literal of a [f irst,

last] summary [pre, post] condition c0. By the inductive hypothesis, c0 must hold at

[ts(e0), t f (e0)] of some execution e0 of p0, and if p0 is potentially ordered [least, greatest],

then there must be some execution e of p where [ts(e) = ts(e0), t f (e) = t f (e0)]. Otherwise,

the procedure sets timing to sometimes.

In the step of the procedure that adds summary inconditions for an and plan, a con-

dition c is added iff it is a condition that must hold within (in the interval (t s(e); t f (e))

of) some execution e of p in order for e to be successful. This is because the procedure

adds summary inconditions to p for all conditions of all of p’s subplans except those that

can only hold at ts(e) or t f (e). It does this in three substeps. First, the procedure adds a

summary condition for each summary incondition c0 of one of p’s subplans p0. `(c0) must

hold within some execution e0 of p0 by the inductive hypothesis, and the inconditions

of p0 must hold within e of p according to the semantics of subplan executions. In the

[second, third] substep, an incondition c is added for each summary [pre, post] condition

c0 for each subplan p0 that is not always a [f irst, last] summary [pre, post] condition of

p. Therefore, there is some execution e0 of p0 where `(c0) holds within e0 and, thus, must

also hold within some execution e of p. So, the only conditions of the subplans that are

not inconditions of p are those that hold at ts(e) or t f (e) for all executions e of p. The

existence of c is set to must iff `(c) must hold at some point within all executions e of p

since either `(c) is specified as an incondition of p; c is derived from a must summary

incondition of some subplan p0 of p (in which case it must hold in every execution of p0

by the inductive hypothesis and, thus, in every execution e of p because d(e) contains

an execution of every subplan of p); or c is derived from a must summary [pre, post]

condition c0 of a subplan p0 that is always not [f irst, last]–thus, `(c0) must hold within

all executions of p0 and p. Otherwise, the existence of c is set to may. The procedure sets

timing(c) to always iff `(c) must hold throughout all executions of p since it requires that

`(c) is in an always summary incondition of each subplan; `(c) must hold throughout the

executions of each subplan by the inductive hypothesis; the intervals within the execu-

tions of the subplans together must cover the interval within the execution of p according

to order(p); and there are no intervals in any execution of p where there are no subplans

executing. Otherwise, timing is set to sometimes.

Case 2—type(p) = or:

172

The step of the procedure for adding summary [pre, post] conditions for an or plan

only adds conditions for the external [pre, post] conditions of p because there is a one-to-

one matching of the summary [pre, post] conditions of every subplan p0 to the set external

[pre, post] conditions of p0 by the inductive hypothesis, and there are no other subplans

that could [achieve, undo] or clobber p0’s summary [pre, post] conditions since the exe-

cution of an or plan p is only decomposed into an execution of one of p’s subplans. The

procedure sets the existence of the added summary [pre, post] condition c to must iff `(c)

is a must external [pre, post] condition of p because `(c) must hold for all executions of

every subplan for them to be successful by the inductive hypothesis, and an execution of

p is only decomposed into an execution of one of p’s subplans. Otherwise, the existence

of c is set to may. The timing of c is set to [f irst, last] iff `(c) must hold at [ts, t f] of

some execution of the plan for it to be successful because there must be an execution e0

of a subplan p0 and a [f irst, last] summary [pre, post] condition c0 where `(c0), `(c)

and `(c) must hold at [ts(e0), t f (e0)] and, thus, at [ts(e), t f (e)] of some execution e of p by

the inductive hypothesis and the semantics of or subplan executions. Otherwise, timing

is set to sometimes.

The step of the procedure for adding summary inconditions for an or plan only adds

conditions that must hold within some execution e of p for it to be successful since all

of the conditions that must hold within the executions of the subplans are captured by

their summary inconditions by the inductive hypothesis, and no other conditions of the

subplans can hold within e because they are f irst or last and would only hold at ts(e)

or t f (e) by the inductive hypothesis and semantics of or subplan executions. The pro-

cedure sets the existence of the added summary incondition c to must iff `(c) must hold

within all executions of p because it is a must summary incondition of all subplans and,

therefore, must hold within the all of the subplans’ executions by the inductive hypoth-

esis and, thus, within all executions of p. Otherwise, the existence of c is set to may.

The timing of c is set to always iff `(c) must hold for any execution e of p throughout

the interval (ts(e); t f (e)) since `(c) must hold within all executions e0 of each subplan

throughout (ts(e0); t f (e0)) by the inductive hypothesis and, thus, throughout (ts(e); t f (e))

by the semantics of or subplan executions. Otherwise, timing is set to sometimes. 2

173

APPENDIX D

Soundness and Completeness Proofs for CanAnyWay and

MightSomeWay

These proofs show that the algorithm for determining that a set of summarized tasks

under specified partial temporal constraints have the CanAnyWay property is sound and

complete. The also show the algorithm determining that a set of totally temporally or-

dered tasks have the :MightSomeWay property is sound and complete. However, these

proofs depend on others (given first in this appendix) that prove the circumstances under

which summarized conditions will be met depending on whether summary conditions are

must- or may-clobbered. These proofs are reference in Section 4.3.4 and Chapter 5.

Lemma Any precondition summarized by c2 presum(p) will be met in no histories h2H

if there is a plan p0 2 P that must-clobber c, and all of the :`(c) conditions summarized

by the c0 referred to in the definition of must-clobber are met in all h 2 H.

Proof If p0 must-clobber c, and the conditions summarized by c0 are all met, then p0

asserts :`(c) before c is required to be met by the top-level execution e of p. Thus, any

precondition summarized by c will be threatened by p0. We also know by the definition

of must-clobber that there can be no other plan in P that achieves the precondition since

`(c) cannot be asserted between the assertion of :`(c) and the time that c is required.

Thus, any precondition summarized by c must be clobbered. 2

Lemma Assuming that the initial state of any h 2 H is such that it does not conflict

with any preconditions external to the plans represented by Psum, if any precondition

summarized by c 2 presum(p) will be met in no histories h 2 H, then there is a plan

p0 2 P that must-clobber c.

174

Proof Based on the assumption about the initial state, if all preconditions summarized by

c 2 presum(p) are not met, then they must be clobbered. The definition of must-clobber

requires one or more plans to be responsible for asserting :`(c) (summarized by c0) in

all histories. It could not be the case that some set of plans assert :`(c) in only some

histories and only together clobber c in all histories. If that were true, then the c0 in each

plan would not be a must condition, and there would be some set of plans P represented

by Psum and some history in H where no plan asserts :`(c). Thus, there is a plan p0

represented in Psum that attempts to assert c0 in all h 2 H. The definition of must-clobber

also requires that no plan attempt to assert some c00 where `(c00), `(c) between when c0

is asserted and when c is required in any history. It could not be the case that there are

multiple plans (p01 and p02) asserting :`(c) in all histories; some plan p00 asserts c00 after

p01 and before p02 asserts c0 in some histories; and in other histories p00 asserts c00 after p02

and before p01 asserts c0. If this were true, then the plans would not have specific ordering

constraints given in the order over P. This would mean that in some h 2 H, p 00 asserts

c00 after both p01 and p02 assert c0, and c is achieved and not clobbered. This contradicts

our assumption that preconditions summarized by c are never met. Thus, there can be no

such p00, and there must be a p0 that must-clobber c. 2

Lemma Assuming that the initial state of any history h 2 H is such that it does not

conflict with any preconditions external to the plans represented by Psum, any precondition

summarized by c 2 presum(p) will be met in all h 2H if there is no plan p0 2 P that may-

clobber c, or there is such a p0, and the :`(c) conditions summarized by c0 referred to in

the definition of may-clobber are clobbered in all h 2 H.

Proof If there is no plan p0 that may-clobber c, or the :`(c) condition summarized by

c0 that the top-level execution of p0 attempts to assert is clobbered, then either there is

no plan p0 that asserts :`(c), or there is such a p0 and also a p00 that achieves `(c) by

asserting it after p0 asserts :`(c) and before c is required. Thus, there can be no plan that

clobbers a precondition summarized by c, and all such preconditions will be met in all

h 2 H. 2

Lemma If any precondition summarized by c 2 presum(p) is met in all h 2 H, then there

is no plan p0 2 P that may-clobber c, or there is such a p0, and the :`(c) conditions

summarized by c0 referred to in the definition of may-clobber are clobbered in all h 2 H.

Proof If all preconditions summarized by c are met, then there could be no plan that

175

clobbered any one of them. If it the case that a plan p0 attempted to assert :`(c), but the

assertion failed in every history, then the :`(c) condition was clobbered. Thus, if there is

any history h where a precondition summarized by c is not met, there must be a p 0 whose

top-level execution in E(h) attempts to assert a c0 where `(c0), :`(c), and there is a

:`(c) condition summarized by c0 that is not clobbered. Therefore, if all preconditions

summarized by c are met in all h 2H, there can be no p0 that may-clobber c, or the :`(c)

conditions summarized by c0 are clobbered in all h 2 H. 2

Lemma An incondition summarized by c2 insum(p) will not be met in all histories h2H

if there is a plan p0 2 P that must-clobber c, and all of the :`(c) conditions summarized

by the c0 referred to in the definition of must-clobber are met in all h 2 H.

Proof If p0 must-clobber c, and the conditions summarized by c0 are all met, then p0

asserts :`(c) within e when c is required to be met since always(c). Thus, in any h 2 H

there must be some incondition summarized by c that is clobbered since c can only be

always when the open interval of e is covered by plan executions with `(c) inconditions

that are summarized by c. 2

Lemma If an incondition summarized by c 2 insum(p) is not met in all histories h 2 H,

then there is a plan p0 2 P that must-clobber c.

Proof If some incondition summarized by c is not met, then it must be clobbered. It

could not be clobbered internal to p in all histories because, otherwise, there would be

no summary condition added. c cannot be sometimes because there must be some history

for some set of plans having the summary information Psum where :`(c) is not asserted

within the interval where `(c) is required. By similar argument to that presented in the

previous lemma for must-clobbering summary preconditions, there must be a plan p 0 with

execution e0 that asserts :`(c) within e in all h2H. Thus, there must be a c0 summarizing

:`(c) that e0 attempts to assert within e in all h 2 H, so p0 must-clobber c. 2

Lemma Any incondition summarized by c 2 insum(p) will be met in all h 2 H if there is

no plan p0 2 P that may-clobber c.

Proof If there is no plan p0 that may-clobber c, then there is no plan p0 that asserts :`(c)

within e. Thus, there can be no plan that clobbers a incondition summarized by c, and all

such inconditions will be met in all h 2 H. 2

Lemma If any incondition summarized by c 2 insum(p) is met in all h 2 H, then either

176

there is no plan p0 2 P that may-clobber c, or there is such a p0, and the :`(c) conditions

summarized by c0 referred to in the definition of may-clobber are clobbered in all h 2 H.

Proof If all inconditions summarized by c are met, then there could be no plan that

clobbered any one of them. If it the case that a plan p0 attempted to assert :`(c), then the

assertion failed in every history because the :`(c) condition was clobbered. Therefore,

if all preconditions summarized by c are met in all h 2 H, there can be no p0 that may-

clobber c, or the :`(c) conditions summarized by c0 are clobbered in all h 2 H. 2

Lemma A postcondition summarized by c2 postsum(p) will not be met in all histories h2

H if there is a plan p0 2 P that must-clobber c, and all of the :`(c) conditions summarized

by the c0 referred to in the definition of must-clobber are met in all h 2 H.

Proof If p0 must-clobber c, and the conditions summarized by c0 are all met, then p0

asserts :`(c) when e attempts to assert c. Thus, in any h 2 H there must be some post-

condition summarized by c that is clobbered and, thus, not met since :`(c) is met at the

same time the postcondition is required. 2

Lemma If a postcondition summarized by c2 postsum(p) is not met in all histories h2H,

then there is a plan p0 2 P that must-clobber c.

Proof If some postcondition summarized by c is not met, then it must be clobbered. It

could not be clobbered internal to p in all histories because, otherwise, there would be

no summary condition added. By similar argument to that presented in the lemma for

must-clobbering summary preconditions, there must be a plan p0 with execution e0 that

asserts :`(c) at the same time e attempts to assert c in all h 2H. Thus, there must be a c0

summarizing :`(c) that e0 attempts to assert at the same time e attempts to assert c in all

h 2 H, so p0 must-clobber c. 2

Lemma Any postcondition summarized by c 2 postsum(p) will be met in all h 2 H if

there is no plan p0 2 P that may-clobber c.

Proof If there is no plan p0 that may-clobber c, then there is no plan p0 that asserts :`(c)

when e attempts to assert c. Thus, there can be no plan that clobbers a postcondition

summarized by c, and all such postconditions will be met in all h 2 H. 2

Lemma If any postcondition summarized by c 2 postsum(p) is met in all h 2 H, then

either there is no plan p0 2 P that may-clobber c, or there is such a p0, and the :`(c)

conditions summarized by c0 referred to in the definition of may-clobber are clobbered in

177

all h 2 H.

Proof If all postconditions summarized by c are met, then either there could be no plan

that clobbered any one of them, or there is a plan p0 that attempted to assert :`(c), and the

assertion failed in every history because the :`(c) condition was clobbered. Therefore,

if all postconditions summarized by c are met in all h 2 H, there can be no p0 that may-

clobber c, or the :`(c) conditions summarized by c0 are clobbered in all h 2 H. 2

Theorem The algorithm for CAW (order, Psum) is sound and complete.

Proof If the algorithm returns true, then there is no p0 that may-clobber some c. Accord-

ing to the lemmas above, all preconditions summarized by the summary preconditions,

inconditions summarized by summary inconditions, and postconditions summarized by

summary postconditions must be met in all h 2 H for all sets of plans P whose summary

information is Psum. This means that all of the external preconditions, external postcon-

ditions, and inconditions of all executions and subexecutions are met. Since we assume

that the plans in P cannot clobber their own conditions, we also know that the internal

(non-external) pre- and postconditions are also met. Thus, all of the conditions in all of

the executions and subexecutions in E(h) are met, so all executions succeed.

If all executions succeed for all h 2 H for all sets of plans P whose summary infor-

mation is Psum, then no conditions were clobbered. According to the lemmas above, there

can be no p0 that may-clobber some summary condition c unless the execution of p 0 fails

when it attempts to assert a c0 that summarizes conditions that would otherwise clobber

`(c). But, such a p0 cannot exist because then there would be some plan that clobbered a

condition of p0, and we assume that no conditions were clobbered. 2

Theorem The algorithm for :MSW (order, Psum) is sound.

Proof If the algorithm returns true, then there is a p0 that must-clobber some summary

condition c of a plan p 2 P whose summary information is psum 2 Psum. According to the

lemmas above, any conditions summarized by c will be met in no histories h 2 H. Thus,

all executions of p will fail in all h 2 H. 2

Theorem The algorithm for :MSW (order, Psum) is complete when order specifies a total

order on Psum.1

1A total ordering is one where each endpoint of a plan’s execution interval is constrained to one temporal
relation (precedes, follows, or same) with every other endpoint of every other plan’s execution.

178

Proof If some condition ` of the execution of p is clobbered in some histories but not

in others, then it is because the condition is not required to be met in all histories, or a

clobbering condition is not asserted in all histories. If the plans in P are totally ordered,

there is no temporal uncertainty, so the summary condition c of p summarizing ` is may,

or any c0 of p0 summarizing a condition clobbering ` is may. Thus, p0 may-clobber c of

p, but must-clobber is false.

Now, if in each h 2H some execution of some plan in P fails, but no particular plan’s

execution fails in all histories, then each failing plan has a condition that is clobbered in

some histories and not in others, as just described. So, for each of these failing plans, the

summary condition c summarizing the failed condition is may, or the clobbering plans

have may summary conditions c0 that are involved in the clobbering. But given only the

summary information for these plans, there are other sets of plans with identical summary

information where there is some history h where none of the conditions summarized by

c are clobbered since either c or c0 is may, meaning that they may not be required or

asserted in h. Thus, there is no set of summarized plans Psum such that in each h 2 H

some execution of some plan in P fails, but no particular plan’s execution fails in all

histories for all sets of plans with summary information Psum.

Therefore, if in each h 2 H some execution of some plan in P fails, there does exist a

particular plan 2 P whose execution fails for all h 2 H. This means that there must be a

p0 that must-clobber some c. Since :MSW returns true if the algorithm for must-clobber

returns true for any such p0 and c, and the algorithms for must-clobber are complete, the

algorithm for :MSW is complete. 2

179

APPENDIX E

THREAT RESOLUTION is NP-complete

The following proof is provided to clarify complexity results in Section 6.3.2.

Theorem THREAT RESOLUTION is NP-complete. This is the problem of determining

whether there is a set of ordering constraints that can be added to a partially ordered

STRIPS plan such that no operator’s preconditions are threatened by another operator’s

effects.

Proof If there is a set of ordering constraints that will resolve all threats, then there is at

least one corresponding total order where there are no threats. Thus, the problem is in

NP since orderings of operators can be chosen non-deterministically, and threats can be

identified in polynomial time.

For a directed graph G= (V;E)with nodes v1;v2; : : : ;vn 2V and edges e1;e2; : : : ;em 2

E (a set of ordered pairs of nodes), HAMILTONIAN PATH is the problem that asks if

there is a path that visits each node exactly once. Build an instance of THREAT RES-

OLUTION (a partial order plan) by creating an operator for each node vi. The only

precondition of the operator is A(i), representing the accessibility of the node. There is

a postcondition A(j) for each edge ek = (vi;v j), and a postcondition A(l) for all other

nodes for which there is no edge from vi. All operators are unordered, and the initial state

and goal state is empty.

If there is a Hamiltonian path for the graph, then the operators for the nodes can be

ordered the same as the nodes in the path because the accessibility preconditions of each

operator will be satisfied by the previous operator. If there is no Hamiltonian path for

the graph, then there is no consistent ordering of the operators. We know this because

180

there is a one-to-one mapping from an ordering of nodes to an ordering of operators. If the

ordering of the nodes is such that there is no edge from one to a succeeding node, then the

accessibility precondition of the corresponding operator will be clobbered. In addition,

for any walk through the graph, there eventually will be an unvisited node for which there

is no edge from the last node visited. In this case, the unvisited node will be clobbered

because its accessibility precondition will not be met. Thus, THREAT RESOLUTION is

NP-hard, and since it was shown to be in NP, it is NP-complete. 2

In order to show that resolving threats among CHiPs is also NP-complete, one only

needs to add inconditions to each operator that prevent concurrent action. This is done

by adding A(i) for vi and A(j) for every other v j 2 V to the inconditions of the operator

corresponding to vi for each vi 2V . This ensures that the only temporal relations that can

hold between any pair of operators are be f ore, a f ter, meets, or imeets, and the one-to-

one mapping from paths in the graph to sequences of operators is preserved.

181

BIBLIOGRAPHY

182

BIBLIOGRAPHY

[Allen and Koomen, 1983] J. F. Allen and J. A. Koomen. Planning using a temporal
world model. In Proceedings of the International Joint Conference on Artificial Intel-
ligence, pages 741–747, 1983.

[Allen et al., 1991] J. Allen, H. Kautz, R. Pelavin, and J. Tenenberg. Reasoning about
plans. Morgan Kaufmann, 1991.

[Allen, 1983] J. F. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of the ACM, 26(11):832–843, November 1983.

[Bylander, 1994] T. Bylander. The computational complexity of STRIPS planning. Ar-
tificial Intelligence, 69:165–204, 1994.

[Chien et al., 2000a] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G. Rabideau.
Using iterative repair to improve the responsiveness of planning and scheduling. In
Proceedings of the International Conference on AI Planning and Scheduling, pages
300–307, 2000.

[Chien et al., 2000b] S. Chien, G. Rabideu, R. Knight, R. Sherwood, B Engelhardt,
D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett, G. Stebbins, and D. Tran. Au-
tomating space mission operations using automated planning and scheduling. In Proc.
SpaceOps, 2000.

[Corkill, 1979] D. Corkill. Hierarchical planning in a distributed environment. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, pages 168–
175, 1979.

[Currie and Tate, 1991] K. Currie and A. Tate. O-Plan: The open planning architecture.
Artificial Intelligence, 52:49–86, 1991.

[Decker, 1995] K. Decker. Environment centered analysis and design of coordination
mechanisms. PhD thesis, University of Massachusetts, 1995.

[Durfee and Montgomery, 1991] E. H. Durfee and T. A. Montgomery. Coordination as
distributed search in a hierarchical behavior space. IEEE Transactions of Systems,
Man and Cybernetics, 21(6):1363–1378, November 1991.

183

[Ephrati and Rosenschein, 1994] E. Ephrati and J. Rosenschein. Divide and conquer in
multi-agent planning. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 375–380, July 1994.

[Erol et al., 1994a] K. Erol, J. Hendler, and D. Nau. Semantics for hierarchical task-
network planning. Technical Report CS-TR-3239, University of Maryland, 1994.

[Erol et al., 1994b] K. Erol, D. Nau, and J. Hendler. UMCP: A sound and complete
planning procedure for hierarchical task-network planning. In Proceedings of the In-
ternational Conference on AI Planning and Scheduling, June 1994.

[Fagin et al., 1995] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about
knowledge. MIT Press, 1995.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2:189–208,
1971.

[Firby, 1989] J. Firby. Adaptive Execution in Complex Dynamic Domains. PhD thesis,
Yale University, 1989.

[Gat, 1998] E. Gat. On three-layer architectures. Artificial Intelligence and Mobile
Robots, AAAI Press, 1998.

[Georgeff and Lansky, 1986] M. P. Georgeff and A. Lansky. Procedural knowledge. Pro-
ceedings of IEEE, 74(10):1383–1398, October 1986.

[Georgeff, 1983] M. P. Georgeff. Communication and interaction in multiagent plan-
ning. In Proceedings of the National Conference on Artificial Intelligence, pages 125–
129, 1983.

[Georgeff, 1984] M. P. Georgeff. A theory of action for multiagent planning. In Pro-
ceedings of the National Conference on Artificial Intelligence, pages 121–125, 1984.

[Grid, 1999] DARPA control of agent based systems program.
http://coabs.globalinfotek.com, 1999.

[Grosz and Kraus, 1996] B. Grosz and S. Kraus. Collaborative plans for complex group
action. Artificial Intelligence, 86:269–358, 1996.

[Hammond, 1986] K. Hammond. CHEF: A model of case-based planning. In Proceed-
ings of the National Conference on Artificial Intelligence, pages 267–271, 1986.

[Horty and Pollack, 2001] J. Horty and M. Pollack. Evaluating new options in the con-
text of existing plans. Artificial Intelligence, 127(2):199–220, 2001.

[Huber, 1999] M. Huber. JAM: A BDI-theoretic mobile agent architecture. In Proceed-
ings Internation Conference on Autonomous Agents, pages 236–243, 1999.

184

[Knight et al., 2000] R. Knight, G. Rabideau, and S. Chien. Computing valid intervals
for collections of activities with shared states and resources. In Proceedings of the
International Conference on AI Planning and Scheduling, pages 600–610, 2000.

[Knight et al., 2001] R. Knight, G. Rabideau, and S. Chien. Extending the representa-
tional power of model-based systems using generalized timelines. In Proceedings of
the Sixth International Symposium on Artificial Intelligence, Robotics, and Automa-
tion in Space, 2001.

[Knoblock, 1991] C. Knoblock. Search reduction in hierarchical problem solving. In
Proceedings of the National Conference on Artificial Intelligence, pages 686–691,
1991.

[Korf, 1987] R. Korf. Planning as search: A quantitative approach. Artificial Intelli-
gence, 33:65–88, 1987.

[Laborie and Ghallab, 1995] P. Laborie and M. Ghallab. Planning with sharable resource
constraints. In Proceedings of the International Joint Conference on Artificial Intelli-
gence, pages 1643–1649, 1995.

[Lansky, 1990] A. Lansky. Localized search for controlling automated reasoning. In Pro-
ceedings of the DARPA Workshop on Innovative Approaches to Planning, Scheduling
and Control, pages 115–125, November 1990.

[Lee et al., 1994] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UMPRS: An
implementation of the procedural reasoning system for multirobot applications. In
Proceedings of the AIAA/NASA Conference on Intelligent Robotics in Field, Factory,
Service, and Space, pages 842–849, March 1994.

[McAllester and Rosenblitt, 1991] D. McAllester and D. Rosenblitt. Systematic nonlin-
ear planning. In Proceedings of the National Conference on Artificial Intelligence,
pages 634–639, 1991.

[Meiri, 1992] I. Meiri. Temporal Reasoning: A Constraint-Based Approach. PhD thesis,
University of California, Los Angeles, 1992.

[Muscettola, 1994] N. Muscettola. HSTS: Integrating planning scheduling. Intelligent
Scheduling, pages 169–212, 1994.

[Papadimitriou and Steiglitz, 1998] C. Papadimitriou and K. Steiglitz. Combinatorial
Optimization - Algorithms and Complexity. Dover Publications, New York, 1998.

[Pappachan, 2001] P. Pappachan. Coordinating Plan Execution in Dynamic Multiagent
Environments. PhD thesis, University of Michigan, Ann Arbor, 2001.

[Pollack and Horty, 1999] M. Pollack and J. Horty. There’s more to life than mak-
ing plans: Plan management in dynamic, multi-agent environments. AI Magazine,
20(4):71–84, 1999.

185

[Pynadath et al., 1999] D. Pynadath, M. Tambe, N. Cauvat, and L. Cavedon. Toward
team-oriented programming. In Proceedings of the Workshop on Architectures, Theo-
ries, and Languages, 1999.

[Rabideu et al., 1999] G. Rabideu, R. Knight, S. Chien, A. Fukunaga, and A. Govin-
djee. Iterative repair planning for spacecraft operations in the ASPEN system. In
Proceedings of the International Symposium on Artificial Intelligence, Robotics, and
Automation in Space, 1999.

[Rao and Georgeff, 1995] A. S. Rao and M. P. Georgeff. BDI-agents: From theory to
practice. In Proceedings of the First International Conference on Multiagent Systems,
San Francisco, 1995.

[Rathmell, 2001] R. Rathmell. A coalition force scenario: Binni - gateway to the golden
bowl of Africa. http://www.aiai.ed.ac.uk/project/coalition/binni/, 2001.

[Russell and Norvig, 1995] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, New Jersey, 1995.

[Sacerdoti, 1974] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5(2):115–135, 1974.

[Sacerdoti, 1977] E. D. Sacerdoti. A Structure for Plans and Behavior. Elsevier-North
Holland, 1977.

[Shoham and Tennenholtz, 1992] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial societies. In Proceedings of the National Conference
on Artificial Intelligence, pages 276–281, 1992.

[Tambe, 1997] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research, 7:83–124, 1997.

[Tate, 1977] A. Tate. Generating project networks. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 888–893, 1977.

[Tsamardinos et al., 2000] I. Tsamardinos, M. Pollack, and J. Horty. Merging plans
with quantitative temporal constraints, temporally extended actions, and conditional
branches. In Proceedings of the International Conference on AI Planning and Schedul-
ing, pages 264–272, 2000.

[Tsuneto et al., 1997] R. Tsuneto, J. Hendler, and D. Nau. Space-size minimization in
refinement planning. In Proceedings of the Fourth European Conference on Planning,
1997.

[Tsuneto et al., 1998] R. Tsuneto, J. Hendler, and D. Nau. Analyzing external conditions
to improve the efficiency of HTN planning. In Proceedings of the National Conference
on Artificial Intelligence, pages 913–920, 1998.

186

[Vilain and Kautz, 1986] Vilain and H. Kautz. Constraint propagation algorithms for
temporal reasoning. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 377–382, 1986.

[Weld, 1994] D. Weld. An introduction to least commitment planning. AI Magazine,
15(4):27–61, 1994.

[Weld, 1999] D. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123,
1999.

[Yang and Chan, 1994] Q. Yang and A. Chan. Delaying variable binding commitments
in planning. In Proceedings of the International Conference on AI Planning and
Scheduling, pages 182–187, 1994.

[Yang, 1990] Q. Yang. Formalizing planning knowledge for hierarchical planning. Com-
putational Intelligence, 6(1):12–24, February 1990.

[Yang, 1997] Q. Yang, editor. Intelligent Planning: A Decomposition and Abstraction
Based Approach. Springer, 1997.

[Yokoo and Hirayama, 1998] M. Yokoo and K. Hirayama. The distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Transactions on Knowledge
and Data Engineering, 10(5):673–685, 1998.

[Young et al., 1994] M. Young, M. Pollack, and J. Moore. Decomposition and causal-
ity in partial-order planning. In Proceedings of the International Conference on AI
Planning and Scheduling, pages 188–193, 1994.

[Zilberstein and Russell, 1992] S. Zilberstein and S. Russell. Efficient resource-bounded
reasoning in AT-RALPH. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 260–266, 1992.

187

