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ABSTRACT: Moving computer generated forces realistically has challenged CGF and computer game
developers for years. The CGF community has mainly addressed ground vehicle movement, and through a variety
of approaches has provided solutions to many entity movement problems. In our project (DISAF), we are faced
with the problem of moving individual soldiers rather than vehicles. The vehicle-based movement behaviors and
controllers in our software baseline (ModSAF) have proved inadequate for the task. This paper describes the
tactical movement task for individual combatants, provides an analysis of path planning algorithms from ModSAF
s and the robot planning literature, and presents our algorithm for planning movement. The tactical movement
behavior we developed, considers slopes, seeks concealed routes, and adjusts posture and speed when in
threatening areas. It uses a combination of grid search and graph search to find paths outside and inside of
buildings.

1. Introduction

While many military simulations have addressed
individual vehicle movement behavior, none of them
has adequately addressed realistic infantry
movement. We are developing a comprehensive
movement capability for synthetic individual
combatants (ICs) in small units. In particular, we
have developed movement planning and control
behaviors that allow a simulated IC to move
tactically in a complex environment. This capability
is being developed as part of the DISAF project
funded by STRICOM and performed by SAIC.

We have implemented selected parts of the
movement behavior architecture, including squad
and fire team fire and maneuver behaviors and
individual tactical movement. This paper describes
the development of the individual tactical movement
behavior. Individual tactical movement must
integrate terrain obstacles, trafficability, and cover
from threats into route selection, and must include
speed and posture changes into movement control.
The next section reviews the requirements for
tactical movement. Section Algorithm analyzes

movement planning algorithms and the impact of the
requirements on algorithm selection. Section
Implementation describes the implementation and
results of path planning, and the final section
provides concluding remarks.

2. Requirements

2.1 Motion planning

Movement can be viewed at several levels of
abstraction. Higher levels of abstraction generally
correspond to longer distances and periods of time.
The actions required to plan and execute movement
vary with the level. The relevance of different
movement levels to individual tactical movement are
as follows:

• Long distance route planning–a human operator or
simulation task sets a destination many kilometers
from the individual, and the individual plans and
executes movement to that destination. We assume
that long range moves are generally performed by
higher level units and use vehicular transport.



Long distance movement is thus not a part of
individual movement.

• Intermediate distance route planning–an operator
or task sets a destination a few hundred meters to a
couple of kilometers away and the individual
moves there. This range is far enough that detailed
planning around small obstacles such as individual
trees is not appropriate, but planning is still
required at a high level to avoid large obstacles
such as bodies of water and to find roads and
bridges. The individual may consider, at a coarse
level, ground trafficability and slope, proximity to
threats, exposure to threats, etc. in planning its
movement. 

• Short distance movement planning–an individual
moves to a point no more than about a hundred
meters away. Individual tactical movement
behavior primarily addresses this level of
movement. Individual tactical movement must
move the soldier around all obstacles, attempt to
find an efficient path through terrain of varying
slope and trafficability, and avoid areas exposed to
enemy threats. The effect of slope varies with
direction of movement. Other moving agents must
also be considered. In general, the other agents
might be moving in related paths for formation
movement, bounding movement, or room clearing;
for the purposes of individual tactical movement,
other movment agents are assumed to be on
unrelated paths and are treated as moving
obstacles.

• Fine motion planning–the individual changes
postures to stay in cover while moving; changes
posture and orientation to move through small
apertures, duck under obstacles, or pass by other
people in narrow passageways; sprints across
exposed areas; climbs in windows, climbs up
ladders, jumps over obstacles, jumps down from
obstacles, kicks open doors, etc. In our DISAF
simulation, most fine motion is abstracted away, so
we consider only walking, running, and crawling
actions in the tactical movement task.

2.2 Environment

The nature of the simulation environment–the types
of features, the density of features, and their native
representation–has some bearing on the type of
movement planning algorithm that works best for the
behavior. As mentioned earlier, the movement
behavior was developed for DISAF. In DISAF the
typical representation of terrain skin and terrain
features is as polygons. The terrain databases of

interest may have small terrain polygons (on the
order of meters or less), closely spaced individual
trees and man-made structures, and buildings with
interiors (Multi Elevation Structures, or MESs). The
MESs constrain movement a great deal, requiring
precise movements accurate to tens of centimeters to
avoid colliding with walls. The MES data structure
in DISAF includes the topology of the rooms and the
locations of doors and windows connecting the
rooms.

3. Algorithm Analysis

3.1 Path finding algorithms

There are several good reviews of path finding
algorithms in the literature [1] [2]. This section
briefly reviews important ones for the tactical
movement behavior described above.

3.1.1 Cell decomposition

In a cell decomposition approach, free space and
obstacles are represented as a grid of small, uniform
cells. Cells may be hexagonal or irregular in an
obstacle-dependent way, but are most often squares.
Cells cannot represent the shape of an obstacle
exactly, but can get arbitrarily close if the size of the
cells is small. Of course, decreasing the size of the
cells increases the size of the search space. In
addition to discriminating between free space and
obstacles, cells can be assigned values that represent
anything related to movement, e.g., trafficablity,
ground slope, or exposure to threats. This feature of
the cell decomposition approach is well illustrated by
[3] who used factors such as distance-to-enemy to
generate continuously varying cell values.

Once the terrain has been cast in a grid
representation, a path can be found by searching the
grid from the start point to the destination. The A*
algorithm is typically used to control search, with
straight-line distance to the goal used as a heuristic
function. If cell values represent only the distance
across the cell, then the search will yield the shortest
distance to the goal; if other functions are used to
define the cell value, then the path will be optimum
with respect to those cost functions.

Cell search has the disadvantage that if high
resolution planning is desired, the cells must be
small. High resolution is needed in our domain to
plan motion down narrow hallways, across bridges,
and past other constrictions. Search cost increases
even if there are few obstacles in the terrain and most
of the terrain is uniform in cost. To represent critical



detais in the environment without paying the search
cost everywhere, hierarchical approaches have been
used. Kambhampati [4] describes multi-resolution
A* search that uses quadtrees of cells. Yahja [5] gets
fewer grid discretization artifacts in the path by using
large uniform cells framed by high-resolution cells.
Karr [6] uses a grid to search large areas for units,
but marks important linear features in the cells so
that the search process may accurately determine if
one cell may be reached from another. For example,
rivers are small in size relative to the cells, but they
may obstruct movement across a cell in one
direction.

3.1.2 Skeletons

Skeleton approaches reduce free space to a network
of one-dimensional lines. Common representations
are visibility graphs and Voronoi diagrams. A
visibility graph is a collection of lines that connects
the visible vertices of obstacles with each other. A
Voronoi diagram is the set of points equidistant from
two or more objects. Path planning with these
skeletal free space representations involves finding a
path from the start point to the nearest skeleton line,
doing likewise with the goal point, and then using a
graph search technique to find the lowest cost path
from start to goal along the skeleton. The visibility
graph solution yields a true shortest path, taut-rope
solution (at least for the portion of the path on the
graph), while the Voronoi diagram solution yields a
path that stays as far as possible away from the
obstacles.

A variation of this planning technique is used to find
“short” paths in ModSAF [7] and CCTT, another
U.S. Army simulation system [8]. In these systems,
no representation of free space is built. Instead,
candidate free space routes are generated and
evaluated. The first candidate route goes directly
from the start to the goal. If it intersects an obstacle,
it is rejected but two other candidate routes are
created by computing “skirt” points around the
obstacle in each direction. If the skirting paths
intersect obstacles, additional routes will be
generated by skirting those obstacles, and so forth.
The route selected will be the candidate that doesn’t
intersect obstacles and is the shortest (or best by
some other criteria). 

ModSAF has another path search algorithm for
planning paths inside of MESs [9]. This algorithm
uses the topological information available in MESs
as a graph of free space. This approach takes
advantage of the fact that all paths through the

building have to pass through choke points in the
doorways between rooms. The doorways are nodes
in the graph; the graph is searched using A*.
Unfortunately, this path search algorithm is not
integrated with the path search algorithm described
above.

ModSAF has yet another algorithm for planning
concealed routes [10]. This algorithm uses cells to
represent concealed areas initially, then transforms
individual areas into nodes of a graph. Concealed
areas are generated only by terrain features such as
trees and buildings, but not by the terrain skin itself
(e.g. hills). The nodes are joined by edges whose
weights are the distances between the concealed
areas. The A* algorithm is used to search this
“concealment space” graph for the lowest-cost path.
The algorithm does not also plan routes around
obstacles; the algorithm for doing that is described
above. Because the mechanisms developed for these
two requirements are incompatible, the two
requirements are handled sequentially. The result is
that concealed routes may be infeasible due to
obstacle blockage, or the obstacle-free routes
generated from concealed waypoints may detour into
exposed areas.  

3.1.3 Weighted regions

The cell decomposition of movement space
described above is really a specialization of a
decomposition into arbitrarily shaped weighted
regions. It is possible with arbitrary polygonal
regions to represent large uniform areas very
economically while at the same time representing
small terrain features with small regions. A minimal
cost path across a space of polygonal regions will
bend only at region boundaries. Mitchell [1]
describes how optimal paths will bend at region
boundaries according to Snell’s Law of Refraction;
i.e., the ratio of the sines of the angles of incidence
and refraction of the optimal path will be equal to the
ratio of the weights of the regions. 

A commonly used algorithm to find optimal paths in
weighted regions is described in [11]. The essential
idea is that rays are cast out in all directions from the
start point; each ray bends at region boundaries to
obey the optimality criterion outlined above. The
goal point must be “trapped” between two rays. The
path found will be closer to optimal if more rays are
used. This path planning approach was used in a
variation of ModSAF used to control U.S. Marine
Corps infantry units [12]. Regions given very high
weights if they were impassable, high weights if they



were exposed to threats, and low weights otherwise
(this is a modification of a standard “0-1-∞”
weighting set).  

3.1.4 Potential functions

A final approach to path planning is to construct a
scalar potential (as in energy) function that steadily
decreases to a minimum as the distance to the goal
decreases. The potential function is high at obstacle
boundaries and decreases as the distance to the
obstacle increases. The path is determined by
following the steepest descent down the potential
value surface until the goal is reached.  

There are two difficulties with the potential function
approach. The first is that the net potential function
from multiple obstacles may have a local minimum
that traps the algorithm. In other words, the
obstacles may form a dead end alley. This problem
can be addressed to some degree by using better
obstacle repelling functions [13] or by making the
potential a function of velocity [14]. The second
difficulty is that regions cannot be weighted to
encourage or discourage movement through them.
Thus, there is no way to encourage movementnear
obstacles to gain from their protection from enemy
observation. While these two issues make potential
fields awkward for some route finding problems, the
issues don’t usually arise if a route planner has found
a generally clear course and the potential fields are
just used to make local corrections. Thus they are
useful as a low level movement controller that is
following a path that is known to be satisfactory
from a global perspective.

3.2 Algorithm evaluation

The algorithms above can be evaluated in terms of
the requirements of individual tactical movement.
The key requirements of individual tactical
movement are 1) planning a path through an obstacle
field, 2) planning an optimal path through regions of
different cost, 3) planning an optimal path through
terrain of continuously varying cost (for example
slope in the direction of movement), and 4) using
exposure to threats as a terrain cost. The approaches
are 1) cells, 2) skeletons, 3) regions, and 4) potential
functions.

1. Path planning through an obstacle field.
Cells handle this well, but suffer from
computational cost when fine motion is required.
This can be a big problem inside buildings. They
also produce paths with grid artifacts (jagged
paths). Skeletons handle the problem

efficiently. The weighted regions approach also
works well, but is probably more expensive than
skeletons. Potential functions are adequate for
uncluttered problems, but have difficulty with
problems that require a global path search, e.g.
the mazes that may be encountered in urban
areas.

2. Planning an optimal path through regions of
different cost. Cells handle this well. Skeletons
cannot do this at all; the paths are only
generated to avoid obstacles, without
consideration of other terrain cost. The only use
of terrain costs is to choose between candidate
obstacle-avoiding paths. The weighted regions
algorithm efficiently produces the best paths
when there are large regions of uniform cost.
Potential functions do not consider weighted
regions.

3. Planning an optimal path through terrain
with continuously varying cost. Cells handle
this well. Skeletons cannot do this. The weighted
regions no longer works when cost varies
continuously, for the paths in general curve and
the optimal-path “rays” cast from the start point
are difficult to compute. Potential functions do
not consider weighted regions.

4. Using exposure to threats as a terrain cost.
This only applies to the cell and region
approaches; the other two are discussed above.
The only difference between this and (2) above
is that threats are dynamic, whereas obstacles,
ground slopes, etc. are static. While a system
might build a representation of terrain regions
once, exposed danger areas must be
reconstructed each time a path is planned. For
the cell approach, this means checking visibility
from threats to the cells that are searched; for
the weighted regions algorithm, it means
checking the entire movement space for
visibility to threats, constructing polygonal
danger areas from the sample points, and
tessellating the movement space into convex
polygons before search can begin.

The strengths and weaknesses of the different
approaches are summarized in Table 1.



From the table, it is apparent that there is no
approach that is good for all the requirements, but
the cell decomposition approach is at least fair for
all. We have selected cell decomposition as the path
planning mechanism. We did not elect to use the
ModSAF short term planning algorithm or the
ModSAF cover and concealment algorithm because
of the limitations of the skeleton approach. We did
use the graph search idea for building interiors that
the current ModSAF algorithm uses, although we
had to implement it differently to integrate it with the
cell decomposition approach. Section
Implementation describes how our implementation
integrates the cell decomposition and building
interior search and how it overcomes some of the
shortcomings of the cell based approach.  

4. Implementation

The individual tactical movement behavior uses a
cell-based movement planner to find a good path
through static terrain, and uses a reactive obstacle
avoidance technique to avoid moving agents. The
path planner can plan routes outside and inside MES
buildings; it consider ground slope in path cost; it
uses an adjustable, non-linear (with time) cost
function for exposed areas; it adjusts posture to hide
from threats if possible; and it adjusts speed to rush
across exposed areas. This section describes the
implementation of the path planning algorithm.

4.1 Path planning algorithm

4.1.1 Defining the search space

The search space is a grid of 1 meter squares no
more than 250 meters long by 200 meters wide. It is
oriented along the direction from start to goal, and is
longer than that vector and about that wide. Thus the
plan can go away from the goal to some degree, and

deviate to the side a relatively large amount. If a
path cannot be found in that area, the algorithm fails.

In general, the path planner finds paths by searching
over the grid of cells. However, a 2-dimensional
grid is not adequate for planning inside buildings;
therefore we use a hybrid combination of a 2-
dimensional grid and a 3-dimensional network for
the search space. The 3D network is the topological
network of rooms in the building, where each node
in the network is a doorway between rooms. Outside
of buildings, search nodes are cells are expanded to
the 8 nearest neighbors in a rectangular grid; inside
of buildings, nodes are doorways and are expanded
directly to other doorways. The trick, of course, is
doors to the outside; these special search nodes are
expanded both to inside doorways and to outside grid
cells.

Although the world location of a search node is
implicit in the cell’s grid position, the exact world
location of the node is recorded in the search node
data structure. This allows us to represent the exact
location of search nodes that don’t fall exactly on
cell centers. In particular, while the search space is
defined so that the start location fall on a cell center,
the goal location and doorway locations may not on
cell centers. Also, in the future a continuous
relaxation process could move node locations off of
grid points. 

4.1.2 Populating the search space

Terrain obstacles, which are polygonal, are “drawn”
onto the search grid using a standard line rasterizing
algorithm. Obstacles that are no bigger than one cell
are ignored; it is assumed that dynamic obstacle
avoidance can handle these and that they shouldn’t
affect planning. As each obstacle cell is identified in
the rasterization process, an obstacle node is created
and stored in a hash table of “visited” nodes.  

Requirement
Planning Approach

Cell decomp. Skeleton Weighted region Potential Fn.

Free path Fair Good Good Fair

Varying costs Good Poor Good Poor

Continuous
variation

Good Poor Poor Poor

Threats Good Poor Poor Poor

Table 1. Suitability of path planning approaches to soldier-agent planning requirements



Figure 2. Path planned through building to avoid exposure to threat (star).

Figure 3. Path planned up a steep hill. The path goes laterally and then traverses the hill at an angle so that the effective
slope is reduced.



After the obstacles are identified, all outside doors of
MESs are identified. These doors create doorway
search nodes which replace the obstacle nodes in the
same location. No interior building walls are are
drawn in the main grid, as the grid is too coars for
planing inside the building. 

Other than the obstacle, outside-door, and start
location nodes, no other nodes in the search space
are created at first. Line-of-sight checks and
elevation lookups needed to compute path costs are
only computed as needed when the search process
visits a node.

4.1.3 Search

The search space is explored using the A* algorithm.
As the search proceeds, the 3-dimensional distance
from a node to the goal is used as the heuristic
function. Using 3 dimensions is necessary to drive
the search to the correct floor of a building. The cost
function is based on the time needed.  In particular: 

• if the ground slopes up, the cost goes up
inversely with the rate at which an individual’s
maximum speed would be decreased. This rate
is determined by the DISAF physical model of
human movement. Thus, a path up a slope costs
more than a path that traverses a slope.  

• crawling costs more than walking so that
walking is preferred, although crawling is still
better if standing would expose the agent to
threats.

If the node is exposed to any enemy threats, it costs
more to move to that node. We check visibility from
threats assuming that the moving individual is
standing, and if visible test again assuming the
individual is prone. If it is visible while standing but
concealed while prone, the node is marked as being
concealed, but prone. The number of consecutive
exposed nodes is used to set the cost of the next
exposed node; very short exposed runs (i.e., about a
half second) cost little more than concealed moves,
but as the runs get longer the cost becomes much
(e.g. 50 times) higher.  

Although some movement planning algorithms set
the cost of exposed movement to be infinitely higher
than that of concealed movement, using these costs
in a grid search would result in all concealed nodes
being explored before an exposed node is explored at
all. Making the cost of short exposures relatively
small improves search performance considerably.
Making the cost of exposure a search parameter
allow the planner to produce different tactical plans;

for example, setting the cost of exposure very high
produces the most stealthy plan, while reducing it to
zero produces a path that considers speed only.

4.1.4 Path post processing

After the path has been found, it is post-processed to
improve it. First, exposed segments of the path are
grown by one node (i.e., the nodes before and after
the exposed segment are marked as exposed) so that
the entity will have a chance to accelerate to a
rushing speed before being exposed. Next, segments
requiring the agent to be prone are grown by one
node so that the agent will be sure to be prone before
it enters the area where it needs to be prone. Third,
standing segments between prone segments are
checked to see how long they are. Short standing
segments are replaced by prone segments so that the
agent does not waste time standing up for just a short
segment. If the standing segment is exposed, the
distance threshold is increased so that the agent will
more likely stand and run.  

Finally, the path is examined to see if uniform
segments—segments of the path that don’t change
direction more than 45 degrees, have the same
exposure and same posture—can be reduced to a
straight line. Segments can be reduced if the straight
line from the start to the end does not cross any of
the polygonal obstacles or exposed areas (for
concealed segments). If it does, a binary search is
used to find an intermediate point that a straight line
can be drawn to, and any points between the start and
intermediate point are removed from the path plan.

This latter plan processing step is a coarse form of
relaxation. Relaxation can improve a grid-based
path plan in different ways. Krogh [14], for example,
showed how small perturbations to the node location
could optimize and smooth the path of a robot
avoiding obstacles. In the implementation of grid
search described here, none of the node cost function
terms varies in a way that would allow optimization
by using small perturbations. We may add such
terms in the future, and at that time replace the path-
straightening relaxation by an iterative smoothing
procedure.

4.2 Path planning results

Figure 1 shows a search from a point on the left to a
point on the right; the star is a threat location. The
light colored crosses represent concealed locations,
while the black crosses show exposed locations. The
line shows the resulting path. Because crossing the
exposed area is relatively expensive, the search



covers a wide area to the left and the right of the
eventual path before deciding to cross the exposed
area at its smallest point. The small rectangles in the
bottom right of the figure are small obstacles only
about a meter high; the concealed nodes below them
require the individual to be prone.

Figure 2 shows the route planned by an individual
from one side of a building to another; because of
the threat in the alley, the path was planned through
the building.

Figure 3 shows a short move up a hill. For this
example, the cost of moving up a slope was
increased artificially high. The lines in the figure are
contour lines. The computed path does not go
straight to the destination but bends so that it can
climb the hill at an angle and have a lower effective
slope.

5. Conclusion

We have developed a tactical movement behavior for
individual soldiers. Functionally it performs path
planning around obstacles and through buildings,
staying concealed from threats and avoiding difficult
terrain as much as possible. 

In order to select the best algorithm for planning
tactical movement we had to first determine all of the
relevant requirements. We found that several
previously implemented approaches to movement
planning were not appropriate given the functional
requirements, but we were able to develop and
implement an approach that satisfies the
requirements. The lesson we learned is that if a
particular approach seems to be very powerful, but it
fails to satisfy one or more parts of the problem, then
it must be augmented or replaced by another
approach.

There are several directions for future work in this
system. Path relaxation could be introduced so that
it could adjust and optimize a path created using
more sophisticated evaluation functions. Our vision
for representing paths is to move away from
geometric waypoints and toward action-based
waypoints such as “go through door” or “move to
tree.” We have had some success using the same
unit planner with a larger cell size to perform unit
planning; this process could be developed more to
support different travelling modes and to allow
switching to single file formations in restricted
terrain.  
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