
Puppet Search: Enhancing Scripted Behavior by Look-Ahead Search
with Applications to Real-Time Strategy Games

Nicolas A. Barriga, Marius Stanescu, and Michael Buro
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8
{barriga|astanesc|mburo}@ualberta.ca

Abstract

Real-Time Strategy (RTS) games have shown to be very re-
silient to standard adversarial tree search techniques. Re-
cently, a few approaches to tackle their complexity have
emerged that use game state or move abstractions, or both.
Unfortunately, the supporting experiments were either lim-
ited to simpler RTS environments (µRTS, SparCraft) or lack
testing against state-of-the-art game playing agents.
Here, we propose Puppet Search, a new adversarial search
framework based on scripts that can expose choice points to
a look-ahead search procedure. Selecting a combination of a
script and decisions for its choice points represents a move
to be applied next. Such moves can be executed in the actual
game, thus letting the script play, or in an abstract represen-
tation of the game state which can be used by an adversarial
tree search algorithm. Puppet Search returns a principal vari-
ation of scripts and choices to be executed by the agent for a
given time span.
We implemented the algorithm in a complete StarCraft bot.
Experiments show that it matches or outperforms all of the
individual scripts that it uses when playing against state-of-
the-art bots from the 2014 AIIDE StarCraft competition.

Introduction
Unlike several abstract games such as Chess, Checkers, or
Backgammon, for which strong AI systems now exist that
play on par with or even defeat the best human players,
progress on AI systems for Real-Time Strategy (RTS) video
games has been slow (Ontanón et al. 2013). For example, in
the man-machine matches following the annual StarCraft AI
competitions held at the AIIDE conference, a strong human
player was able to defeat the best bots with ease in recent
years.

When analysing these games several reasons for this play-
ing strength gap become apparent: to start with, good human
players have knowledge about strong openings and playing
preferences of opponents they encountered before. They also
can quickly identify and exploit non-optimal opponent be-
haviour, and — crucially — they are able to generate robust
long-term plans, starting with multi-purpose build orders in
the opening phase. Game AI systems, on the other hand, are
still mostly scripted, have only modest opponent modelling

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

abilities, and generally don’t seem to be able to adapt to un-
foreseen circumstances well. In games with small branch-
ing factors a successful approach to overcome these issues
is to use look-ahead search, i.e. simulating the effects of ac-
tion sequences and choosing those that maximize the agent’s
utility. In this paper we present and evaluate an approach
that mimics this process in video games featuring vast search
spaces by reducing action choices by means of scripts that
expose choice points to the look-ahead search.

Background

A few attempts have been made recently to use state and
action abstraction in conjunction with adversarial search in
RTS games. (Stanescu, Barriga, and Buro 2014a; 2014b)
propose Hierarchical Adversarial Search in which each
search layer works at a different abstraction level, and each
is given a goal and an abstract view of the game state. The
top layer of their three layer architecture chooses a set of
objectives needed to win the game, the middle layer gener-
ates possible plans to accomplish those objectives, and the
bottom layer evaluates those plans and executes them at the
individual unit level. For search purposes the game is ad-
vanced at the lowest level and the resulting states are ab-
stracted back up the hierarchy. Their algorithm was tested
in SparCraft, a StarCraft simulator that only supports basic
combat. The top level objectives, therefore, were restricted
to destroying all opponent units while defending their own.
Though this algorithm is general enough to encompass a
full RTS game, only combat-related experiments were con-
ducted.

Another proposal, by (Uriarte and Ontañón 2014a;
2014b), followed a different path, by abstracting the game
state, searching at the highest abstraction level, and then
translating the results back to the lower level for execution.
The state representation uses a decomposition of the map
into connected regions, and groups all units of the same type
into squads in each region. Moves are restricted to squads,
which can move to a neighboring region, attack, or stay idle.
This approach, similar to the previous one, only deals with
combat, but it was added to an existing StarCraft bot, so that
it can play a full game. However, results were only presented
for playing against the built-in AI which is much weaker
than state-of-the-art bots.

Puppet Search
Our new search framework is called Puppet Search. At its
core it is an action abstraction mechanism that, given a non-
deterministic strategy, works by constantly selecting action
choices that dictate how to continue the game based on look-
ahead search results. Non-deterministic strategies are de-
scribed by scripts that have to be able to handle all aspects
of the game and may expose choice points to a search algo-
rithm the user specifies. Such choice points mark locations
in the script where alternative actions are to be considered
during search, very much like non-deterministic automata
that are free to execute any action listed in the transition re-
lation. So, in a sense, Puppet Search works like a puppeteer
who controls the limbs (choice points) of a set of puppets
(scripts).

More formally, we can think of applying the Puppet
Search idea to a game as 1) creating a new game in which
move options are restricted by replacing original move
choices with potentially far fewer choice points exposed by
a non-deterministic script, and 2) applying a search or solu-
tion technique of our choice to the transformed game, which
will depend on characteristics of the new game, such as be-
ing a perfect or imperfect information game, or a zero sum
or general sum game.

Because we control the number of choice points in this
process, we can tailor the resulting AI systems to meet given
search time constraints. For instance, suppose we are inter-
ested in creating a fast reactive system for combat in an RTS
game. In this case we will allow scripts to expose only a
few carefully chosen choice points, if at all, resulting in fast
searches that may sometimes miss optimal moves, but gen-
erally produce acceptable action sequences quickly. Note,
that scripts exposing only a few choice points or none don’t
necessarily produce mediocre actions because script com-
putations can themselves be based on (local) search or other
forms of optimizations. If more time is available, our search
can visit more choice points and generate better moves. Fi-
nally, for anytime decision scenarios, one can envision an it-
erative widening approach that over time increases the num-
ber of choice points scripts expose, thereby improving move
quality.

The idea of scripts exposing choice points originated from
witnessing poor performance of scripted RTS AI systems
and realizing that one possible improvement is to let look-
ahead search make fundamental decisions based on evaluat-
ing the impact of chosen action sequences. Currently, RTS
game AI systems still rely on scripted high level strategies
(Ontanón et al. 2013), which, for example, may contain code
that checks whether now is a good time to launch an all-in at-
tack based on some state feature values. However, designing
code that can accurately predict the winner of such an assault
is tricky, and comparable to deciding whether there is a mate
in k moves in Chess using static rules. In terms of code com-
plexity and accuracy it is much preferable to launch a search
to decide the issue, assuming sufficient computational re-
sources are available. Likewise, letting look-ahead search
decide which script choice point actions to take in complex
video games has the potential to improve decision quality
considerably while simplifying code complexity.

In the rest of the paper we will use the following terminol-

ogy when discussing general aspects of Puppet Search and
its application to RTS games in particular:

Game Move: a move that can be applied directly to the
game state. It could be a simple move such as placing a
stone in Go, or a combined move like instructing several
units to attack somewhere while at the same time order-
ing the construction of a building and the research of an
upgrade in an RTS game like StarCraft.

Script: a function that takes a game state and produces a
game move. How the move is produced is irrelevant —
it could be rule based, search based, etc. A script can
expose choice points, asking the caller of the function
to make a decision on each particular choice applicable
to the current game state, which we call puppet move.
For instance, one possible implementation could provide
function GETCHOICES(s) which returns a set of puppet
moves in game state s that a script offers, together with
function EXECCHOICE(s,m) that applies script moves to
state s following puppet move choice m.

Applying Puppet Search
Reducing the search space in the fashion described above
allows AI systems to evaluate long-term effects of actions,
which for instance has been crucial to the success of Chess
programs. If we wanted to apply Puppet Search to a stan-
dard two player, zero sum, perfect information game we can
use any existing adversarial tree search algorithm and have
it search over sequences of puppet moves. Monte-Carlo Tree
Search (MCTS) (Kocsis and Szepesvári 2006) seems partic-
ularly well suited, as it does not require us to craft an evalu-
ation function, and scripts already define playout policies.
Alpha-Beta search could also be used, granted a suitable
evaluation function can be provided for the game.

Puppet Search does not concern itself with either the ori-
gin or the inner workings of scripts. E.g., scripts can be pro-
duced by hand coding expert knowledge, or via machine
learning approaches (Synnaeve, Bessiere, and others 2011;
Ontañón et al. 2008). Also, scripts can produce moves in
a rule-based fashion or they can be search based (Ontañón
2013; Churchill and Buro 2013).

Algorithm 1 shows a variant of Puppet Search which
is based on ABCD (Alpha-Beta Considering Durations)
search, that itself is an adaptation of Alpha-Beta search to
games with simultaneous and durative actions (Churchill,
Saffidine, and Buro 2012). To reduce the computational
complexity of solving multi-step simultaneous move games,
ABCD search implements approximations based on move
serialization policies which specify the player which is to
move next (line 3) and the opponent thereafter. Policies they
discuss include random, alternating, and alternating in 1-2-
2-1 fashion, to even out first or second player advantages.

To fit into the Puppet Search framework for our hypothet-
ical simultaneous move game we modified ABCD search so
that it considers puppet move sequences and takes into ac-
count that at any point in time both players execute a puppet
move. The maximum search depth is assumed to be even,
which lets both players select a puppet move to forward the
world in line 9. Moves for the current player are generated
in line 4. They contain choice point decisions as well as the

Algorithm 1 Puppet ABCD Search
1: procedure PUPPETABCD(s, h,m1, α, β)
2: if h = 0 or TERMINAL(s) then return EVAL(s)
3: toMove← PLAYERTOMOVE(s, policy, h)
4: for m2 in GETCHOICES(s, toMove) do
5: if m1 = ∅ then
6: v← PUPPETABCD(s, h− 1,m2, α, β)
7: else
8: s′ ←COPY(s)
9: EXECCHOICES(s′,m1,m2)

10: v← PUPPETABCD(s′, h− 1, ∅, α, β)
11: end if
12: if toMove = MAX and v > α then α← v
13: if toMove = MIN and v < β then β ← v
14: if α ≥ β then break
15: end for
16: return toMove = MAX ? α : β
17: end procedure

player whose move it is. Afterwards, if no move was passed
from the previous recursive call (line 5), the current player’s
move m2 is passed on to a subsequent PUPPETABCD call
at line 6. Otherwise, both players’ moves are applied to the
state (line 9). The exact mechanism of applying a move is
domain specific. We will give an example specific to RTS
games later (Algorithm 2). The resulting Algorithm 1 is the
search routine that will be used in the Puppet Search appli-
cation to a real RTS game which we discuss next.

Puppet Search in RTS Games
This section describes the implementation of Puppet Search
in a StarCraft game playing agent. StarCraft is a popular
RTS game in which players can issue actions to all indi-
vidual game units under their control — simultaneously —
several times per second. Moreover, some actions are not
instantaneous — they take some time to complete and their
effects are sometimes randomized, and only a partial view of
the game state is available to the players. Finally, the size of
the playing area, the number of available units, and the num-
ber of possible actions at any given time are several orders
of magnitude larger than most board games.

Our implementation tackles some of these issues by
adapting standard AI algorithms, such as serializing moves
in simultaneous move settings, or ignoring some issues alto-
gether, for instance by assuming deterministic action effects
and perfect information. Also, due to software limitations
such as the lack of access to the engine to forward the world
during the search and the unavailability of a suitable simula-
tor, several simplifications had to be made.

Concurrent Actions and Script Combinations
So far we have presented a puppet move as a choice in a
single script. In the presence of concurrent actions in RTS
games, such as “send unit A there” and “send unit B there”,
it might be more natural to let a set of scripts deal with units
or groups independently — each of them exposing their own
choice points as necessary. To fit this into the Puppet Search
framework, we could combine all such scripts and define
a single choice point whose available (concurrent) puppet

moves consist of vectors of the individual scripts’ puppet
moves. For example, a concurrent puppet move could be a
pair of low-level puppet moves such as “take option 2 at the
choice point of the script dealing with unit group A, and
option 3 at the choice point of group B”, which could mean
“A assaults the main base now and B builds a secondary
base when the game reaches frame 7000”. The puppet move
pair can then be executed for a fixed time period, or as long
as it takes the search to produce an updated plan, or as long
as no script encounters a choice point for which the move
doesn’t contain a decision. An example of the latter could
be that the enemy built the infrastructure to produce invisible
units which we cannot detect with our current technology. If
that possibility wasn’t encountered by the search, there is no
decision made for that choice point.

In another scenario we may have access to multiple scripts
that implement distinct full game strategies. For example,
we could regard all programs participating in recent Star-
Craft AI competitions as scripts, and try to combine them
into one StarCraft player based on the Puppet Search idea,
by identifying weak spots in the individual strategies, ex-
posing appropriate choice points, and then adding a choice
point at the top that would give the AI system the option to
continue executing one of the scripts for a given number of
frames or until certain game events happen.

StarCraft Scripts
A common type of strategy in StarCraft is the rush: trying
to build as many combat units as fast as possible, in an ef-
fort to destroy the opponent’s base before he has the time to
build suitable defences. This kind of strategy usually sac-
rifices long term economy in exchange for early military
power. A range of rushes are possible, from quickly obtain-
ing several low level units, to waiting some time to obtain a
handful of high level units. We have implemented four rush
strategies that fall in that spectrum: S1) Zealot rush: a fast
rush with inexpensive units, S2) Dragoon rush: somewhat
slower and stronger, S3) Zealot/Dragoon rush: combines the
previous two, and S4) Dark Templar rush: slower, but cre-
ating more powerful units. We expect Puppet Search to be
able to figure out which unit types are more suitable to as-
sault the enemy’s base, and adapt to changes —by switching
unit types— in the opponent’s defensive force composition
during the game. The scripts share the rest of the functional-
ity needed to satisfy the requirement that they must be able
to play a full game.

Planning and Execution
During game play, a player receives the state of the game
and can issue actions to be applied to that state by the game
engine. This happens at every game frame, whether you are
a human interacting with StarCraft via the GUI, or a bot re-
ceiving a game state object and returning a vector of actions.
We call this the execution phase.

The vector of actions to be executed is decided in the
planning phase, usually by some form of look-ahead search
which requires a mechanism to see the results of applying
actions to a state. A video game bot cannot use the game
engine because sending a move to it would execute it in the
game. Instead, it needs to be able to simulate the game. If a

perfect game simulation existed, aligning planning and exe-
cution is easy, as it is the case for traditional board games,
in which, for instance, the look-ahead search can know the
exact outcome of advancing a pawn in a game of Chess. In
the following subsections we will discuss problems arising
from inaccurate simulations further.

Another important aspect is that in most turn based games
planning and execution are interleaved: at each turn, the
player to move takes some time to plan, and then executes a
single move. That need not be the case in general, however,
as the plan returned by the search could consist of several
moves. As long as the moves are legal, we can continue ex-
ecuting the same plan. In our case, the plan returned by the
planning phase is a collection of decisions in a script that
can play a full game. So it can be used for execution as long
as it doesn’t reach a choice point for which no decision has
been selected yet.

State Representation and Move Execution
The StarCraft game state contains every unit’s state — po-
sition, hit points, energy, shields, current action, etc. — plus
some general information about each side such as upgrades,
resources, and map view. We will make a copy of all this
information into a state data structure of our own which is
used in our search procedure.

During the search, applying a puppet move requires for-
warding the game state for a certain number of frames during
which buildings need to be constructed, resources mined,
technology researched, units moved, and combat situations
resolved. We use the Build Order Search System (BOSS)
(Churchill and Buro 2011) for forwarding the economy and
SparCraft (Churchill and Buro 2013) for forwarding bat-
tles. BOSS is a library that can simulate all the economic
aspects of a StarCraft game — resource gathering, build-
ing construction, unit training and upgrades —, while Spar-
Craft is a combat simulator. That still leaves unit movement
for which we implemented a simplified version of our bot’s
logic during the game: during the execution phase, our bot
acts according to a set of rules or heuristics to send units to
either defend regions under attack or attack enemy regions.
We mimic those rules, but as we cannot use the StarCraft en-
gine to issue orders to units and observe the results of those
actions, we built a high level simulation in which units are
grouped into squads and these squads move from one region
to another along the shortest route, towards the region they
are ordered to defend or attack. If they encounter an enemy
squad along the way, SparCraft is used to resolve the bat-
tle. Although this simulation is not an exact duplicate of the
bot’s in-game logic, it is sufficiently accurate to allow the
search to evaluate move outcomes with respect to combat.

Forwarding the world by a variable number of frames
generates an uneven tree in which two nodes at the same
tree depth are possibly not referring to the same game time
(i.e., move number in board games, or game frame in RTS
games). Evaluating such nodes has to be done carefully. Un-
less we use an evaluation function with a global interpreta-
tion — such as winning probability or expected game score
— iterative deepening by search depth cannot be performed
because values of states at very different points in the game
could be compared. Therefore, the iterative deepening needs

Algorithm 2 Executing Choices and Forwarding the World
1: procedure EXECCHOICES(State s, Move m1, Move
m2)

2: define constant frameLimit = N
3: b1 ← GETBUILDORDER(s,m1)
4: b2 ← GETBUILDORDER(s,m2)
5: while s.currentFrame < frameLimit and b1 6= ∅ and
b2 6= ∅ and CHECKCHOICEPOINTS(s) do

6: b← POPNEXTORDER(b1, b2) . get the next order
. that can be executed

7: t← TIME(b) . time at which order
. b can be executed

8: FORWARDECONOMY(s, t) . gather resources,
. finish training units,

. build buildings
9: BOSSENQUEUEORDER(s, b)

10: FORWARDSQUADS(s, t) . movement and combat
11: end while
12: end procedure

to be performed with respect to game time.
Because simultaneously forwarding the economy, squads,

and battles is tricky and computationally expensive, we de-
cided that the actions that take the longest game time would
dictate the pace: forwarding the economy, as shown in Al-
gorithm 2. Every time we need to apply a move, the script
is run, and it returns an ordered list of buildings to construct
(lines 3, 4). In line 8, the state is forwarded until the prereq-
uisites (resources and other buildings) of the next building
on the list are met. The building is then added to the BOSS
build queue (line 9), so that next time the economy is for-
warded, its construction will start. Then, at line 10, squad
movement and battles are forwarded for the same number of
frames. The scripts will then be consulted to check if they
have hit an undecided choice point, in which case the for-
warding stops. This cycle continues until either a build list
becomes empty, the game ends, or a given frame limit N is
reached. For simplicity we show this frame limit as a con-
stant in line 2.

Search
Due to having an imperfect model for forwarding unit move-
ment and combat, we decided against against using MCTS
which would heavily rely on it in the playout phase. In-
stead we opted for using a modified Alpha-Beta search. We
only search to even depths which ensures that each player
chooses a puppet move and both moves can be applied si-
multaneously. Iterative deepening is done by game time, not
by search depth. In every iteration we increase the depth by
N frames. When applying a pair of moves, the world will be
forwarded by N frames until one of the build orders is com-
pleted or until a new choice point is reached. The algorithm
then continues with making the next recursive call. Due to
the three different stopping conditions, a search for X frames
into the future can reach nodes at different depths.

State Evaluation
We evaluated a few approaches, such as the destroy score
used in (Uriarte and Ontañón 2014b; 2014a) or LTD2 (Ko-

varsky and Buro 2005; Churchill, Saffidine, and Buro 2012).
The first one is a score assigned by StarCraft to each unit
based on the resources required to build it, which for our
purposes overvalues buildings. The second is LTD2 (“Life-
Time-Damage-2”), a measure of the average damage a unit
can deal over its lifetime, which doesn’t value non-attacking
units and buildings at all, and even for combat units, it
doesn’t account for properties such as range or speed, or
special abilities like cloaking. Instead of trying to handcraft
an evaluation function that addresses these shortcomings we
decided to use a model based on Lanchester’s attrition laws
presented in (Anonymized for Peer Review 2015). It auto-
matically trains an evaluation function for units, tuned to
each individual opponent. It still only accounts for combat
units, so an obvious next step would be to use a function that
evaluates the entire game state as described in (Erickson and
Buro 2014).

Hash Tables
Because move execution is costly we use a hash table to
store states, indexed by hashing the sequence of moves used
to get to that state. It works similarly to a transposition ta-
ble based on Zobrist hashing (Zobrist 1970), but as the state
is too big and costly to hash, we instead hash the sequence
of moves leading to the current state from the root. Clearing
a big hash table can be costly. So, to avoid clearing it after
every search, at the root of the tree the hash value is seeded
with a 64-bit random number. This makes it very unlikely
that hashes from two different searches match. The table is
then indexed by the hash value modulo the table size, and
the hash value itself is stored along with the state. This hash
table can be queried to see if a certain move was previously
applied to a certain state, in which case the successor state
can simply be retrieved instead of applying the move again.
A standard transposition table is also used, with the same
hashing mechanism as the hash table. As we are hashing
the moves that lead to a state, rather than the state itself,
we don’t expect any transpositions to arise with our hash-
ing mechanism, so the table is only used for retrieving best
moves for states already seen which likely lead to earlier
beta cut-offs when considered first.

Implementation Limitations
StarCraft runs at 24 frames per second, but our search needs
more time than the 42[ms] between frames. StarCraft also
has a hard limit of 45 seconds of inactive time before force-
fully forfeiting the game. To handle this limitations, our cur-
rent implementation freezes the game for six seconds of
thinking time when it needs to get a new puppet move. This
happens whenever the build order returned by the previous
puppet move is fully constructed, approximately every 1500
to 2500 frames. We found this to be a good balance be-
tween the depth of a single search instance, vs. how many
searches we can execute during a complete game. Future im-
provements could be either to spread the search computation
across several frames, or to move it to a background thread,
which is not trivial due to BWAPI not being thread safe.

Dealing with imperfect information is not in this paper’s
scope, so in our experiments we disable StarCraft’s Fog of
War. Having the full game state information available to our

agent, the game state at the beginning of the search contains
both players’ units and buildings. To avoid giving our bot an
unfair advantage over its opponents, we retain our base bot’s
scouting behaviour and do not use the extra information ex-
cept for the initial state of the search.

Both simplifications have been used before. For instance,
(Uriarte and Ontañón 2014b) pause games for up to 30 sec-
onds every 400 frames and also disables the Fog of War.

Experiments and Results
Experiments were conducted using 12 VirtualBox virtual
machines (VMs), each equipped with 2 cores of an Intel
Xeon E5420 CPU running at 2.5GHz, and 2GB of RAM.
The guest operating system was Microsoft Windows XP
SP3. The StarCraft AI Tournament Manager (github.com/
davechurchill/StarcraftAITournamentManager)
was used to coordinate the matches. The default tournament
timeout policy was changed to allow our bot to spend
6 seconds of search time it needs when the build queue
runs out about every 2000 frames. As our bot currently
contains only Protoss scripts for Puppet Search to use, we
play against 6 of the top AIIDE 2014 Protoss bots (Ximp,
Skynet, UAlbertaBot, Xelnaga, Aiur, and MooseBot)
named E1. . . E6 on the 10 maps used in the 2014 AIIDE
StarCraft AI competition. We will compare Puppet Search’s
performance against E1. . . E6 with that of 4 versions of our
bot playing a fixed script (S1. . . S4).

Table 1 shows the results of Puppet Search compared to
the fixed scripts by playing against AIIDE 2014 bots. Our
bot has a higher win rate than all individual scripts, except
for S1 for which the mean and median performances are not
statistically different from Puppet’s: the Chi-squared two-

Table 1: Win rate of individual scripts and Puppet Search
playing against AIIDE 2014 bots E1 . . . E6. 100 games were
played between each pair of bots on 10 different maps.

Med. Mean E1 E2 E3 E4 E5 E6
S1 55 49.7 0 42 47 78 68 63
S2 29.5 31.5 28 31 13 42 56 19
S3 18 19.8 6 20 3 18 54 18
S4 40.5 40.8 1 72 2 84 77 9

Avg. 34.3 35.5 8.8 41.3 16.3 55.5 63.8 27.3
Max 67.5 61.8 28 72 47 84 77 63
P.S. 61 51.8 3 55 42 72 67 72

Table 2: Win rate of Puppet Search against individual
scripts. 100 games were played between each pair of bots
on 10 different maps.

S1 S2 S3 S4
P.S. 44 77 99 100

Table 3: Probability of winning 50 or more games out of 100
against each opponent, assuming the probabilities in Table 1
are the true winning probabilities of each bot.

E1 E2 E3 E4 E5 E6
S1 0 .07 .31 >.99 >.99 >.99
P.S. <.01 .86 .07 >.99 >.99 >.99

Table 4: Search speed, forward length and depth reached in
6 seconds. Average over 10 games.

Nodes/sec Forward length Depth[frames]
Early game 648.8 1984.2 10000
Midgame 505.9 941.4 6000

tailed P values are 0.45 and 0.39 respectively). The scripts’
average is the performance we can expect of a bot that plays
one of the four scripts at random. The scripts’ maximum
value is the performance we can expect of a bot that plays
the best script against each opponent. To be able to play this
best response, we would need access to the opponents’ bots
beforehand. This is, of course, unfeasible in a real tourna-
ment. The best we could do is select a best response to last
year’s version of each bot. But this would likely lead to a
much less robust implementation that wouldn’t be able to
respond to opponent’s behaviour changes well.

Table 1 also suggests that the search could benefit from
having access to more scripts: against all opponents for
which at least one of the scripts defeats it more than 50%
of the time Puppet Search also defeats it more than 50%
of the time. In the cases of E2 and E6, even though only
1 script performed well (S4 and S1 respectively), Puppet
Search achieves win rates of 55% and 72%, respectively.
This last result is better than any of the scripts. On the other
hand, in the two instances where no script defeated the op-
ponent (E1 and E3), the search couldn’t defeat it either.

Table 2 shows the performance of Puppet Search when
matched directly against each of the individual scripts it
uses. Puppet Search defeats three of the fixed scripts by a
wide margin, while the difference with S1 is not statistically
significant (the Binomial P value is 0.14).

Because the average win rates of our bot and script S1
are not statistically different, Table 3 shows an analysis of
the probabilities of winning 50 or more games, out of 100,
against each opponent. This shows that using Puppet Search
is more robust than using a single script, it has a higher prob-
ability of winning a series of games against a single random
opponent. This is due to S1 successfully exploiting oppo-
nents that can’t counter its fixed strategy, while using Puppet
Search produces a bot that can win against a wider variety of
opponents, but doesn’t exploit the weak opponents as much.

We should bear in mind that the implementation evalu-
ated here has some serious limitations, such as inaccurate
squad movement and combat, an evaluation function that
only accounts for combat units and searching over only a
small number of scripts. Furthermore, all four scripts encode
similar strategies, rushes, only changing the unit type used
for the rush. Because of these limitations, the average per-
formance doesn’t show improvements over the best bench-
mark script. However, the analysis of the results in Table 3
indicates some of the outcomes we can expect from a more
thorough implementation: a robust algorithm that can defeat
a wider range of opponents than any fixed strategy can, and
one that can take advantage of any script that can counter at
least a single opponent strategy.

Table 4 shows the nodes visited per second, average world
forward length and the depth reached by the search in the 6
seconds allotted. Depth is in frames because, as mentioned

earlier, we do iterative deepening by frame rather than by
tree depth. We use a frame forward limit of 2000 (Algo-
rithm 2, line 2), but as there are several stopping conditions,
this number varies. Smaller numbers mean a deeper tree
needs to be searched to reach a given frame depth. 500 nodes
per second might not seem much, but at 1000 frames of
game time forwarded on average for each node, we are run-
ning 500k frames per second. Looking 6000 frames ahead
means that Puppet Search is able to evaluate action effects
at least a quarter of the average game length into the future.

To the best of our knowledge, these are the first exper-
iments conducted for high level search algorithms in RTS
games against state-of-the-art AI systems. The search sys-
tem over high level states shown in (Uriarte and Ontañón
2014b) used StarCraft’s built-in AI as a benchmark. The
hierarchical search system implemented by (Stanescu, Bar-
riga, and Buro 2014a) used SparCraft, a StarCraft simulator
limited only to the combat aspects of RTS games.

Conclusions and Future Work
We have introduced a new search framework, Puppet
Search, that combines scripted behaviour and look-ahead
search. We presented a basic implementation as an exam-
ple of using Puppet Search in RTS games, with the goal of
reducing the search space and make adversarial game tree
search feasible. Puppet Search builds on recent work on hi-
erarchical decomposition and high-level state representation
by adding look-ahead search on top of expert knowledge in
the form of non-deterministic scripts. While in our experi-
ments the average performance against all chosen opponents
is similar to the best benchmark script, further analysis indi-
cates that Puppet Search is more robust, being able to defeat
a wider variety of opponents. Despite all the limitations of
the implementation used for the experiments, such as im-
perfect squad movement and combat modelling, incomplete
evaluation function, and small variety of scripts, our encour-
aging initial results suggest that this approach is worth fur-
ther consideration.

In future work we would like to remove the current limi-
tations of our implementation, starting with the search time
limits and the need to access the full map information. Some
techniques have been proposed to provide inference capa-
bilities to estimate the enemy’s current state from avail-
able scouting information (Weber, Mateas, and Jhala 2011;
Synnaeve and Bessiere 2011; Synnaeve, Bessiere, and others
2011; Weber and Mateas 2009). Improving the performance
of the current Alpha-Beta search will require a more com-
prehensive evaluation function. Alternatively, switching to
MCTS would need more accurate combat and squad move-
ment simulation to perform playouts. Even with the simple
scripts available, Puppet Search manages to produce a robust
player, showing it is more than just the sum of its compo-
nents. However, some effort needs to be dedicated to craft-
ing scripts that contain choice points dealing with as wide
a range of situations as possible, to provide Puppet Search
with the building blocks it needs to adapt to any scenario.

As for the general idea of Puppet Search, we believe it has
great potential to improve decision quality in other complex
domains as well in which expert knowledge in form of non-
deterministic scripts is available.

References
Anonymized for Peer Review. 2015. Using Lanchester at-
trition laws for combat prediction in StarCraft. In review for
Eleventh Annual AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).
Churchill, D., and Buro, M. 2011. Build order optimization
in StarCraft. Proceedings of AIIDE 14–19.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In AI and Inter-
active Digital Entertainment Conference, AIIDE (AAAI).
Erickson, G., and Buro, M. 2014. Global state evaluation
in StarCraft. In Tenth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
Monte-Carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. Advances in Artificial Intelligence
66–78.
Ontañón, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2008.
Learning from demonstration and case-based planning for
real-time strategy games. In Prasad, B., ed., Soft Computing
Applications in Industry, volume 226 of Studies in Fuzziness
and Soft Computing. Springer Berlin / Heidelberg. 293–310.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG 5(4):293–311.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
AIIDE.
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014a. Hierar-
chical adversarial search applied to real-time strategy games.
In Tenth Annual AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).
Stanescu, M.; Barriga, N. A.; and Buro, M. 2014b. Introduc-
ing hierarchical adversarial search, a scalable search proce-
dure for real-time strategy games. In European conference
on Artificial Intelligence.
Synnaeve, G., and Bessiere, P. 2011. A Bayesian model
for opening prediction in RTS games with application to
StarCraft. In Computational Intelligence and Games (CIG),
2011 IEEE Conference on, 281–288. IEEE.
Synnaeve, G.; Bessiere, P.; et al. 2011. A Bayesian model
for plan recognition in RTS games applied to StarCraft. Pro-
ceedings of AIIDE 79–84.
Uriarte, A., and Ontañón, S. 2014a. Game-tree search over
high-level game states in RTS games. In Tenth Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence.
Uriarte, A., and Ontañón, S. 2014b. High-level representa-
tions for game-tree search in RTS games. In Tenth Artificial

Intelligence and Interactive Digital Entertainment Confer-
ence.
Weber, B. G., and Mateas, M. 2009. A data mining ap-
proach to strategy prediction. In IEEE Symposium on Com-
putational Intelligence and Games (CIG).
Weber, B. G.; Mateas, M.; and Jhala, A. 2011. A particle
model for state estimation in real-time strategy games. In
Proceedings of AIIDE, 103–108. Stanford, Palo Alto, Cali-
fornia: AAAI Press.
Zobrist, A. L. 1970. A new hashing method with application
for game playing. ICCA journal 13(2):69–73.

