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Abstract—Modern board, card, and video games are challeng-
ing domains for AI research due to their complex game mechanics
and large state and action spaces. For instance, in Hearthstone
— a popular collectible card (CC) (video) game developed by
Blizzard Entertainment — two players first construct their own
card decks from over 1,000 different cards and then draw and
play cards to cast spells, select weapons, and combat minions
and the opponent’s hero. Players’ turns are often comprised of
multiple actions, including drawing new cards, which leads to
enormous branching factors that pose a problem for state-of-
the-art heuristic search methods.

In this paper we first present two ideas to tackle this problem,
namely by reducing chance node branching factors by bucketing
events with similar outcomes, and using high-level policy net-
works for guiding Monte Carlo Tree Search rollouts. We then
apply these ideas to the game of Hearthstone and show significant
improvements over a state-of-the-art AI system for this game.

I. INTRODUCTION

Modern computer games such as collectible card (CC)
and real-time strategy (RTS) games, such as Hearthstone and
StarCraft by Blizzard Entertainment, are challenging domains
for AI research due to the fact that state and action spaces in
such games can be quite large, game states are often only
partially observable, and there is not much time available
for computing good moves. Methods for reducing search
complexity include hierarchical state and action abstractions
([1], [2]) and move grouping for Monte Carlo Tree Search
(MCTS) [3].

In this paper we concentrate on improving AI systems for
Hearthstone, a popular turn-based two-player CC game that
features large action and state spaces. Turns usually consist
of a series of actions which can lead to over 10, 000 different
game scenarios when eventually the opponent gets his turn.
Expert-level human players can regularly prune most non-
optimal actions very quickly, and thus focus on only a few
good action candidates, allowing them to plan ahead effec-
tively. Inspired by this methodology we set out to study how
Monte Carlo Tree Search (MCTS) can benefit from reducing
branching factors, especially in chance nodes.

The recent successes of using deep neural networks (DNNs)
to tackle complex decision problems such as Go and Atari
2600 video games ([4], [5], [6]) also inspired us to study how
such networks can be trained to improve rollout policies in
CC games.

In the remainder of the paper, we first discuss related work,
motivate our main ideas, and describe them in detail. We then

describe our application domain Hearthstone and state-of-the-
art AI systems, which is followed by a detailed description
of how we improved the performance of the Hearthstone
AI system Silverfish [7] by using MCTS with chance move
bucketing and pre-sampling, and learned high-level rollout
policies. We conclude the paper by discussing future research.

II. BACKGROUND

In recent years there have been remarkable AI research
achievements in challenging decision domains like Go, Poker,
and classic video games. AlphaGo, for instance, won against
one of the strongest human professionals with the help of
deep networks, reinforcement learning, and parallel MCTS [4],
and recently an AI system based on deep network learning
and shallow counter factual regret computation running on
a laptop computer won against professional no-limit Texas
Hold’em players [8]. Also, deep Q-learning based programs
have started outperforming human players in classic Atari
2600 video games [6]. However, modern computer strategy
games, like CC or RTS games, not only have larger state and
action spaces, but their complex rules and frequent chance
events make the games harder to model than traditional games.
Thus, it is challenging to build strong AI systems in this
domain, and progress has been slow.

In modern computer games, especially strategy games, play-
ers often have to consider multiple objectives during gameplay.
RTS game players, for instance, need to manage resources,
technological advancement, armies, or even individual combat
units in real-time. CC games feature similar challenges, albeit
at a much slower pace. As solving each sub-problem alone
can be computationally hard already, having to deal with mul-
tiple objectives in strategic computer games compounds the
complexity. It is therefore infeasible to apply heuristic search
algorithms to the original search spaces, and abstractions have
to be found to cope with the enormous decision complexities.
In the past few years, several ways of reducing search com-
plexity have been studied. For instance, Hierarchical Portfolio
Search [1] considers a set of scripted solutions for each sub-
problem to generate promising low-level actions for high-
level search algorithms. Likewise, Puppet Search [2], instead
of searching in the original game’s state space, traverses an
abstract game tree defined by choice points given by non-
deterministic scripts. Lastly, simple scripts for generating low-
level moves for MCTS are used for reducing the branching
factor in the CC game “Magic: The Gathering [9].”



In addition to large branching factors in decision nodes,
many modern games feature chance events such as drawing
cards, receiving random rewards for defeating a boss, or ran-
domizing weapon effects. If the number of chance outcomes
is high, the presence of such nodes can pose problems to
heuristic search algorithms such as ExpectiMax search or the
in-tree phase of MCTS (see below), even for methods that
group nodes and aggregate successor statistics [3] or integrat-
ing sparse sampling into MCTS [10]. In the work presented
here, we concentrate on improving the effectiveness of MCTS
applied to games with large chance node branching factors and
hierarchical actions by first reducing search complexity in the
in-tree phase of MCTS, in which repeatedly the best child
to explore will be selected until a leaf node is reached, and
then improving move selection in the rollout phase, in which
MCTS will sample action sequences according to a rollout
policy until a terminal node is reached or a depth threshold is
exceeded.

III. CHANCE EVENT BUCKETING AND LEARNING
HIGH-LEVEL ROLLOUT POLICIES

In this section, we present the general problems of applying
MCTS into a 2-player strategy computer games, in which the
active player can execute multiple actions in a given frame of
time, and approaches to solve them.

A. 2-Player Strategy Computer Games

In a strategy computer games, the player can execute
multiple actions of different kinds in a given frame of time.
For instance, Heroes of Might and Magic is one of the most
famous strategy games. CC games are sub-genre of strategy
computer games where one can play cards, control minions,
in a turn that has a time restriction. RTS is a special case of
this kind of game since the frame of time is not discrete. Here
we mostly discuss the 2-player (1 on 1) case.

In this kind of games, a turn is defined as a given frame
of time, during which the active player can execute a various
number of actions of different types consecutively. After the
turn ends, the opponent player will similarly do a sequence of
actions in his turn. Fig. 1 shows a move tree of a CC game.
Player P1’s turn starts after drawing a card from his deck. P1

can then play multiple actions until running out of actions or
choosing to end the turn. For instance, [a1, a2, end turn] is one
possible move sequence P1 may choose. Chance events might
also happen during turns (e.g., modeling dice rolls or drawing
more cards).

B. Chance Event Bucketing and Pre-Sampling

To mitigate the problem of high branching factors in chance
nodes we propose to group similar chance events into buckets
and reduce the number of chance events by pre-sampling
subsets in each bucket when constructing search trees. Fig. 2
describes the process by applying above steps to a chance node
C with S = 12 successors. To reduce the size of the search
tree we form M = 3 buckets containing S/M = 4 original
chance events each. We then pre-sample N = 2 events from
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Fig. 1. A sub-tree representing a typical turn in a CC game. Player P1 is
to move after a chance event (e.g., drawing a card). Squares represent P1’s
decision nodes, circles represent chance nodes, and edges represent player
moves or chance events. After P1 ends the turn, P2’s turn is initiated by a
chance node (C2, C3, C5, C6).

C′

B1 B2 B3

Fig. 2. Bucketing and pre-sampling applied to a chance node C with 12
successors. There are M = 3 buckets abstracting 12/M = 4 original chance
events each. Among those N = 2 samples are chosen for constructing the
actual search tree (red nodes).

each bucket, creating (S/M) ·N = 6 successors in total which
represents a 50% node reduction.

In practical cases, the probability of each bucket is different
and search agent should go to each bucket according to its
probability. For the extreme case of a very skewed distribution,
we can allocate more of sample budget in the larger bucket and
less budget for the smaller ones. Also, the choice of M and N
should be chosen with respect to the search space and bucket
abstraction. For simple state abstraction, M can be small. If
the nodes in the buckets are very different, N can be large.
Also, there is a trade-off of more accurate sample and less
search efficiency when adjusting the value of M and N .

C. Learning High-Level Rollout Policies

In many games, actions can be categorized by levels of
dependencies. For example, choosing a card to play in CC
games can be considered a high-level action, while selecting
a target for that card can be regarded a dependent low-level
action. Fig. 3 shows a typical move sequence in which high-
level “play card” actions are followed by low-level “choose
target” actions.

In a turn that can consist of multiple actions, the most
important part is choosing high-level actions because they
reflect the high-level strategy. For instance, if a player decides
to attack, he will play more attacking high-level actions, and
once the high-level actions are fixed, we only need to search
the low-level actions that follow the high-level decisions. Fast
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pc(A) ct(A) pc(B) ct(B) et()

Fig. 3. A typical CC game move sequence: pc(X): play card X , ct(X):
choose target for card X , et(): end turn.

Fig. 4. Hearthstone GUI
Player 1: (1 hand) (2 mana) (3 hero) (4 minions) (5 deck)

Player 2: (6 hand) (7 mana) (8 hero) (9 minions) (10 deck)

heuristics or action scripts may be able to effectively handle
this part. If this is indeed the case, we can construct fast
and informed stochastic MCTS rollout policies by training
a high-level policy π(a, s) that assigns probabilities to high-
level actions a in states s, and — during the rollout phase —
sample from π and invoke low-level action scripts to generate
dependent actions. This idea is exciting, because the quality
of rollout policies is crucial to the performance of MCTS, but
up until now, only simple policies have been trained due to
speed reasons. In games with complex action sets hierarchical
turn decompositions allows us to explore speed vs. quality
tradeoffs when constructing rollout policies, as we will see
later in Section 6.

IV. HEARTHSTONE

In this section, we first describe the game of Hearthstone,
which is one of the most popular CC video games, to make the
reader familiar with the game for which we will later present
experimental results. In the second part we introduce previous
work on Simulators and AI Systems for Hearthstone.

A. Game Description

Hearthstone is a 2-player turn-based zero-sum strategy
game with imperfect information. It starts with a coin flip
to determine which player will go first. Players then draw
their starting cards from their constructed 30 card decks. The
player who goes first draws three cards and the player who
goes second draws four cards and gains a special card called
The Coin. Before the game starts, both players can swap out
any of their starting cards for other cards from the top of their
deck. The cards they swap out are then shuffled back into the
deck. The game GUI is shown in Fig. 4. The key concepts in
Hearthstone are:

• Mana crystals are needed to play cards from the hand.
On the first turn, each player has one mana crystal. At the
beginning of each turn, the limit of each player’s mana crystals
is increased by 1, and all the mana crystals are replenished.
• Game state. The game state has seven components: 2

heroes, the board, 2 hands, and 2 decks. The hero is a special
type of minion that has 30 health points. A hero can only
attack when equipped with a weapon and the number of attacks
depends on the weapon. The game ends if and only if one
hero’s health value is ≤ 0. The board is the battlefield where
minions can attack each other. It is important to evaluate who
is leading on the board because, in most games, the winning
strategy is to take control of the board by trading minions and
then use the minions on the board to defeat the opponent’s
hero. In their hands players hold cards that are hidden from the
opponent. A player can use minion cards to capture the board
or use spells to remove your opponent’s minions and deal
damage to the opponent’s hero. Usually, having more cards
in their hand allows players to handle more complex board
configurations. However, just holding cards without playing
them may lead to losing the control of the board. The deck
is a collection of cards that have not been drawn yet. If a
player plays all cards without ending a game, he will take
fatigue damage every time he needs to draw a card from the
deck. In tournament play, players have no knowledge about the
opponent’s deck. However, in the experiments reported later,
we assume to know.
• Cards represent actions that a player can take by playing

that card and consuming mana crystals. There are three main
types: minion, spell, and weapon cards. Minion cards are
placed in the board area. Minions have health points and attack
values and can attack Heroes and other minions. Most minions
have unique abilities (e.g. Minions with “Taunt” ability can
protect their allies by forcing the enemy to deal with them
first). Spells are played directly from a player’s hand and
have an immediate special effect. Weapons, like spells, are
also played straight from a player’s hand. However, they add
a weapon to a player’s arsenal allowing him to attack directly
with his hero.
• Gameplay. Before a turn starts, the system will draw

a card for the player to move. The active player can then
choose which cards to play subject to available mana crystals.
Some card actions will be followed by selecting a target.
The player can also select a minion to attack an opponent’s
minion. Players usually end turns when their objective has
been accomplished or there is no more action available.

B. Hearthstone Simulators and AI Systems
The subsection describes Hearthstone simulator and AI

Systems including the state-of-the-art AI player.
• Nora is a Hearthstone AI player that learns from random

replays using a random forest classifier to choose the action
one-shot [11]. It is able to defeat the random player in 90%
of the games but it still loses against simple scripted players.
Nora’s game simulator models an early version of Hearthstone.
• Metastone is a feature-rich and well maintained Hearth-

stone simulator [12], that features a GUI and simple AI
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systems, like greedy heuristic players, within the simulator,
but the strength is not very high.
• Silverfish is a strong search-based Hearthstone AI system.

It features a powerful end-of-turn state evaluation that has been
tuned by human expert players, a move pruning system, an op-
ponent modeling module that can generate commonly played
actions, and a 3-turn look-head ExpectiMax search module
that utilizes opponent modeling. Silverfish can beat rank-10
players in Hearthstone: BRM (http://hearthstone.gamepedia.
com/Blackrock Mountain) version, which is considered above
the average human player strength.

For the work reported in this paper, we use Silverfish as
the base-line to compare with. Silverfish has a simulator that
limits the AI to 3-ply searches. To compare with Silverfish,
we added features enabling Silverfish to play full games.
There are some difficulties in implementing Hearthstone AI:
First, there are over 1000 cards with different effects. For
each card, we need to write specific scripts. Second, the
game rules and mechanisms are complicated and all the cards
have special effects, so the simulator needs to have multiple
checkers to handle all the complex situations caused by action
interactions. Even the real game itself is not bug-free. We
spent considerable time on adding functions to the simulator
to make it work in our experiments.

V. IMPROVING SILVERFISH BY USING MCTS WITH
CHANCE EVENT BUCKETING

In this section we describe how we improved Silverfish
by using MCTS and bucketing chance events as described in
Section III. We start by describing our algorithm which is a
variant of determinized MCTS [13], then discuss the bucketing
scheme we use to reduce the large chance node branching
factor in Hearthstone, and lastly present experimental results
that indicate a significant performance gain.

A. Determinized MCTS

Since Hearthstone is an imperfect information game, to
improve Silverfish using search, we chose to use determinized
search algorithms that yield good results in Contract Bridge
and Skat [14] and “Magic: The Gathering” [15]. Specifically,
we use a variant of determinized UCT (DUCT) [13], which is
the UCT variant of Algorithm 1. This algorithm samples some
worlds from the current information set in advance, and then
in every iteration picks one and traverses down the sub-trees
that fit the context of the world. If multiple worlds share one
action, the statistics of that action are aggregated and used for
selecting actions. When done the algorithm returns the most
frequently visited move.

B. Search Time Budget

In Hearthstone a turn consists of a sequence of actions. The
best move sequence is constructed by recursively selecting the
most visited child in the turn. However, if we return such a
move sequence the last actions in this sequence may have
low visit counts. In this case, we need to do an extra search
starting from the node preceding the first rare move. In our
implementation we allocate a fraction T · β of the original

Algorithm 1 Determinized MCTS
1: procedure Determinized MCTS(I, d)
2: worlds← Sample(I, numWorlds)
3: while search budget not exhausted do
4: for n in worlds do
5: e← Traverse(n)
6: l← Expand(e)
7: r ← Rollout(l, d)
8: PropagateUp(l, r)
9: end for

10: end while
11: return BestRootMove()
12: end procedure
13:
14: procedure Traverse(n)
15: while n is not leaf do
16: if n is chance node then
17: n← SampleSuccessor(n)
18: else
19: n← SelectChildDependingOnCompatibleTrees(n)
20: end if
21: end while
22: return n
23: end procedure
24:
25: procedure Rollout(n, d)
26: s← 0
27: while n not terminal and s < d do
28: s← s+ 1
29: n← Apply(n, RolloutPolicy(n))
30: end while
31: return Eval(n)
32: end procedure

search time T for the initial search. If there is a move in the
returned move sequence with visit count < ψ (a constant),
then we allocate (1− β) · T and start a new search from the
preceding node. Otherwise, the remaining time will be used
to complete the original search.

C. Empirical Chance Event Bucketing

The number of possible turn outcomes in Hearthstone
is enormous due to multiple actions played in a row and
card-drawing chance events. To mitigate this combinatorial
explosion we apply chance event bucketing as follows. In
Hearthstone, cards with similar mana cost usually have similar
strengths. We can therefore categorize cards by their mana
cost to form M buckets. The actual bucket choice depends on
the card deck we are using and can be optimized empirically.
In the experiments reported later we used buckets shown in
Table I. For determining the number of pre-samples N we
experimented with various settings depending on the number
of cards to be drawn. The most effective choice was N = 2
when one card is drawn, and N = 1 if more cards are drawn.

D. Utilizing Silverfish Functionality

Our DUCT search module utilizes Silverfish’s complex rule-
based evaluation function tuned by expert-level human players.
This evaluation function only evaluates the end-of-turn game
state by taking the hero, minion, and hand features, the number
of cards drawn, and penalty of actions executed during the
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TABLE I
CARD BUCKETING BY DECK AND MANA COST IN HEARTHSTONE

Deck Buckets
Mech Mage [1] [2] [3] [4,5] [6..10]

Hand Warlock [1,2,3] [4] [5] [6] [7..10]
Face Hunter [1] [2] [3..10]

TABLE II
WIN % (STDERR) VS. SILVERFISH

Mirror Match DUCT-Sf DUCT-Sf+CNB
Mech Mage 66.5 (3.3) 76.0 (3.0)

Hand Warlock 54.0 (3.5) 71.5 (3.1)
Face Hunter 60.0 (3.5) 69.5 (3.2)
Combined 60.1 (2.0) 72.3 (1.8)

turn into account. We keep this function in DUCT because
it is fast (since it’s rule-based) and sufficient to make simple
evaluations. We also use parts of the rule-based pruning code
in Silverfish’s move generator that can prune bad moves, such
as dealing damage to our hero.

E. Experiments

To evaluate the effect of adding DUCT and chance node
bucketing (CNB) to Silverfish we ran two experiments on
an Intel i7-4710HQ CPU 3.5 GHz Windows 8.1 computer
with 16 GB RAM. In the first experiment we let DUCT-Sf
without CNB play 3 mirror matches, in which both players
use the same deck (either Mech Mage, Handlock, or Face
Hunter), against the original Silverfish player, allowing 5
seconds thinking time per move and using DUCT parameters
d = 5, numWorlds = 10, UCT’s optimized exploration
constant c = 0.7, and time management parameters β = 2/3
and ψ = 50. The results shown in Table II indicate that the
performance of DUCT-Sf is superior to Silverfish’s in all 3
matches. In the second experiment we let DUCT-Sf with CNB
play against Silverfish. The results, listed in the last column
of Table II show an even greater playing strength gain.

VI. LEARNING HIGH-LEVEL ROLLOUT POLICIES IN
HEARTHSTONE

In this section we first describe the neural networks that
we trained for making Hearthstone card play decisions in the
MCTS rollout phase, and then present experimental results.

A. Card-Play Policy Networks

A card-play policy network for Hearthstone maps a game
state n to a card probability vector. The probabilities indicate
how probable it is for card ci to be in the turn card set

TCS(n) := {c | c is played in turn starting with n }

Our goal is to train policy networks to mimic turn card sets
computed by good Hearthstone players, which then can be
used as high-level rollout policies in DUCT.

B. State Features

Because Hearthstone’s state description is rather complex
we chose to construct an intermediate feature layer that
encapsulates the most important aspects of states. Our state
feature set consists of three groups:
• Global features are represented as a 1D vector one-

hot encoding mana available until turn end, the opponent’s
available mana on the next turn, the Hero’s health points (HP)
(0-4 for each player, for a total of 25 different values), whether
the active player is the starting player of the game, and whether
the total attack of our minions is greater than the total health
points of the opponent’s minions.
• Hand features: we use a 2D vector Vh[x][y] to one-

hot encode hand features. Each distinct card, which appears
in the decks, is given an index. The jth column (y = j)
encodes features related to the card with index = j (Cj). Let
NCa(Cj) stand for the number of copies of Cj in the active
player (Pa)’s hand, and NCo(Cj) represent the same feature
of the opponent (Po)’s hand. The 1st row (x 0) indicates
whether (NCa(Cj), NCo(Cj)) (0, 2) for each card, the 2nd
row (x 0) encodes (NCa(Cj), NCo(Cj)) (0, 1) and so on.
There are 9 different possible value pairs ((0,2), (0,1), (1,2),
(0,0), (1,1), (2,2), (2,1), (1,0), (2,0)) of (NCa(Cj), NCo(Cj)).
For instance, if both Pa and Po has 1 copy of C5 in hand,
then Vh[4][5] 1. We use next 4 rows to encode the card
playability of both players since there are (0,1), (1,1), (0,0),
(1,0), 4 possible value pairs of (Pa, Po). The last 3 rows encode
whether there is a following card-play if Cj card is played:
{x 13: no following card-play, x 14: a low-mana card-play,
x 15: high-mana card-play}.
• Board features are one-hot represented as a 3D vector

Vb[x][y][z]. Each minion on the board has a 2D index (y, z)
to abstract its status, where z represents the index of the card
that summons the minion, y represents state of a minion’s
health points: ranging from 0 to 5. The mapping from y to
health points is {y 5: 0-1, y 5: 1-2, y 5: 3-4, y 5: 5-6,
y 5: 6+}. For example, a minion M with a card index =
3 and Health points = 5 will have the its index = (3, 3). The
first 9 layers encode the different states of the numbers of two
players’ minion, which is encoded the same way as the hand
feature. The next 9 layers encode the 3 levels of the specialty
of a minion. Lv.0: no special effects, Lv.1: aura minion and
battle-cry minions, and Lv.2: legend minions.

Table III summarizes the features we use in our experiments.
We also tried some hand-crafted features but they didn’t show
merit, and we skipped some features like a minion’s buff and
debuff (power-ups or power-downs) to keep the model simple.

C. Training Data

To generate data for training our networks we let two
DUCT-Sf+CNB players play three different mirror matches
(using Mech Mage, Handlock, Face Hunter decks), each
consisting of 27,000 open-hand games using 10,000 rollouts
per move. Because drawing new cards in each turn randomizes
states in Hearthstone we didn’t feel the need for implementing
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TABLE III
FEATURES FROM THE VIEW OF THE PLAYER TO MOVE

Feature(Modal) Value Range #CNN Planes
Max Mana (Global) 1-10 —
Heroes’ Hp (Global) 4 states —

If active player if P1 (Global) 0-1 —
Total attack ≥ enemy’s board Hp (Global) 0-1 —

Having each card (Hand) 9 states 9
Each card playable (Hand) 4 states 4

Next card after a cardplay (Hand) 3 states 3
Having each minion (Board) 9 states 9

Each minion’s specialty (Board) 9 states 9

explicit state/action exploration, but we may revisit this issue
in future work.

The training target is the turn card set TCS(n) for state n.
For each triple (n, TCS(n), nend) in the stored data set, where
n is an intermediate game state and nend is the turn end state
reached after n, we have one training sample (n, TCS(n)).
In fact, all intermediate state-TCS pairs can also be used as
training samples. In total, we used about 4M samples.

D. Network Architecture and Training

For approximating high-level card play policies we employ
two network topologies:

1. “CNN+Merge.” In this network type the three state
feature groups are separated at the beginning. The global
features receive the input from the hand feature, then trained
with fully connected network layers with the Leaky ReLU
activation function (α = 0.2). The board group is a 2D vector,
thus convolution layers to capture the pattern of the input of
the board for predicting the cards to be played. For instance, a
pattern in Fig. 5 indicates that the active player is very likely to
play spell cards dealing damage to opponent’s archmage since
the archmage cannot be killed by only mech yeti’s attack. This
method works successfully in Poker [16]. We tried to use 96
3x5 filters with followed by a 2x2 max pooling layer, then
followed by 3 to 6 convolution layers with 96 3x3 filters. For
the hand features, we use 4 to 6 1D convolution layers with 96
filters of the size 3. There is a merged model that concatenate
the flattened output of the three groups and followed by fully
connected layers with 0.5 drop-outs. The last layer is a 20 to
23 ways (depends on the match-ups) output with the binary
cross-entropy to give the probability of the each card to be
played.

2. “DNN+Merge.” The network type also receives the
inputs from the 3 feature groups, but the entire input is
flattened into one long vector for each group. Each group
vector is then followed by fully connected layers of leaky
ReLU units (α = 0.2). Similarly to the CNN+Merge type, the
output of each group is fed into one merged layer and then
followed by a fully connected layer with using 0.5 drop-outs.
The output is the same as in the CNN+Merge networks.

When training both network types we used Xavier uniform
parameter initialization [17]. We train several different models
using similar settings. The largest one is a CNN+Merge

mech yeti (hp=5)

spider tank (hp=4)

archmage (hp=7)

minion state plane 1 (#our minions)

minion state plane 8 (#opp’s minions)

Fig. 5. Board feature pattern example: black squares encode 1s and white
squares 0s. Plane 1 encodes whether there is 1 minion on my board, while
plane 8 encodes whether there is 1 minion on the opponent’s board. This
example indicates that we have 1 mech yeti while the opponent has 1 spider
tank and 1 archmage on the board.

network with 6 convolution layers has with 1.75M parameters;
the smallest one is the DNN+Merge network that has only
140k parameters.

To tailor networks to different deck choices and maximum
mana values we train them on data gathered from 3 mirror
matches which we divided into 10 different sets with different
initial maximum available mana values. For training we use the
adaptive moment estimation (ADAM) with α = 10−3, decay√
t/3, β1 = 0.9, β2 = 0.999, ε = 10−8. The mini-batch size

was 200, and for one model, it approximately took between
500 and 1,000 episodes for the training process to converge.

E. Experiment Setup

We trained and tested our neural networks with an NVIDIA
GeForce GTX 860M graphics card with 4GB RAM using
CUDA 7.5 and cuDNN4. The Hearthstone game simulator
is written in C# and the networks are executed using Keras
1.1.2 [18]. For transmitting data between C# and Python 2.7.12
we used PythonNet [19] which introduced negligible delays.

F. High-Level Move Prediction Accuracy

This section we compare the predicted card selection of our
learned high-level policy networks with the following move
selectors:
• Silverfish: this is regular Silverfish with 3-ply search

depth and 1 second search time limit.
• Greedy: This action selector uses cost-effect action eval-

uation heuristic H(a), which we adapted from Silverfish’s
heuristics, is defined as:

H(a) =
value(a)

cost(a)
, where (1)

value(a) =
∑

m∈Mp

G(m,a) +
∑

m∈Mo

L(m,a) (2)

cost(a) = (
∑

m∈Mp

L(m,a)) + a.ManaCost+ 1 (3)

L(m,a) = HpLoss(m,a) · (m.ManaCost+ 1)/m.MaxHp
(4)

G(m,a) = HpGain(m,a) · (m.ManaCost+ 1)/m.MaxHp
(5)
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TABLE IV
HIGH-LEVEL POLICY PREDICTION

Mana: 1-2 3-4 5-7 7-10
CNN+Merge (1.75m params) 91.9% 74.9% 76.6% 79.3%
CNN+Merge (290k params) 91.5% 71.7% 75.4% 77.8%
DNN+Merge (230K params) 89.9% 66.6% 69.2% 73.2%

Silverfish 86.7% 66.2% 67.0% 73.8%
Greedy 82.7% 50.3 50.4% 55.5%

TABLE V
WIN RATE OF CNN + GREEDY

Opponent % Win Rate % Std. Deviation
Random 99.7 0.3
Greedy 71.3 2.6

Silverfish 1-turn 54.6 2.8
Silverfish 3-turns 18.8 3.3

with a being the action to be evaluated, Mp,Mo representing
the player to move’s and the opponent’s minion set, respec-
tively, and HpLoss(m, a) and HpGain(m, a) denoting the
loss and gain of minion m’s health points when executing ac-
tion a. H(a) is a local heuristic that uses mana cost as scale for
unifying the evaluation of gains and losses considering card-
minion interactions. H(a) is not very accurate for comparing
actions from different levels, but it is fairly good for comparing
actions with the same precondition, such as finding the best
target for a given card. The greedy action selector chooses the
actions a with the highest H(a) values in the current turn.

For estimating the card selection quality we generated a total
of around 1000 games the same way as the training data. We
then picked ten states from each game with 1 to 10 available
mana crystals, respectively. The accuracy metric we used is
strict TCS equality, i.e., a card set prediction is accurate if
TCSpred(n) = TCS(n).

The results are presented in Table IV. They show that
except for the beginning of the game, the trained networks
are consistently better than Silverfish and Greedy at predicting
turn card sets generated by high-level open-hand play, and that
large networks are slightly better than the smaller networks. It
is also interesting that near the end of the game the accuracy
of all card selectors rises again. In the Face Hunter and
Mech Mage games this may be caused by players running
out of cards towards the end of the game which makes it
makes easier to predict cards. The results also suggest that
our CNN outperforms the DNN when using a similar number
of parameters. However, the smaller DNN network only takes
60 microseconds to do one mini-batch evaluation, whereas the
CNN takes 10 times longer.

G. Playing Games

We combined our deeper one-shot card-play policy net-
works with the low-level Greedy action chooser with the cost-
effect heuristic (Eq. 1). We use the card-play policy networks
to get the card to play by argmaxPturn(ci|s) and choose the
best-valued action that follows our policy. In this experiment,
we feed the open-handed states to the networks, and there is
no search in this simple algorithm.

We play against different opponents including random
player, Greedy player with H(a) heuristic and Silverfish with
1-play and 3-turn look-ahead search with 3 seconds of thinking
time, the win rates is shown in Table V.

The weakness of Greedy action chooser is that it ignores the
management of mana and the inference of opponent’s hand.
Card-play policy networks are complementary to such high-
level decisions. However, it still cannot beat the search-based
3-turn look ahead Silverfish as expected.

H. Incorporating Card-Play Networks into DUCT

To make use of high- and low-level rollout policies in DUCT
we replace the original Rollout function with Algorithm 2.
This algorithm is tailored for games with multi-action turns
and uses policies πl and πh to choose high- and low-level
actions, respectively. It will execute multiple turns until either
the turn limit or a terminal state is reached. If both high-level
and low-level actions are available, it randomly selects either
type and invokes the respective policy to generate an action.
Otherwise, if an action is still available it uses the respective
policy to generate one. Finally, the end-turn action is generated
if no other actions are available. In the case of Hearthstone
high-level policy πh(n) selects a card and low-level policy
πl(n) then selects a suitable target.

In our implementation we apply the SoftMax function to
the less accurate but fast DNN outputs to define πh based on
card evaluations, and the fast action evaluator H to form πl
based on heuristic target action evaluations.

To reduce data transmission overhead when communicating
between C# and Keras’s Python code, we allocate a Numpy
array and just send the indices of the entries to be filled.
We also take advantage of the fact that the high-level policy

Algorithm 2 Rollout with Multi-Level Policy
1: // n: current state, d: turn limit
2: // πh: high-level policy, πl: low-level policy
3: procedure Rollout(n, d)
4: t← 0
5: while n not terminal and t < d do
6: if n is chance node then
7: a← SampleSuccessor(n)
8: else if high- and low-level actions available then
9: if Random(0,1) > 0.5 then

10: a← πh(n)
11: else
12: a← πl(n)
13: end if
14: else if high-level actions available then
15: a← πh(n)
16: else if low-level actions available then
17: a← πl(n)
18: else
19: a← et . end turn
20: t← t+ 1
21: end if
22: n← Apply(n, a)
23: end while
24: return Eval(n)
25: end procedure
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TABLE VI
DUCT-SF+CNB+HLR WIN RATE AGAINST DUCT-SF

Mirror Match % Win Rate % Std. Deviation
Mech Mage 53.4 2.2

Hand Warlock 62.6 2.1
Face Hunter 55.6 2.2
Combined 57.2 1.3

network only has to be evaluated once when the turn begins.
The multi-level policy rollout function we implemented is 5
to 10 times slower than regular rollouts, but 10 times faster
than the bigger CNNs. To test the effect of the high-level
rollout (HLR) policy, we incorporated it into the strongest
search-based AI without neural networks, namely DUCT with
Silverfish’s evaluation function and chance node bucketing
(DUCT-Sf+CNB), and ran 500 games against DUCT-Sf+CNB
for each mirror match, allowing 10 seconds thinking time
per move and using d = 5, numWorlds = 10, c = 0.7,
ψ = 50 and β = 2/3. One mirror match took one day to
run on a single computer. The results presented in Table VI
indicate a significant improvement over the already strong
DUCT-Sf+CNB player.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two improvements of MCTS
applied to Hearthstone, and potentially other CC games. We
use bucketing and pre-sampling to deal with the issue of
large branching factors caused by chance nodes. By using
the optimized DUCT algorithm and Silverfish’s evaluation
function, our new search agent DUCT-Sf+CNB defeats the
original Silverfish by 72% of the time.

We then define a high-level policy for CC games and present
features for evaluating Hearthstone states that we feed into
different neural networks trained from game data. Lastly, we
apply the trained high-level networks in conjunction with low-
level action heuristics to perform stochastic MCTS rollouts.
Our experiments show that the new AI system is even stronger
than DUCT-Sf+CNB.

This paper combines improved MCTS’s in-tree policies with
learned rollout policies. Both parts can potentially be improved
further. For instance, machine learning could be applied to
the bucketing and sampling strategies instead of relying on
manual tuning. Moreover, rollout policies can possibly be
improved by learning low-level action policies and applying
reinforcement learning. Also, our policy networks rely on
perfect information state. There are possible future works can
be done by using recurrent networks that receive partially
observed state combined with the move history as the input.

There are also newer Hearthstone simulators like Metastone
[12] which are updated frequently to reflect changes in the
original game. We are considering to use this simulator for fu-
ture research because it frees us from tedious implementation
issues. Along with other successes of using search and deep
learning techniques in modern video games we are optimistic
that we will see stronger AI systems for complex CC games
soon.
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