Introducing Hierarchical Adversarial Search, a
Scalable Search Procedure for Real-Time Strategy Games

Marius Stanescu’

Abstract. Real-Time Strategy (RTS) video games have proven to
be a very challenging application area for Artificial Intelligence re-
search. Existing Al solutions are limited by vast state and action
spaces and real-time constraints. Most implementations efficiently
tackle various tactical or strategic sub-problems, but there is no single
algorithm fast enough to be successfully applied to full RTS games.
This paper introduces a hierarchical adversarial search framework
which implements a different abstraction at each level — from de-
ciding how to win the game at the top of the hierarchy to individual
unit orders at the bottom.

1 Introduction

Real-Time Strategy (RTS) games are a genre of video games in which
players gather resources, build structures from which different types
of units can be constructed or upgraded and command them in bat-
tle against opponent armies. RTS games are an interesting domain
for Artificial Intelligence (Al) research because they represent well-
defined complex adversarial decision problems and can be divided
into many interesting and computationally hard sub-problems [2].

The best Al systems for RTS games still perform poorly against
good human players. Hence, the research community is focusing on
developing RTS agents to compete against other RTS agents to im-
prove the state-of-the-art. Such competition has sparked increased
interest in RTS game Al research and many promising agent frame-
works and algorithms have already emerged. However, no unified
search approach has yet been developed for a full RTS game, al-
though the research community is starting to tackle the problem of
global search in smaller scale RTS games [3, 9, 7]. Existing agents
for full RTS games rely on a combination of search and machine
learning for specific sub-problems (build order [5], combat [6], strat-
egy selection [10]) and hard-coded expert behaviour.

Even though the structure of most RTS Al systems is complex and
comprised of many modules for unit control and strategy selection
[12, 11], none comes close to human abstraction, planning, and rea-
soning abilities. These independent modules implement different Al
mechanisms which often interact with each other in a limited fashion.

‘We propose a unified perspective by defining a multi-level abstrac-
tion framework that can save considerable computing effort by virtue
of hierarchical task decomposition. The proposed Al system parti-
tions its forces and resources into groups, each with its own mission
to accomplish. Moreover, each group could be further partitioned in
a similar fashion to sub-groups, even to the level of individual units.

One way of implementing such a layered framework is to have
each layer playing the game at its own abstraction level. This means
we would have to come up with both the abstractions and a new

1 Dept. of Computing Science, University of Alberta, Edmonton, Canada,
email: {astanesc, barriga, mburo} @ualberta.ca

and Nicolas A. Barriga! and Michael Buro!

game representation for each level. Both are difficult to design and
it is hard to prove that they actually model the real game properly.
Another way, which we introduce in this paper, is to partition the
game state and to assign objectives to individual partition elements,
such that at the lowest level we try to accomplish specific goals by
searching smaller state spaces, and at higher levels we search over
possible partitions and objective assignments.Our approach comes
with an additional benefit: the main issue that arises when approxi-
mating optimal actions in complex multi-agent decision domains is
the combinatorial explosion of state and action spaces, which renders
classic exhaustive search infeasible. For instance, in the popular RTS
game StarCraft [1], players can control up to 200 mobile units which
are located on maps comprised of up to 256 x256 tiles, possibly lead-
ing to more than 101925 states and 10'2° available actions [8]. The
hierarchical framework we propose has the advantage of reducing
the search complexity by considering only a meaningful subset of
the possible interactions between game objects. While optimal game
play may not be achieved by this kind of abstraction, search-based
game playing algorithms can definitely be more efficient if they take
into account that in a short time span each agent interacts with only
a subset of all other agents.

2 Hierarchical Adversarial Search

In implementing a hierarchical framework we generalize existing
search algorithms. Currently, state-of-the-art RTS unit combat Al
systems use Alpha-Beta, UCT, or Portfolio Search [6], focusing on
only one abstraction level, namely planning combat actions at the
unit level. By contrast, our search algorithm considers multiple lev-
els of abstractions. For example, first level entities try to partition the
forces into several second level entities — each with its own objec-
tive.

The basic idea of the algorithm we call Hierarchical Adversarial
Search is to decompose the decision making process into three lay-
ers: the first layer chooses a set of objectives that need to be accom-
plished to win the game (such as build expansions, create an armies,
defend one bases or destroy enemy bases), the second layer gener-
ates action sequences to accomplish these objectives, and the third
layer’s task is to execute a plan. Here, executing means generating
“real world” moves for individual units based on a given plan. Games
can be played by applying these moves in succession. We can also
use them to roll the world forward during look-ahead search which
is crucial to evaluating our plans.

An objective paired with a group of units to achieve it is called a
task. A pair of tasks (one for each player) constitutes a partial game
state. We consider partial game states independent of each other.
Hence, we ignore any interactions between units assigned to different
partial game states. This assumption is the reason for the computa-



tional efficiency of the hierarchical search algorithm: searching one
state containing N units is much more expensive than searching M
states with N/M units each. Lastly, a plan consists of disjoint partial
game states, which combined represent the whole game state.

In this initial work we focus on the two lower layers, not imple-
menting the top layer and simply considering destroying and defend-
ing all bases as objectives to be accomplished by the middle layer.

2.1 Bottom Layer: Plan Evaluation and Execution

The bottom layer serves two purposes: in the hierarchical search
phase (1) it finds lowest-level actions sequences and rolls the world
forward executing them, and in the plan execution phase (2) it will
generate moves in the actual game. In both phases we first create a
new sub-game that contains only the units in the specific partial game
state. Then, in phase (1) we use fast players with scripted behaviour
specialized for each objective to play the game, as the numbers of
playouts will be big. During (1) we are not concerned with returning
moves, but only with evaluating the plans generated by the middle
layer. During phase (2) we use either Alpha-Beta or Portfolio search
[6] to generate moves during each game frame. The choice between
Alpha-Beta or Portfolio search depends on the number of units in the
partial game state. Portfolio search is currently the strongest algo-
rithm for states with large numbers of units, while Alpha-Beta search
is the strongest for small unit counts.

These processes are repeated in both phases until either a prede-
fined time period has passed, or any task in the partial game state has
been completed or is impossible to accomplish.

2.2 Middle Layer: Plan Selection

The middle layer search explores possible plans and selects the best
one for execution. The best plan is found by performing a minimax
search, where each move consists of selecting a number of tasks that
will accomplish some of the original objectives. As the number of
moves (i.e., task combinations) can be big, we control the branch-
ing factor with a parameter X: we only consider X heuristically best
moves for each player. With good move ordering we expect the im-
pact in plan quality to be small. We sort the moves according to the
average completion probability of the tasks. For each task, this prob-
ability is computed using the LTD2 (“Life-Time Damage 2”) score
(the sum of the square root of hit points of each unit times its average
attack value per frame [6]) of the player units assigned to that task
compared to the LTD2 score of the enemy units closest to the task.
We assume that enemy units influence only the task closest to them.

One of the players makes a move by generating some tasks and
applying them successively, the other player independently makes
his move, and the opposing tasks are paired and combined into a plan
consisting of several partial game states. We call a plan consistent if
the partial game states don’t interfere with each other, i.e., units from
different partial game states can’t attack each other. If a plan is not
consistent we skip it and generate the next plan to avoid returning
a plan that would trigger an immediate re-plan. Otherwise, we do
a playout using the scripted players for each partial game state and
roll the world forward, until either one of the tasks is completed or
impossible to accomplish or we reach a predefined game time. At
this point we combine all partial game states into a full game state
and recursively continue the search.

Finally, for leaf evaluation, we check the completion level of the
top layer objectives (for example, how many enemy buildings we
destroyed if we had a destroy base objective). After the middle layer
completes the search, we will have a plan to execute: our moves from

the principal variation of the minimax tree. At every game frame we
update the partial game states in the plan with the unit data from the
actual game, and we check if the plan is still valid. A plan might
become invalid because one of its objectives is completed or im-
possible, or because units from two different partial game states are
within attack range of each other. If the plan is invalid, re-planning
is triggered. Otherwise it will be executed by the bottom layer us-
ing Alpha-Beta or Portfolio search for each partial game state, and a
re-plan will be triggered when it is completed.

3 Final Remarks

In this paper we have presented a framework that attempts to employ
search methods for different abstraction levels in a real-time strategy
game. In large scale combat experiments (72 vs. 72 units) using Spar-
Craft [4], a StarCraft [1] combat simulator, our Hierarchical Adver-
sarial Search algorithm outperforms adaptations of Alpha-Beta and
UCT Search for games with simultaneous and durative moves almost
100% of the time, as well as state-of-the-art Portfolio search about
60% of the time. The major improvement over Portfolio Search is
that Hierarchical Adversarial Search can potentially encompass most
areas of RTS game playing, such as building expansions and training
armies, as well as combat.

In the future, we plan on using another search algorithm at the top
layer, as we currently only use the bottom two of the three layers
and generate fixed objectives for the middle layer (such as destroy
opponent bases). If we extend SparCraft to model StarCraft’s econ-
omy, allowing the agents to gather resources, construct buildings, and
train new units, the top layer decisions become more complex and we
may have to increase the number of abstraction layers to find plans
that strike a balance between strengthening the economy, building an
army, and finally engaging in combat.

REFERENCES

[1] Blizzard Entertainment. StarCraft:
http://us.blizzard.com/en-us/games/sc/, 1998.

[2] Michael Buro, ‘Call for Al research in RTS games’, in Proceedings
of the AAAI-04 Workshop on Challenges in Game Al, pp. 139-142,
(2004).

[3] Michael Chung, Michael Buro, and Jonathan Schaeffer, ‘Monte Carlo
planning in RTS games’, in IEEE Symposium on Computational Intel-
ligence and Games (CIG), (2005).

[4] David Churchill. SparCraft: open source StarCraft combat simulation.
http://code.google.com/p/sparcraft/, 2013.

[S] David Churchill and Michael Buro, ‘Build order optimization in Star-
Craft’, in Al and Interactive Digital Entertainment Conference, AIIDE
(AAAID), pp. 14-19, (2011).

[6] David Churchill and Michael Buro, ‘Portfolio greedy search and sim-
ulation for large-scale combat in StarCraft’, in /IEEE Conference on
Computational Intelligence in Games (CIG), pp. 1-8. IEEE, (2013).

[7] Santiago Ontaidn, ‘The combinatorial multi-armed bandit problem and
its application to real-time strategy games’, in AIIDE, (2013).

[8] Santiago Ontaiién, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux,
David Churchill, and Mike Preuss, ‘A survey of real-time strategy game
Al research and competition in StarCraft’, TCIAIG, (2013).

[9] Franisek Sailer, Michael Buro, and Marc Lanctot, ‘Adversarial plan-
ning through strategy simulation’, in Computational Intelligence and
Games, 2007. CIG 2007. IEEE Symposium on, pp. 80-87. IEEE,
(2007).

[10] Gabriel Synnaeve, Bayesian programming and learning for multi-
player video games, Ph.D. dissertation, Université de Grenoble, 2012.

[11] Gabriel Synnaeve and Pierre Bessiere, ‘Special tactics: a Bayesian ap-
proach to tactical decision-making’, in Computational Intelligence and
Games (CIG), 2012 IEEE Conference on, pp. 409—416, (2012).

[12] Samuel Wintermute, Joseph Z. Joseph Xu, and John E. Laird, ‘SORTS:
A human-level approach to real-time strategy Al’, in Al and Interactive
Digital Entertainment Conference, AIIDE (AAAI), pp. 55-60, (2007).

Brood War.



