
Predicting Army Combat Outcomes in StarCraft

Marius Stanescu, Sergio Poo Hernandez, Graham Erickson, Russel Greiner and Michael Buro
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8

{astanesc|pooherna|gkericks|rgreiner|mburo}@ualberta.ca

Abstract

Smart decision making at the tactical level is important
for Artificial Intelligence (AI) agents to perform well
in the domain of real-time strategy (RTS) games. This
paper presents a Bayesian model that can be used to pre-
dict the outcomes of isolated battles, as well as predict
what units are needed to defeat a given army. Model pa-
rameters are learned from simulated battles, in order to
minimize the dependency on player skill. We apply our
model to the game of StarCraft, with the end-goal of
using the predictor as a module for making high-level
combat decisions, and show that the model is capable
of making accurate predictions.

1 Introduction
1.1 Purpose
Real-Time Strategy (RTS) games are a genre of video games
in which players must gather resources, build structures
from which different kind of troops can be trained or up-
graded, recruit armies and command them in battle against
opponent armies. RTS games are an interesting domain
for Artificial Intelligence (AI) research because they repre-
sent well-defined complex adversarial systems and can be
divided into many interesting sub-problems (Buro 2004).
The current best RTS game-playing AI still performs quite
poorly against human players. Therefore, the research com-
munity is focusing on developing RTS agents to compete
against other RTS agents (Buro and Churchill 2012). For
the purpose of experimentation, the RTS game StarCraft1
is currently the most common platform used by the research
community, as the game is considered well balanced, has a
large online community of players, and has an open-source
interface (BWAPI2).

Usually, in a RTS game, there are several different com-
ponents a player needs to master in order to achieve victory.
One such sub-problem is the combat scenario (usually called
a battle). Each player has a known quantity of each type of
unit (called an army) and is trying to defeat the opponent’s

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://en.wikipedia.org/wiki/StarCraft
2http://code.google.com/p/bwapi/

army while keeping his own units alive. Combat is an im-
portant part of playing RTS games, as winning battles will
affect the outcome of a match. We consider 1) given two
specific armies (each composed of a specified set of units
of each type), predicting which will win; and 2) given one
army, specify what other army is most likely to defeat it.

1.2 Motivation

One successful framework for developing AI for the com-
bat aspect of RTS games relies on alpha-beta search, where
nodes are evaluated by estimating the combat outcome of
two specified armies (Buro and Churchill 2012) – i.e., the
winning player, assuming that the two players fight until
one of them has no units left. One standard way to pre-
dict the outcome of such a combat is to use a simulator,
where the behavior of the units is determined by determin-
istic scripts (e.g., attack closest unit) (Churchill, Saffidine,
and Buro 2012). This is time intensive, especially as the
number of units grows. The model we propose is inspired
by rating systems such as the ELO ratings used in Chess
(Elo 1978) or TrueSkillTM (Herbrich, Minka, and Graepel
2007). By learning from battle outcomes between various
combinations of units, one can predict the combat outcome
of such a battle using a simple mathematical equation, rather
than time consuming simulations. We are particularly inter-
ested in large scale battles, which would take a longer time
to solve using such simulators.

A second challenging problem is determining an army
that will have a good chance of defeating some other spec-
ified army. Given some unit combination controlled by the
opponent, we want to know similar sized armies that can
probably defeat it. A system that can answer this type of
questions could be used by tactical planners to decide which
units should be built and what unit combinations should be
sent to battle the opponent. For example, if an important lo-
cation (e.g. near a bridge or choke-point) is controlled by
the opponent with X units (X1 of type 1, X2 of type 2,
etc), what unit combination Y should be sent to defeat X?
Even more, what properties would such a combination Y re-
quire? Maybe it needs firepower above a certain threshold,
or great mobility. Currently, there are no systems that can
answer such questions quickly and accurately.

1.3 Objectives
The objectives of this work are to develop a model that can
answer these two types of questions effectively. Accuracy
for the battle prediction problem (i.e. given two armies, who
wins?) can be measured by the effectiveness of a trained
model on match-ups set aside for testing. Accuracy for the
most likely army problem (i.e. given one army, what other
army is most likely to defeat it?) can be measured using
play-out scripts (i.e. when fixed policies are used, does the
army predicted to win, actually win?). From now on we will
refer to the first question as who wins, and the second ques-
tion as what wins.

The next section presents background on Bayesian Net-
works as applied to RTS games, and on ranking systems. In
section 3 we introduce our proposed model, and explain the
process of learning the model parameters. In section 4, we
present the data we use to evaluate the model, along with
several experiments and a discussion of the results. Future
extensions and conclusions are discussed in the section 5.

2 Background
2.1 Bayesian Networks
The model we present uses Bayesian techniques in the
form of a Bayesian network, which is a type of Probabilis-
tic Graphical Model (PGM) (Koller and Friedman 2009).
Bayesian Networks represent a set of random variables
(which could be observable quantities, latent variables or un-
known parameters) and their conditional dependencies using
a directed acyclic graph, whose edges denote conditional de-
pendencies. Each node has an associated probability func-
tion that, for each specific assignment to the node’s direct
parents, gives a probability distribution of the variable rep-
resented by that node.

Bayesian networks encode the uncertainty of the situa-
tion, allowing incompleteness (in a formal logic sense) to
be transformed into uncertainty about the situation (Jaynes
2003). There is much uncertainty in RTS games: the oppo-
nent’s state is only partially known, moves are made simulta-
neously, and RTS games represent complex, dynamic envi-
ronments that are difficult to model completely. Even more,
PGMs allow us to develop a single model that can support
different types of queries. Using variables that have known
values as “evidence”, we can inquire about the (conditional)
probability distribution of the remaining variable(s).

Naturally, PGMs have seen an increased popularity in
the RTS domain over the past few years. Hidden Markov
Models (a simple type of PGM) have been used to learn
high-level strategies from data (Dereszynski et al. 2011) and
PGMs have been used to predict the opponent’s opening
strategy (Synnaeve and Bessiere 2011b) and to guess the
order that the opponent is building units in Synnaeve and
Bessiere (2011a). The same research group has also devel-
oped models that allow their RTS agent to make decisions
about where on the map it should send units to attack and
with what kinds of units (Synnaeve and Bessiere 2012a).
The model makes major simplifications about unit types and
does not allow the agent to ask questions about how many of
a specific unit type it should produce. Synnaeve and Bessiere

(2011c) have also used Bayesian modeling to enable units to
be individually reactive. This allows each unit to behave in-
dividually when navigating the map; moreover, during com-
bat the unit will determine if it needs to retreat or continue
fighting. The model only works for individual unit decisions,
but is not used to predict an outcome between two armies,
which is one of our interests.

Most recently, the same research group has clustered
armies based on their unit compositions and shown how bat-
tle predictions can be made using the cluster labels (Syn-
naeve and Bessiere 2012b), which effectively tackles the
who wins problem. However, their method was shown to
have a low prediction accuracy, and differs from ours in two
ways. First, their model was developed on replay data (in-
stead of simulated data) which adds the noise of different
player skills to the problem. Second, their model can only
be used to predict the following question: given two armies,
which one wins? It cannot be used to predict an army that
can defeat the opponent.

We chose to use a Bayesian network for our model, as
there are many advantages to such a choice. First, we could
learn the model once, then answer both types of questions
simply by performing different types of queries on the same
model. Secondly, defining the model structure (based on in-
tuition and domain knowledge) helps to simplify the learn-
ing and the inference tasks. Finally, Bayesian networks al-
low uncertainty to be modeled explicitly – i.e. predictions
are reported in form of likelihoods or probabilities.

2.2 Rating Systems
A problem similar to battle outcome prediction is rat-
ing/ranking – the task of attaching some numeric quantities
to subjects, then arranging these subjects in a specific or-
der, consistent with the assigned values. Rating systems have
been historically used to estimate a player’s skill in one-on-
one matches (Elo 1978), and subsequent systems even mea-
sured the uncertainty of that estimation (Glickman 1999).

During the last decade, rating systems have been ex-
tended for events that include more players. The most sig-
nificant results were obtained by TopCoder’s ranking algo-
rithm3 and by Microsoft’s approach, TrueSkillTM (Herbrich,
Minka, and Graepel 2007). The probabilistic model used by
TrueSkillTM is designed to deal with players that take part
in games or enter tournaments, and compete in teams of var-
ious sizes. It estimates the skills of these players after each
match (or competition). The system is initialized with a prior
one dimensional Gaussian distribution over each player’s
skills: s ∼ N(µ, σ2). The mean player’s true skill is µ,
where σ indicates the uncertainty of the prior. After k games,
the posterior can be computed, and we obtain µk, σk, where
this σk will usually decrease with the number of matches,
as we get more information about the respective player. This
approach could prove very useful, if we treat a battle as a
match between an arbitrary number of units on each side.
Then, after observing a number of battles, we would have
skill estimates for each unit type. As each army is a “team”

3http://apps.topcoder.com/wiki/display/tc/
Algorithm+Competition+Rating+System

of units, we can combine the skills of all units in a team/army
– for example, by adding them up – and use this sum to pre-
dict the outcome of any future battle.

3 Proposed Model and Learning Task
Current rating systems associate a single latent variable to
each person (his skill). This may work well for predicting
the outcome of a chess match, but units in RTS games are
inherently different and the outcome of a battle depends on
features such as damage, attack range, hit points, armor or
speed. Consequently, we need a model with multiple latent
features for every unit. Besides being able to predict battle
outcomes, such a model could also provide insight into why
an army defeats another (e.g. army A wins because it has
very high damage output while army B is lacking in the hit
points attribute).

3.1 The Model
Using a unit’s hit point and attack values, Churchill, Saf-
fidine, and Buro (2012) propose the following evaluation
function for combat games, based on the life-time damage
a unit can inflict:

LTD =
∑
u∈UA

Hp(u)Dmg(u)−
∑

u∈UB

Hp(u)Dmg(u)

UA and UB are the units controlled by player A and B;
Hp(u) and Dmg(u) are the hit points and damage the unit
u inflicts per second. This was shown to be effective and
could serve as a starting point for our model. Furtak and
Buro (2010) prove that in 1 vs. n units combat scenarios,
there is an optimal way for the lone unit to choose its tar-
gets: to minimize its sustained damage, it should order its
targets by decreasing value of Dmg(u)/Hp(u).

We would like to use a similar formula to predict whether
army A can win against army B. Of course, since an army
has more units, we need to define composite features such
as Hp(A), Hp(B), Dmg(A), Dmg(B), where for example
Hp(A) =

∑
u∈UA

Hp(u). We can then define the quantity:

Dmg(A)/Hp(B)− Dmg(B)/Hp(A),

This expression will directly influence the probability of
army A winning against army B. The winning probability
for army A will be higher if the offensive feature – Dmg(A)
– is high, and the opponent’s defense – Hp(B) – is low. Our
intuition is that combining terms from both armies (such as
damage of first army over hit points of second army) should
work well. Moreover, it allows us to generalize from dam-
age and hit point to offensive and defensive features. That
way, we could integrate into our model interactions such as
damage type vs. armor, or army mobility vs. attack range by
using a general term such as (OA/DB − OB/DA). We as-
sume all features to have strictly positive values. A similar
idea worked very well in Stanescu (2011).

use label/ref for figure/table numbers
The resulting graphical model is shown in Figure 1. We

will briefly explain each type of node. At the top we have
a discrete node for each type of unit, representing the num-
ber of units (0-100) of that type in an army (node C = unit

Figure 1: Proposed graphical model.

Count). There are U different unit types, and so U instances
of this plate for each army (for plate notation see Buntine
(1994, p. 16)); there are two plates (left, right) that repre-
sent the two different armies in the modeled network. Next,
for every unit there are #feat tuples of features, each hav-
ing an offensive (node o) and defensive (node d) attribute,
as described above (for a total of 2*#feat features). For ex-
ample, some offensive/defensive tuples could be {damage,
hit points} or {attack range, mobility}. These nodes are one
dimensional Gaussian variables.

Then, for every feature, we compute the aggregate offen-
sive (node O) and defensive (node D) features for each army
by adding all individual unit features: O =

∑U
i=1 Ci · oi.

This is of course a simple model; here we explore whether it
is sufficient. Next, for each feature, we combine the aggre-
gate offense and defense into a single node, using formula
previously introduced:

Aggi = (OAi/DBi −OBi/DAi).

There will be a total of #feat such nodes, which we anticipate
to provide the information needed to determine the outcome
of the battle. This last node (R - Result) provides a value
∈ [0, 1], corresponding to the probability that army A will
defeat army B. For this, we use a sigmoid function (Han and
Moraga 1995) of the sum of all combined nodes:

R =
1

1 + e−
∑F

i=1 Agg
i

There is one remaining node type (S - Supply), which en-
forces supply restrictions on armies. Supply is a value Star-
Craft uses to restrict the amount of units a player can com-
mand: each unit has a supply value (e.g. marine 1, zealot 2,
dragoon 2, etc.), and an army’s supply value is the sum of
its composing units’ supply values. We incorporate supply
into our model to avoid trivial match-ups (e.g. 20 marines
will defeat 1 marine), and to be able to ask for armies of a
specific size.

We decided to start with this simple but potentially effec-
tive model structure, and focus on learning the features in an
efficient manner. In future work we could investigate more
complex models, and other ways of combining the features
(rather than a simple sum).

3.2 Learning
Having specified the structure of our model, we need to learn
the offensive and defensive feature values for each unit type
(nodes at the top of our graphical model). Afterwards, we
can start asking queries and predicting battle outcomes.

Let M = (m1, . . .mN) be the results of the observed
matches, where eachmk is either A or B, depending on who
won. We let F = (featji) denote the vector of features for all
unit types; featji is feature i ∈ {1, 2, . . . 2 ∗ #feat} of unit
type j (out of U unit types). We will learn one such vector
F ′ = argmaxP (M,F) based on observing the data set M,
as we assume that the unit features stay constant and do not
change between matches (eg. a marine will always have the
same damage, speed or hit points). The joint distribution of
F and the N results of the matches is then

P (M,F) = P (F)
∏
i

P (mi|F) (mj is the result of match j).

Because exact inference is intractable (at one point
we will need to compute integrals of sigmoid functions
times Gaussians), we will use the core approximation tech-
nique employed by (Herbrich, Minka, and Graepel 2007)
in TrueSkillTM - Gaussian density filtering (GDF). This
method, also known as moment matching or online Bayesian
learning, is commonly used for approximating posteriors
in Bayesian models (Minka 2001). Given a joint distribu-
tion over some observed variables M and hidden parameters
F, it computes a Gaussian approximation q of the posterior
P (F |M):

q(F) ∼ N(µ, σ).

To use Gaussian density filtering, we need to factor the
joint distribution into a product of factors P (M,F) =∏

i fi. We can choose f0 = p(F) as the prior and fi(F) =
p(mi|F) as the other factors, one for each battle. We use the
prior to initialize the posterior, and step through all the fac-
tors, updating and incorporating each one into our posterior.
At every step we start with a Gaussian belief about the fea-
ture vector F, which is our current approximation q(F). We
update it based on the new observation’s likelihood fi(F) to
obtain an approximate posterior qnewi (F):

The exact posterior, which is difficult to compute, is

P̂i(F) =
fi(F)q(F)∫

F
fi(F)q(F) dF

.

We find the approximate posterior qnewi (F)
by minimizing the KL divergence: qnewi (F) =

argminq KL(P̂i(F)||q), while requiring that it must
be a Gaussian distribution (Minka 2001). This reduces
to moment matching, hence the alternative name for this
method. The qnewN (F) obtained after processing all factors
is the final approximation we will use in our model.

4 Experiments
Because we are most interested in comparing armies in
terms of the units that compose them, we made several sim-
plifications of an RTS battle. Terrain or advantages caused
by terrain are not considered by the model. Spell-casters and
flying units are also left out. Upgraded units and upgrades at
the per-unit level are not taken into account. Battles are con-
sidered to be independent events that are allowed to continue
until one side is left with no remaining units. That is, we do
not represent reinforcements or retreating in our model, and
the outcome of one battle is unrelated to the outcome of an-
other battle. Furthermore, only one-on-one battles (in terms
of one player versus another player) are modeled explicitly.

4.1 Data
For the prediction problem (who wins?), the model’s input
is in the form of tuples of unit counts. Each player is repre-
sented by one tuple, which has an element for each unit type.
For the current version of the model, only four different unit
types are considered (here two Terran faction units - marines
and firebats, and two Protoss faction units - zealots and dra-
goons). For each unit type, the value of the element is the
number of units of that type in the player’s army. The tuples
refer to the armies as they were at the start of the battle. The
output of the model is a soft prediction (a probability of one
of the players winning).

The input to the model for the most likely army problem
(what wins?) is similar. Two army tuples are given, but the
values in some or all of the elements of one of the armies are
missing (including the supply value, which, if specified, can
be used as a restriction). The output is an assignment for the
missing values that corresponds to the army most likely to
win the battle.

For training and testing purposes, we generated data-sets
using a StarCraft battle simulator (SparCraft, developed by
David Churchill, UAlberta4). The simulator allows battles
to be set up and carried out according to deterministic play-
out scripts (or by decision making agents, like an adversarial
search algorithm). We chose to use simulated data (as op-
posed to data taken from real games) because the simulator
allows us to produce a large amount of data (with all kinds of
different unit combinations) and to avoid the noise caused by
having players of different skill and style commanding the
units. This would be an interesting problem to investigate,
but it is outside of the scope of this paper.

The simulations use deterministic play-out scripts. Units
that are out of attack range move towards the closest unit,
and units that can attack target the opponent unit with the
highest damage-per-second to hit-point ratio. This policy
was chosen based on its success as an evaluation policy
in search algorithms (Churchill, Saffidine, and Buro 2012).
Two data-sets were created: 1) a data-set of armies of ten
supply (33 different armies, 1089 different battles), and 2) a
data-set of armies of fifty supply (153 different armies,
23409 different battles).

The simulator does not have unit collision detection,
which means that we can position all units of an army at

4https://code.google.com/p/sparcraft/

Figure 2: Accuracy results for GDF – one pass and GDF –
until convergence, for who wins experiments.

the same position on the map. Using this option, we can
generate two data sets for each supply limit. One data set
has the armies at opposite sides of the map in a line forma-
tion. This was an arbitrary choice and it is not affecting the
model’s parameters. The other data set has all units of each
army in a single fixed position at opposite sides of the map.
We explored how using the single fixed position affects the
accuracy of the model.

We are interested in answering two main questions: who
wins? - given two armies, which one is more likely to win?
and what wins? - given an opponent army, what army do
we need to build in order to defeat it? Both questions will be
tested on the 10 supply and 50 supply data sets.

4.2 Who Wins
This section describes the experiments we ran to answer the
who wins question. First, we are interested in the model’s
capability to generalize, and how it performs given a num-
ber of battles for training. If there is good performance even
for a low number of battles, then we can train against a spe-
cific opponent, for example when playing StarCraft AI tour-
naments. We randomly chose 10, 20, 50, 100, 200 and 500
different battles for training, and 500 other battles to predict
as a test. The accuracy is determined by how many outcomes
the model is able to predict correctly. We compute the mean
accuracy for 20 experiments, and show error bars (shaded
area) for one standard error on either side of the mean.

Minka (2001) notes that more passes of GDF on the same
(training) data leads to significantly improved results, a ten-
dency also confirmed by Stanescu (2011). Consequently, af-
ter we process the data once, we run the same algorithm
again using our approximation as a starting point. We repeat
this until convergence – when the difference in successive
approximations falls under a certain threshold. In our case,
around 10 iterations were enough to reach the best perfor-
mance. We show the results in Figure 2.

The more training data we use the better the model per-
forms, which is what we expected. The results are very en-
couraging; the improvement brought by several GDF passes
is obvious, and training on more than 50 battles provides al-

Figure 3: Accuracy results comparing GDF and three stan-
dard classifiers, for who wins experiments, 10 supply battles.

Figure 4: Accuracy results comparing GDF and three stan-
dard classifiers, for who wins experiments, 50 supply battles.

most no additional gain. In the following experiments we use
this version of the algorithm, as the results are significantly
better than only one GDF pass.

We compare our method with several popular algorithms,
as a baseline. We use logistic regression, a naive Bayes clas-
sifier, and J48 decision trees, all of which are implemented in
Weka using default parameters (Hall et al. 2009). We chose
these classifiers because they are well-known and simple to
implement. The results are shown in Figure 3 (for 10 supply
armies) and in Figure 4 (for 50 supply armies).

For 10 supply armies, all algorithms have a similar perfor-
mance for training with large data sets (500 battles). How-
ever, the lower the number of battles, the better our algo-
rithm does, in comparison. After training on 20 battles, the
accuracy is better than any of the other algorithms, trained
on 100 battles. When increasing the size of the armies to 50
supply, the results are even better. Even training with only 10
battles, we achieve well over 80% accuracy, better than any
of the baseline algorithms do even after seeing 500 battles!

Finally, in Table 1 we compare different starting positions
of the armies: line formation vs. all units juxtaposed at the
same fixed position. In addition, a 10 supply data set was

Table 1: Accuracy of who wins experiment, using differ-
ent starting positions for 10 (upper section) and 50 supply
armies (lower section).

Number of battles in training set

Pos. S 10 20 50 100 200 500

Line 82.83% 87.38% 91.81% 91.71% 92.00% 91.69%
Fixed 82.39% 85.96% 86.75% 89.10% 89.94% 90.00%
Fixed X 82.71% 87.37% 91.57% 90.84% 91.02% 90.77%

Line 83.03% 86.90% 88.48% 89.41% 90.27% 91.18%
Fixed 81.94% 86.29% 85.99% 85.12% 86.02% 85.02%

created that uses a search algorithm as the play-out policy
instead of simple scripted policies. This provides better ac-
curacy than its scripted counterpart, probably because the
fights are played by stronger players. For the juxtaposed
armies, the accuracy drops drops by 1-2% compared to the
spread formations. We conjecture this may be because clus-
tering range units together provides them with an increasing
advantage, as the size of the armies grow. They would be
able to focus fire and kill most of the oncoming opponents
instantly, and they would be far more valuable in high num-
bers. Note, however, that our current system is not able to
model this, as it computes the army features as a sum of
all individual features. The model is not even aware of the
unit positions, as the only inputs are the number and type of
units, along with the winner.

4.3 What Wins
For this question we first created all possible Protoss and
Terran army combinations (of two unit types) that can be
built with 10 and 50 supply (44 and 204 combinations, re-
spectively). Once trained (using the same data as the who
wins experiment), we provide each (known) army combi-
nation as inputs. Then, the model will predict the Protoss
army that is most likely to defeat (with 90% probability) the
known, given army. Sometimes, if the given army is very
strong, the model is not able to provide an army to defeat it.
Each given answer is then tested with the simulator to verify
that the predicted army wins, as expected. The accuracy of
the model is measured by the percentage of instances where
the predicted army actually wins.

The model has two options for predicting armies:

• With an army supply limit, the predicted army supply size
must be equal to the limit.

• Without an army supply limit, the predicted army can be
of any size.

The results are shown in the Table 2. We see that the model is
able to predict a correct army that wins against an army of 50
supply 97% of the time, when no supply limit is specified.
With the supply limit enabled, the accuracy drops to 87%.
Against armies of 10 supply it is less accurate in both cases,
and drops again, from 82% to 68%. Predicting winning 10
supply armies is the hardest task, because there are a few

very strong armies, making it hard to defeat with the limited
available choices of 10 supply (5 Protoss units). Therefore,
the model is unable to predict an army that wins with 90%
probability in almost 22% of the cases.

Table 2: Accuracy of what wins experiment, with and with-
out supply limits for 10 and 50 supply armies.

Predicted army

Data Supply limit Wins Loses Unavailable

10 supply 82.5% 17.5% 0%
10 supply X 68.2% 9.1% 22.7%
50 supply 97.9% 0% 2.1%
50 supply X 87.3% 8.8% 3.9%

It is clear that with no supply limit the system is able to
accurately predict an army that can win, which might hap-
pen because there are more available armies to choose from,
most of which have larger supply than the opponent (and are
clearly advantaged). The closer we ask the model to match
the known army in supply, the worse it is at estimating a
winning army, because the battles are more evenly matched.

5 Future Work and Conclusions
switch conclusion and future work

We are currently exploring several extensions:

• Currently the model is using 6 features for each unit type.
We plan to increase the number of features to explore how
this affects the accuracy for both questions. It would be in-
teresting to see if adding more features increases accuracy
or if it leads to overfitting.

• We are also adding more army constraints. Currently we
are using the supply cost of the units in the army, but an-
other way of limiting the army size is by the resource cost
of training that army. Resources are one of the most pop-
ular metrics used to determine the army strength by other
systems that work with StarCraft. Being able to enforce
both supply and resource constraints would prove very
useful.

• Our current model deals with only 4 unit types (marines,
firebat, zealots and dragoons). We would like to expand it
to use other unit types available in StarCraft. This change
is critical if we want the model to be used as part of a
StarCraft playing AI.

• We would like to represent additional information, such as
the units’ positions or number of hit points. Currently we
treat all units as “new” and having maximum life, which
is not always the case.

• We work with a simulated data set, which makes every-
thing easier by disregarding several aspects of the game
such as unit collision and the noise induced by human
micromanagement skills. We would like to compare our
model on real data (for example extracted from game re-
plays), which is a more difficult task.

• One limitation for the current model is assuming that
units have independent contributions to the battle out-
come. This may hold for a few troop types, but is particu-
larly wrong when considering units such as spell-casters,
which promote interactions with other units using spells.
We also miss taking into account combinations such as
melee+ranged units, which are more efficient in general.
We need to either consider a few smart features to take
these into account, or add correlations between different
types of units.

• Finally, we want to expand the questions the model can
answer. We want to investigate how good the model is
at estimating – given some already-built units – what
units we need to add to our army in order to defeat
our opponent. Expanding the model should be straight-
forward, as we could simply duplicate the number of
unit count nodes: for each type of unit, have a node for
the number of already existing units, and one for units
that could potentially be built. This would also work
for representing the opponent, making the difference
between observed or unobserved units.

The results we obtain are very promising. Our model can
very accurately predict who wins. The model does not do as
well in estimating what wins but the results are positive and
it might be just a matter of modifying the model by adding
features that work better at estimating the answer for this
question. Moreover, trying more complex ways of combin-
ing the features (rather than a simple sum) should lead us
to a better understanding of the problem, and could further
increase the accuracy of the model.

A StarCraft agent would greatly benefit from incorporat-
ing such a framework. Accurately predicting who wins could
be used to avoid fighting battles against superior armies, or
to determine when flow of a battle is against the player and
the units should be retreated. However, sometimes losing
units could potentially be strategically viable, if the armies
are close in strength but the opponent’s army was more ex-
pensive (either resource cost or training time). Estimating
what wins would be used to decide what units to build in
order to best counter the opponent’s army. Furthermore, it
could also help the build order module by making sugges-
tions about the units needed in the future.

These are problems often encountered in the real-time
strategy domain, and consequently our model would prove
useful in most RTS games. We also think that it could po-
tentially transfer to other games such as multiplayer online
battle arena (MOBA) games (eg. DOTA5). By recording the
starting hero for each of the ten players (who fight in a 5 vs.
5 match) and the outcome of the game, we could potentially
find out which heroes are stronger than others (overpowered)
for balancing reasons. A system that makes recommenda-
tions for which heroes to chose at the start of the game is a
viable option, too.

5https://en.wikipedia.org/wiki/Defense of the Ancients

References
Buntine, W. L. 1994. Operations for learning with graphical mod-
els. arXiv preprint cs/9412102.
Buro, M., and Churchill, D. 2012. Real-Time Strategy game com-
petitions. AI Magazine 33(3):106.
Buro, M. 2004. Call for AI research in RTS games. In Proceedings
of the AAAI-04 Workshop on Challenges in Game AI, 139–142.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast
heuristic search for RTS game combat scenarios. Pro-
ceedings of AIIDE,(pre-print available at www. cs. ualberta.
ca/mburo/ps/aiide12-combat. pdf.
Dereszynski, E.; Hostetler, J.; Fern, A.; Dietterich, T.; Hoang, T.-
T.; and Udarbe, M. 2011. Learning probabilistic behavior models
in real-time strategy games. In Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference.
Elo, A. E. 1978. The rating of chessplayers, past and present,
volume 3. Batsford London.
Furtak, T., and Buro, M. 2010. On the complexity of twoplayer
attrition games played on graphs. In Proceedings of the Sixth AAAI
Conference on Artificial Intelligence and Interactive Digital Enter-
tainment, AIIDE.
Glickman, M. E. 1999. Parameter estimation in large dynamic
paired comparison experiments. Journal of the Royal Statistical
Society: Series C (Applied Statistics) 48(3):377–394.
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.;
and Witten, I. H. 2009. The weka data mining software: an update.
ACM SIGKDD Explorations Newsletter 11(1):10–18.
Han, J., and Moraga, C. 1995. The influence of the sigmoid func-
tion parameters on the speed of backpropagation learning. In From
Natural to Artificial Neural Computation. Springer. 195–201.
Herbrich, R.; Minka, T.; and Graepel, T. 2007. Trueskill TM: A
Bayesian skill rating system. Advances in Neural Information Pro-
cessing Systems 19:569.
Jaynes, E. T. 2003. Probability theory: the logic of science. Cam-
bridge university press.
Koller, D., and Friedman, N. 2009. Probabilistic graphical models:
principles and techniques. MIT press.
Minka, T. P. 2001. A family of algorithms for approximate
Bayesian inference. Ph.D. Dissertation, Massachusetts Institute of
Technology.
Stanescu, M. 2011. Rating systems with multiple factors. Master’s
thesis, School of Informatics, Univ. of Edinburgh, Edinburgh, UK.
Synnaeve, G., and Bessiere, Pierre, e. a. 2011a. A Bayesian model
for plan recognition in RTS games applied to StarCraft. Proceed-
ings of AIIDE 79–84.
Synnaeve, G., and Bessiere, P. 2011b. A Bayesian model for open-
ing prediction in RTS games with application to StarCraft. In Com-
putational Intelligence and Games (CIG), 2011 IEEE Conference
on, 281–288. IEEE.
Synnaeve, G., and Bessiere, P. 2011c. A Bayesian model for RTS
units control applied to StarCraft. In Computational Intelligence
and Games (CIG), 2011 IEEE Conference on, 190–196. IEEE.
Synnaeve, G., and Bessiere, P. 2012a. Special tactics: A Bayesian
approach to tactical decision-making. In Computational Intelli-
gence and Games (CIG), 2012 IEEE Conference on, 409–416.
IEEE.
Synnaeve, G., and Bessiere, P. e. a. 2012b. A dataset for StarCraft
AI & an example of armies clustering. In Artificial Intelligence in
Adversarial Real-Time Games: Papers from the 2012 AIIDE Work-
shop AAAI Technical Report WS-12-15.

