
Spatial Action Decomposition Learning Applied to RTS Combat Games

Marius Stanescu and Michael Buro
Department of Computing Science

University of Alberta, Canada
{astanesc|mburo}ualberta.ca

Abstract
Learning good policies for multi-agent systems is a complex
task. Existing methods are often limited to a small number of
agents, as learning becomes intractable when the agent num-
ber increases considerably. In this paper we describe Spa-
tial Action Decomposition Learning that tries to overcome
inefficiencies of standard multi-agent Q-learning methods by
exploiting existing spatial action correlations. We apply our
method to real-time strategy (RTS) game combat scenarios
and show that Spatial Action Decomposition Learning based
systems can outperform handcrafted scripts and policies op-
timized by independent Q-learning.

Introduction
As multi-agent decision problems are ubiquitous, build-
ing better AI agents that work together has numerous
real-world applications, such as city transport optimiza-
tion, stock trading, advertisement bidding, multi-player on-
line gaming, and coordinating robot swarms. Multi-agent
reinforcement learning (MARL) (Panait and Luke 2005;
Busoniu, Babuska, and De Schutter 2008) is a popular
solution paradigm in this research area. Typically, a set
of autonomous agents share a common environment and
jointly optimize a single team’s reward signal accumulated
over time. While applying standard RL techniques like Q-
learning to multi-agent settings seems straight-forward, dif-
ficulties arise from the combinatorial explosion of the joint
action sets and non-trivial interactions with the environment
and other agents – which can be cooperative or adversarial
or mixed (e.g., opposing teams). In addition, partial observ-
ability and communication constraints require decentralised
policies that only depend on local agent observations. This
also helps dealing with the exponential growth of the joint
action space when increasing the number of agents. Learn-
ing these decentralised policies in a centralised fashion has
the added benefit of being able to use extra state informa-
tion during learning that is hidden from agents at runtime
(e.g., lifting the fog-of-war). This approach has become
very popular lately (Jorge et al. 2016; Foerster et al. 2017a;
Rashid et al. 2018).

A challenging aspect of decentralization is to find an ef-
fective representation of the centralized action-value func-
tionQtot that integrates the effects of all agents’ actions. But

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such functions are difficult to learn in the presence of many
agents and extracting the decentralised individual agent pol-
icy (one agent chooses one action based on individual/partial
observation) is not straightforward.

In the next section we discuss in more detail related work
that tackles multi-agent Q-learning in various ways – rang-
ing from centralized learning, over simple Q-function de-
compositions, to learning expressive networks for mixing
individual Q-functions. We then describe our novel learn-
ing approach which is based on the observation that agent
actions are often spatially correlated, e.g., nearby agents fre-
quently execute similar actions, such as moving in the same
direction, or collaborating to achieve a local goal such as de-
fending a choke point. We then present experimental results
for our spatial action decomposition method — applying it
to the popular multi-agent learning domain of 2-team com-
bat in real-time strategy (RTS) games with up to 80 vs. 80
units. Finally, we conclude the paper with summarizing our
findings and discussing future work.

Background and Related Work
Independent Q-Learning
Arguably the easiest and most commonly used learning
method for multiple agents is Independent Q-Learning
(IQL) (Tan 1993). It considers all other agents as part of the
environment and decomposes the multi-agent learning task
into simultaneous single-agent problems. IQL suffers from
instability caused by non-stationarity introduced by learn-
ing and exploration of other agents (Laurent et al. 2011),
and consequently loses the convergence guarantees of Q-
learning. As a concrete example, (Claus and Boutilier 1998)
show that independent Q-learners cannot distinguish team
mates’ exploration from stochasticity in the environment,
and fail to solve even an apparently trivial, 2-agent, state-
less, (3× 3)-action problem.

While there are ways of improving IQL’s stability (Foer-
ster et al. 2017b), it usually requires individual reward func-
tions as uniform team reward signals do not directly relate
to individual agents’ actions. Reward shaping is difficult
and few methods guarantee to preserve optimality w.r.t. the
initial objective (Devlin et al. 2014; Eck et al. 2016). A
preferable, more general approach is to learn how to decom-
pose the team reward. Still, in practice, IQL is an unexpect-
edly strong benchmark method, even in mixed cooperative-



competitive MARL problems (Leibo et al. 2017).

Centralised Learning
Alternatively, the joint action Q-function Qtot can be
learned directly. This avoids the non-stationarity prob-
lem and can lead to better coordination and results, at the
cost of poor scaling performance. For example, experi-
ments in (Usunier et al. 2016) are limited to 15 agents
per side. Some methods are partially centralised, using
one or more centralised critics to guide the optimisation
of decentralised policies in an actor-critic paradigm (Foer-
ster et al. 2017a; Gupta, Egorov, and Kochenderfer 2017;
Leibo et al. 2017). To work well, these methods require ad-
ditional information to be exchanged between agents, e.g.,
CommNet (Sukhbaatar, Szlam, and Fergus 2016) or BicNet
(Peng et al. 2017). Furthermore, such on-policy methods are
usually sample inefficient.

Using a team reward signal makes credit assignment chal-
lenging, even for simple problems. For example, in a 2-
player soccer game with the number of scored goals being
the team reward, the agent who is worse at scoring some-
times ends up failing to learn to shoot at all, as its exploration
would impede its teammate (Hausknecht 2016).

Coordination graphs have been used to decompose the
global reward into a sum of local agent rewards (Guestrin,
Koller, and Parr 2002), but the method requires solving a
linear program and message passing between agents at run-
time. COMA (Foerster et al. 2017a) is an actor-critic method
that uses a counterfactual baseline to marginalise out a sin-
gle agent’s action, while keeping the other agents’ actions
fixed. Another idea is to transform multiple agent interac-
tions into interactions between two entities: a single agent
and a distribution of the other agents (Yang et al. 2018).

Value Decomposition
A more elegant way of solving the credit assignment prob-
lem is to use a value decomposition network (VDN) to repre-
sentQtot as sum of individualQ-functionsQi which depend
only on agent-local observations (Sunehag et al. 2017) . The
network learns how to assign the team reward signal to Qis
implicitly, without shaping or global state information.

One disadvantage is that the VDN representation of Qtot

is limited by the addition, because agents interactions are
usually more complex. QMIX addresses this issue by re-
placing the sum operation with a mixing network that com-
bines all individual Qi into Qtot in a complex, monotone,
and non-linear fashion informed by the global state infor-
mation during training (Rashid et al. 2018). Access to the
global state is not required after training because due to
monotonicity, the arg-max performed on Qtot yields the
same result as individual arg-max operations on each Qi.

While more natural, these methods still suffer when han-
dling larger numbers of agents asQ-learning becomes infea-
sible due to noise accumulation caused by many exploratory
actions (Colby et al. 2015).

Abstractions and Hierarchies
To address the scaling issue and improve sample efficiency
the value decomposition networks can be combined with hi-
erarchical decomposition. This can be done by considering

temporal abstraction layers (Levy, Platt, and Saenko 2017).
Multiple policies can represent a diverse set of behaviors,
and learning is sped up because the environment can be ex-
plored at higher levels more effectively. Alternatively, in
suitable domains spatial abstractions can be used to speed up
learning. In feudal reinforcement learning (Dayan and Hin-
ton 1993) the state space is hierarchically subdivided into
increasingly smaller regions at each level of abstraction –
similar to quad-trees in the grid world pathfinding example
they discuss. Each level has an associated Q-function that
is trained by giving lower levels credit for achieving higher
level goals. The experimental results indicate that feudal
reinforcement learning outperforms classic non-hierarchical
Q-learning in their domain. The method we present in the
next section is also based on spatial decomposition. How-
ever, its objective is to generate concurrent actions for mul-
tiple agents and to effectively learn agent policies despite
huge combinatorial action spaces.

Spatial Action Decomposition Learning
In this work we focus on the MARL challenge of increasing
the number of agents and the resulting combinatorial explo-
sion of the joint action sets and interactions with other agents
present in the environment, friend or foe. As previously
mentioned, IQL is a quick and simple solution, but does not
guarantee convergence and is poorly suited for modelling all
interactions between agents. On the other hand, fully com-
binatorial approaches are better at handling coordination but
don’t scale well with the number of agents.

One approach that showed good results is to estimate the
join action-value of a team of agents as a linear (Sunehag et
al. 2017) or non-linear (Rashid et al. 2018) combination of
individual, per-agent action-values. These per-agent values
condition on agent-local observations, which is required in
a partial observable environment. (Rashid et al. 2018) use
hypernetworks to integrate the full, global state information
into the joint action-value during training.

Spatial Action Decomposition Using Sectors
We build on the value decomposition idea, but as we focus
on the number of agents as the main challenge, we choose
to work in a fully observable environment. As such we
don’t have to condition on agent-local observations. We de-
compose Qtot into individual values similarly to VDN and
QMIX, but use the full, global state both during training and
evaluation. To handle the large number of agents and the
difficulty introduced by their exploratory actions, we use a
grid based spatial decomposition. We add a sector abstrac-
tion, making the assumption that the joint action value can
be decomposed into value functions across sectors – disjoint
areas of the map – instead of individual agents. We use a
simple sum and leave more complex decompositions such as
QMIX to future work, as experiments in (Rashid et al. 2018)
show that non-linear value function factorisation is often not
required for scenarios with homogeneous agent types.

After the sector actions are chosen by the network, each
sector is responsible for emitting low-level actions for each
agent present within, through a separate mechanism. The
sector action can be as simple as selecting which action
script to use to generate actions for the agents within that



particular sector. Besides simple but resource inexpensive
methods, other algorithms that don’t scale as well could be
used due to the smaller problem size, for example search
algorithms if there is a forward model.

Each sector’s Q-function QSi
will be learned implicitly

by the network and will not benefit from any reward specif-
ically given to sector Si or to any individual agent. Strictly
speaking QSi

is more an utility function than a value func-
tion because it does not estimate an expected return by itself.
For simplicity, however, we will continue to call both Qtot

and QSi
value functions.

Each sector chooses its action greedily with respect to its
own QSi

, and the joint action Qtot is chosen by maximizing∑
iQSi . The maximization of Qtot can now be performed

in time linear in the number of sectors, which will usually
be much smaller than the number of agents. For this method
to work well, the sectors dimension should be large enough
such that at least a few agents are present in most sectors.

Network Architecture
To reduce the number of learnable parameters it is com-
mon to use a neural network for each agent and to share
its weights between the agents. This approach can be taken
with sectors as well, but since we have access to the global
state it is more natural to use convolutions to keep the num-
ber of parameters low.

A deep ConvNet computes higher and higher level fea-
tures layer by layer, with the same or possibly different spa-
tial resolutions. It’s a very good tool for a sector-based ap-
proach: it starts with higher resolution maps with low-level
features and produces lower and lower resolution maps but
with increasingly relevant features until reaching the target
sector granularity.

An example network used for a grid-like 2-player com-
bat scenario is shown in Figure 1. There are 5 input feature
planes for a 64 × 64 grid map. Three of them are Boolean
values indicating unaccessible terrain (e.g. walls), own and
enemy unit presence on each square. Two planes represent
the hit-points of the two armies, each cell containing at most
one agent. More details about the environment used for ex-
periments can be found in the next section.

Four convolutional layers with 4× 4 stride-2 filters, each
followed by a ReLU nonlinearity and using batch normal-
isation, are used to extract features and gradually halve the
map resolution, obtaining activationsC1−3 and S1. For sim-
plicity, at a given resolution level we considered only square
sector configurations of the typeW×W , resulting inW 2 to-
tal sectors. Using a granularity of 2×2 sectors – each 32×32
cells – was not enough to execute complex maneuvers. Con-
sequently, we start with the 4×4 sector representation of S1,
each sector being responsible for agents within 16×16 cells
on the original map.

In certain situations it might be beneficial to have even
more precise control. For this purpose we can apply the stan-
dard process of deconvolution, also known as transposed or
fractionally-strided convolution (Dumoulin and Visin 2016),
to generate features for more, smaller sectors. For example,
in Figure 1 S1 is upscaled by a factor of 2 to the 8 × 8 rep-
resentation of S2 using 2× 2 stride-2 filters.

Either S1 or S2 can be used to obtain QSi
values, de-

pending on the desired sector granularity. The Q func-
tions are represented using value and advantage functions
Q(s, a) = V (s) + A(s, a) as recommended by the dueling
architecture (Wang et al. 2016b). More robust estimates of
the state values can be obtained by decoupling them from
the necessity of being attached to specific actions. For S1

the value function denotes how good the current state is for
each of the 4×4 = 16 sectors, and a corresponding 4×4×1
block V1 can be obtained from S1 using a convolutional
layer with 1 filter of 3 × 3, stride-1. The advantage func-
tion tells how much better taking a certain action for any
given sector would be compared to the other actions. Using
a number of filters equal to the number of possible actionsA
for a sector results in the corresponding 4×4×A block A1.
The argmax over the last dimension gives the action with the
highest advantage value for each of the 16 sectors.

The same output head filters can be applied to any resolu-
tion Si layer to obtainQ-values for a desired sector granular-
ity. Actions can be emitted based on the values from any of
these layers, either by choosing a specific resolution before-
hand, by taking the max across all resolutions, or even by
adding a separate network component responsible for learn-
ing which sector granularity to pick given the current state.

Increasing the number of sectors provides more accurate
control over the agents, but also increases the difficulty of
the credit assignment and slows the learning process. Us-
ing fewer sectors and the resulting ability to specify large
scale actions should make the exploration for actions lead-
ing to large rewards more efficient, and unnecessary micro-
management could be avoided for map areas that are largely
empty or that do not require complex behaviors.

In this work we focus on spatial decomposition, and opt
for the simple fully convolutional design described above.
Although more sophisticated network blocks could be de-
signed, and even though temporal abstractions are compat-
ible with our method, they are not the focus of this paper.
Stacking multiple input frames along the depth dimension,
using gated architectures such as LSTM and GRU, or learn-
ing agent policies that implement the provided sector actions
are left for future work.

Experimental Setting
In this section we describe the combat scenario problem
to which we apply Spatial Action Decomposition Learning.
We provide details of the state features and training method-
ology and evaluate our method’s performance in comparison
to independent Q-learning.

Environment
Real-time strategy (RTS) games are now a well established
benchmark for the RL community. They offer more diffi-
cult multi-agent challenges compared to previous environ-
ments such as Atari games. In particular, RTS game combat
scenarios are a popular evaluation method for MARL algo-
rithms, offering mixed cooperative and competitive multi-
agent environments. Combat scenarios have been tradition-
ally used to test algorithms’ ability to scale, from simple
search based methods (Churchill, Saffidine, and Buro 2012;



CONV CONV CONV CONV

INPUT 
64x64x5 C1 

32x32x32

C2 
16x16x32

C3 
8x8x64 

 

S1 
4x4x64

S2 
8x8x64 

 

V1 
4x4x1

A1 
4x4xA

V2 
8x8x1 

 

A2 
8x8xA

C
O

N
V

C
O

N
V

C
O

N
V

C
O

N
V

4x4, s2 
RELU 

CONV      DECONV

2x2, s2 
RELU C

O
N

V

3x3, s1 
 

     DECONV

Figure 1: Layout of the network architecture. More deconvolutional layers can be added to increase the sector granularity.

Ontañón 2017) to script and portfolio blended variants
(Churchill and Buro 2013; Wang et al. 2016a; Lelis 2017).

The StarCraft II Learning Environment (SC2LE) (Vinyals
et al. 2017) is one such popular platform for RL experi-
ments. However, for our experiments we chose the simpler
but faster many-agent (MAgent) environment (Zheng et al.
2017). It supports up to a million agents on the same map
while being much less computationally intensive compared
to SC2LE. Moreover, it provides environment/agent config-
urations as well as a reward description language that en-
ables flexible environment design.

In this work we focus on a centralised micro-management
scenario in which two groups of identical units fight on a
grid-world map. The units of the first army are controlled by
the learning method. The opposing units are controlled by a
scripted algorithm that moves towards and focuses fire on its
closest enemies. The initial placement of the units for each
army is randomized at the start of each game: around two
thirds are split randomly among a random number of 2 to 5
orderly groups, while the remaining units are randomly scat-
tered on the map. An example scenario is shown in Figure 2.
This setup is designed to mimic combat scenarios commonly
occurring in popular RTS games such as StarCraft II. The
small attack range compared to the size of the map and the
number of units and clusters promote smart group maneu-
vering which is notoriously hard for agent-centric learning.

We adopt MAgent’s default combat settings: at each time
step agents can either move to or attack any cell within a
radius of two. When attacking a unit, the attacker’s attack
value is subtracted from the attacked unit’s hit-point value.
Units with hit-point value ≤ 0 are removed. The goal is
to accumulate rewards by eliminating all opponents. The
rewards are also closely following the default settings: 5 for
killing an enemy unit,−0.1 for attacking an empty grid cell,
0.2 for attacking an enemy unit, and −1 for being killed
(increased from the −0.1 default value). Additionally, there
is a reward of 100 for killing all enemies. Each game is
restricted to have a length of at most 300 time steps.

We use the full observability settings: there is no unit vi-
sion limitation or fog of war.

Necessarily, sector actions should translate into low-level
actions for the agents located within. Here we choose to
use 5 scripted algorithms to do so: four that move units
in each of the cardinal directions and one for approach-
ing and attacking enemy units, the same attacking script
used by the enemy. In future work these scripts can be
replaced with other fixed or even learnable agent policies,
and the sector action can simply be which of these policies
the agents within should use, similar to a meta-learning ap-
proach (Frans et al. 2017). To avoid switching behaviors too
often and to make exploration easier via temporal abstrac-
tion, the sector action is only changed every k environment
time steps. A value of k = 5 was chosen based on a brief
tuning process. As a note, keeping the sector action fixed for
a number of steps is recommended in conjunction with mod-
erately intelligent scripts or policies. Otherwise, extremely
basic scripts might move left for 1 step and then keep collid-
ing into another unit or a wall for the remaining n−1 steps.

The network input is the global state, a 64× 64 grid with
5 feature planes: obstacles, own and enemy units and own

Figure 2: Randomly generated MAgent scenario, 64 × 64
map with 40 units on each side, loosely split into groups.



and enemy hit-points. All features are normalised by their
maximum possible values.

Model and Training Settings
The network used for the sector abstraction is shown in Fig-
ure 1, with actions being emitted on a 4× 4 sector granular-
ity, unless otherwise specified. For IQL, the input is a 13×13
observation centered around the agent’s position, with 7 fea-
ture planes. In addition to the 5 already mentioned, there are
two more layers containing minimap information for both
armies. For these layers, the original map unit information
is scaled down to 13 × 13, and normalised such that each
cell value is equal to the number of units within divided by
total number of alive units. A value of 1 is added to the cell
containing the acting agent, in the allied minimap. These
minimap layers were included to provide the agents infor-
mation about the global state.

The IQL network consists of one 4 × 4 stride-2 convo-
lutional layer followed by two 3 × 3 stride-1 convolutional
layers, all three with 32 filters and followed by ReLU acti-
vations and batch normalisation. A linear layer of 256 units
follows, and two output heads for the value and advantage
functions which are summed to extract the final Q-values.

The learning algorithm is based on DQN (Mnih et al.
2015), with the dueling architecture update and N -step re-
turns, with N = 3 across all experiments. The replay buffer
contains the most recent 300k experiences. Training starts
after the buffer is populated with 10k experiences. Batches
of 128 experiences are sampled uniformly from the replay
buffer every 128 steps played, and the network parameters
are updated. The target network is updated every 3000 time
steps. All experiments use γ = 0.99.

All networks are trained using the Adam learning algo-
rithm (Kingma and Ba 2014) with the learning rate initial-
ized with 0.000625 for our method and with 0.0001 for IQL,
both chosen after brief tuning on a 40 × 40 scenario with
10 units per army. Exploration during training is performed
using independent ε-greedy action selection, in which each
sector chooses its action greedily using only its own QSi

.
The ε value is annealed from 1.0 to 0.02 over the first 50k
games and kept constant afterwards.

Results
We train all models with 700k games against the handcrafted
script mentioned in the previous section. After every 1000
training games 100 test games are played independently
with actions chosen greedily in evaluation mode – i.e., ε
for exploration is set to 0. In what follows the proportion
of these games in which all enemy units are defeated within
the target time limit is called test win rate.

Figures 3 and 4 show the test win rate for three single
runs of IQL and Spatial Action Decomposition Learning, on
64 × 64 grid scenarios with 20, 40, and 80 units for each
side. For the chosen parameter settings IQL fails to learn
how to defeat the script consistently — not even achieving
a 50% win rate. The training also appears to be unstable at
times. As described in the introduction, this may be caused
by all agents exploring simultaneously. We speculate that
using VDNs could mitigate this problem, and isolating the

Figure 3: Test win rate for IQL and different army sizes mea-
sured every 1000 games during training, A sliding window
of length 20 is used for smoothing

Figure 4: Test win rate for the 4×4 sector multi-agent action
network and different army sizes. The same methodology
was used as in Figure 3.

effect of the sector abstraction, comparison to an IQL+VDN
baseline is on our todo-list.

Our method shows a more stable learning behavior and
can consistently defeat the opponent in more than 80% of
the games after training. Controlling 80 units well seems
significantly more difficult than 20 or 40, as shown by the
slower learning process. We think this is because there are
more units placed randomly behind the enemy lines. Group-
ing allied units while dealing with the enemy’s requires more
complex maneuvering, and often makes consolidation of
one’s army more difficult.

From a qualitative point of view, our method displays
forms of coordination such as surrounding or attacking the
enemy on a wider front and fleeing from a stronger group
of enemies until regrouping with the rest of the army. Snap-
shots from a sample game are shown in Figure 7. We ob-
served our system often using a small number of units as
bait to split the enemy forces and fighting them one-by-one.

Learning with a model that uses 8 × 8 sectors is more
challenging. Firstly, it gets stuck more often in local optima
of predominantly choosing to attack and avoiding move ac-
tions. This is likely due to the more difficult exploration
induced by the 64 sectors. Using mostly attack actions leads
to test win rates around 50%, as expected. After the con-



Figure 5: Test win rate for 4 × 4 and 8 × 8 sector decom-
position, for models trained on scenarios with 20 units per
army.

Figure 6: Results after 700k games of learning, for methods
trained with scenarios of a specific army size (20, 40 or 80
units). Win rate is shown for evaluation in scenarios with a
range of different army sizes, from 5 to 100.

volutional layers and S1 were initialised with weights from
a trained 4× 4 sectors model, learning proceeded smoothly
and 75% win rates were reached, as seen in Figure 5. Build-
ing on representations and features learned by the 4 × 4
model helps exploration in the more difficult 8× 8 scenario.
Assigning credit for four times as many sectors is more dif-
ficult and as expected, learning converges more slowly with
the maximum win rate being 10% lower.

Finally, Figure 6 shows the win rate of the 6 trained mod-
els from Figures 3 and 4 on scenarios with a range of differ-
ent starting army sizes, instead of the only one used through-
out the training. Models trained with fewer units do not gen-
eralize well, and both models that learned using a maximum
of 20 units fail to win a single match when controlling more
than 100 units. Sector models trained with more units do not
perform too well in smaller battles either, mostly because
although the network eventually sees states with few units,
they are very differently positioned from the starting states
of small scenarios. Better performance could be obtained by
designing a mixed curriculum of battles. IQL has worse per-
formance, but using larger armies results in stronger policies
even on the smaller scenarios. That might be because with
IQL, more agents translate into more experience samples.

Figure 7: Snapshots from an 80v80 game played after 700k
training games by the 4 × 4 sector algorithm (red units)
against the scripted player (blue units). Baiting behavior to
split the enemy forces can be observed multiple times.

Conclusions and Future Work
In this paper we study cooperative-competitive multi-agent
RL with agents learning from a single team reward signal.
Both individual as well as centralized learners fail to scale
successfully with growing team sizes, and decomposing the
joint action-value function into per-agent action-value func-
tions has previously shown great promise. Here we present
a method that exploits existing spatial action correlations to
decompose the joint action-value function on a per-sector
basis instead, and show its effectiveness in both small and
large scale scenarios. Results for combat scenarios with 20
to 80 units per side show improved performance over simple
scripting and independent Q-learning.

Without a doubt the presented method can be improved
in various ways. For instance, QMIX can be used to facili-
tate non-linearQ-value mixing, and low-level sector policies
could be learned rather than using fixed scripts. Also, skip-
connections can be used to enrich high-level features with
low-level map details – providing high-fidelity context to
lower-level action generation. Another interesting research
avenue is a deeper integration of hierarchical action-value
functions operating at different temporal scales (Kulkarni et
al. 2016), as temporally-abstracted exploration should help
alleviate some of the problems that arise when decompos-
ing the map in more and more sectors. Another remark is
that while moving agents at a higher level is spatially cor-
related, often professional players control close units very
distinctively based on their abilities and the tactical situa-
tion. To allow for such fine-grained control an option would
be the use of very small sectors, or of more complex tactical
algorithms as sector actions. Lastly, one can imagine that
based on the learned Q-functions it may be possible to fo-
cus Monte Carlo tree search similar to AlphaGo (Silver et
al. 2016) to construct much stronger multi-agent systems.



References
Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A
comprehensive survey of multiagent reinforcement learn-
ing. IEEE Trans. Systems, Man, and Cybernetics, Part C
38(2):156–172.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In Proceedings
of the Eighth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, AIIDE’12, 112–117.
Claus, C., and Boutilier, C. 1998. The dynamics of rein-
forcement learning in cooperative multiagent systems. AAAI
746–752.
Colby, M. K.; Kharaghani, S.; HolmesParker, C.; and
Tumer, K. 2015. Counterfactual exploration for improv-
ing multiagent learning. In Proceedings of the 2015 In-
ternational Conference on Autonomous Agents and Multi-
agent Systems, 171–179. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Dayan, P., and Hinton, G. E. 1993. Feudal reinforcement
learning. In Hanson, S. J.; Cowan, J. D.; and Giles, C. L.,
eds., Advances in Neural Information Processing Systems 5.
Morgan-Kaufmann. 271–278.
Devlin, S.; Yliniemi, L.; Kudenko, D.; and Tumer, K. 2014.
Potential-based difference rewards for multiagent reinforce-
ment learning. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems,
165–172. International Foundation for Autonomous Agents
and Multiagent Systems.
Dumoulin, V., and Visin, F. 2016. A guide to con-
volution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285.
Eck, A.; Soh, L.-K.; Devlin, S.; and Kudenko, D. 2016.
Potential-based reward shaping for finite horizon online
pomdp planning. Autonomous Agents and Multi-Agent Sys-
tems 30(3):403–445.
Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; and
Whiteson, S. 2017a. Counterfactual multi-agent policy gra-
dients. arXiv preprint arXiv:1705.08926.
Foerster, J.; Nardelli, N.; Farquhar, G.; Torr, P. H. S.; Kohli,
P.; and Whiteson, S. 2017b. Stabilising experience replay
for deep Multi-Agent reinforcement learning. arXiv preprint
arXiv:1702.08887.
Frans, K.; Ho, J.; Chen, X.; Abbeel, P.; and Schulman, J.
2017. Meta learning shared hierarchies. arXiv preprint
arXiv:1710.09767.
Guestrin, C.; Koller, D.; and Parr, R. 2002. Multiagent
planning with factored MDPs. In Advances in neural infor-
mation processing systems, 1523–1530.
Gupta, J. K.; Egorov, M.; and Kochenderfer, M. 2017.
Cooperative multi-agent control using deep reinforcement
learning. In Autonomous Agents and Multiagent Systems,
66–83. Springer International Publishing.

Hausknecht, M. J. 2016. Cooperation and communication in
multiagent deep reinforcement learning. Ph.D. Dissertation,
The University of Texas at Austin.
Jorge, E.; Kågebäck, M.; Johansson, F. D.; and Gustavs-
son, E. 2016. Learning to play guess who? and invent-
ing a grounded language as a consequence. arXiv preprint
arXiv:1611.03218.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.
Kulkarni, T. D.; Narasimhan, K.; Saeedi, A.; and Tenen-
baum, J. 2016. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In
Advances in neural information processing systems, 3675–
3683.
Laurent, G. J.; Matignon, L.; Fort-Piat, L.; and Others. 2011.
The world of independent learners is not Markovian. Inter-
national Journal of Knowledge-based and Intelligent Engi-
neering Systems 15(1):55–64.
Leibo, J. Z.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and
Graepel, T. 2017. Multi-agent reinforcement learning in
sequential social dilemmas. 464–473.
Lelis, L. H. 2017. Stratified strategy selection for unit con-
trol in real-time strategy games. In International Joint Con-
ference on Artificial Intelligence, 3735–3741.
Levy, A.; Platt, R.; and Saenko, K. 2017. Hierarchical actor-
critic. arXiv preprint arXiv:1712.00948.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Ontañón, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665–702.
Panait, L., and Luke, S. 2005. Cooperative multi-agent
learning: The state of the art. Auton. Agent. Multi. Agent.
Syst. 11(3):387–434.
Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.;
and Wang, J. 2017. Multiagent Bidirectionally-Coordinated
nets for learning to play StarCraft combat games. arXiv
preprint arXiv:1703.10069.
Rashid, T.; Samvelyan, M.; de Witt, C. S.; Farquhar, G.; Fo-
erster, J.; and Whiteson, S. 2018. QMIX: Monotonic value
function factorisation for deep Multi-Agent reinforcement
learning. arXiv preprint arXiv:1803.11485.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of Go with deep neural networks and tree search.
Nature 529(7587):484–489.
Sukhbaatar, S.; Szlam, A.; and Fergus, R. 2016. Learning
multiagent communication with backpropagation. In Lee,
D. D.; Sugiyama, M.; Luxburg, U. V.; Guyon, I.; and Gar-
nett, R., eds., Advances in Neural Information Processing
Systems 29. Curran Associates, Inc. 2244–2252.
Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W. M.;
Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.;



Leibo, J. Z.; Tuyls, K.; and Graepel, T. 2017. Value-
Decomposition networks for cooperative Multi-Agent learn-
ing. arXiv preprint arXiv:1706.05296.
Tan, M. 1993. Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. In Proceedings of the tenth
international conference on machine learning, 330–337.
Usunier, N.; Synnaeve, G.; Lin, Z.; and Chintala, S. 2016.
Episodic exploration for deep deterministic policies: An ap-
plication to starcraft micromanagement tasks. arXiv preprint
arXiv:1609.02993.
Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhn-
evets, A. S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou,
J.; Schrittwieser, J.; Quan, J.; Gaffney, S.; Petersen, S.; Si-
monyan, K.; Schaul, T.; van Hasselt, H.; Silver, D.; Lilli-
crap, T.; Calderone, K.; Keet, P.; Brunasso, A.; Lawrence,
D.; Ekermo, A.; Repp, J.; and Tsing, R. 2017. StarCraft II:
A new challenge for reinforcement learning. arXiv preprint
arXiv:1708.04782.
Wang, C.; Chen, P.; Li, Y.; Holmgård, C.; and Togelius, J.
2016a. Portfolio online evolution in starcraft. In Twelfth
Artificial Intelligence and Interactive Digital Entertainment
Conference, 114–120.
Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.;
and Freitas, N. 2016b. Dueling network architectures for
deep reinforcement learning. In International Conference
on Machine Learning, 1995–2003.
Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; and Wang,
J. 2018. Mean field multi-agent reinforcement learning.
arXiv preprint arXiv:1802.05438.
Zheng, L.; Yang, J.; Cai, H.; Zhang, W.; Wang, J.; and Yu,
Y. 2017. Magent: A many-agent reinforcement learning
platform for artificial collective intelligence. arXiv preprint
arXiv:1712.00600.


