
Hierarchical Adversarial Search Applied to Real-Time Strategy Games

Marius Stanescu and Nicolas A. Barriga and Michael Buro
Deptartment of Computing Science, University of Alberta

Edmonton, Canada, T6G 2E8
Email: {astanesc, barriga, mburo}@ualberta.ca

Abstract

Real-Time Strategy (RTS) video games have proven to be a
very challenging application area for artificial intelligence re-
search. Existing AI solutions are limited by vast state and ac-
tion spaces and real-time constraints. Most implementations
efficiently tackle various tactical or strategic sub-problems,
but there is no single algorithm fast enough to be successfully
applied to big problem sets (such as a complete instance of
the StarCraft RTS game). This paper presents a hierarchical
adversarial search framework which more closely models the
human way of thinking — much like the chain of command
employed by the military. Each level implements a different
abstraction — from deciding how to win the game at the top
of the hierarchy to individual unit orders at the bottom. We
apply a 3-layer version of our model to SparCraft — a Star-
Craft combat simulator — and show that it outperforms state
of the art algorithms such as Alpha-Beta, UCT, and Portfolio
Search in large combat scenarios featuring multiple bases and
up to 72 mobile units per player under real-time constraints
of 40 ms per search episode.

Introduction
Real-Time Strategy (RTS) games are a genre of video games
in which players gather resources, build structures from
which different types of troops can be trained or upgraded,
recruit armies, and command them in battle against oppo-
nent armies. RTS games are an interesting domain for Arti-
ficial Intelligence (AI) research because they represent well-
defined complex adversarial decision problems and can be
divided into many interesting and computationally hard sub-
problems (Buro 2004).

The best AI systems for RTS games still perform poorly
against good human players (Buro and Churchill 2012).
Hence, the research community is focusing on developing
RTS agents to compete against other RTS agents to im-
prove the state-of-the-art. For the purpose of experimen-
tation, the RTS game StarCraft: Brood War (Blizzard En-
tertainment 1998) has become popular because it is consid-
ered well balanced, has a large online community of players,
and has an open-source interface — BWAPI, (Heinermann
2013) — which allows researchers to write programs to play
the full game. Several StarCraft AI competitions are orga-
nized every year (Buro and Churchill 2012). Such contests

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have sparked increased interest in RTS game AI research
and many promising agent frameworks and algorithms have
already emerged. However, no unified search approach has
yet been developed for a full RTS game such as StarCraft, al-
though the research community is starting to tackle the prob-
lem of global search in smaller scale RTS games (Chung,
Buro, and Schaeffer 2005; Sailer, Buro, and Lanctot 2007;
Ontañón 2013). Existing StarCraft agents rely on a com-
bination of search and machine learning for specific sub-
problems (build order (Churchill and Buro 2011), combat
(Churchill and Buro 2013), strategy selection (Synnaeve
2012)) and hard-coded expert behaviour.

Motivation and Objectives
Even though the structure of most RTS AI systems is com-
plex and comprised of many modules for unit control and
strategy selection (Wintermute, Joseph Xu, and Laird 2007;
Churchill and Buro 2012; Synnaeve and Bessiere 2012),
none comes close to human abstraction, planning, and rea-
soning abilities. These independent modules implement dif-
ferent AI mechanisms which often interact with each other
in a limited fashion.

We propose a unified perspective by defining a multi-level
abstraction framework which more closely models the hu-
man way of thinking — much like the chain of command
employed by the military. In real life a top military com-
mander does not concern himself with the movements of in-
dividual soldiers, and it is not efficient for an RTS AI to do
that, either. A hierarchical structure can save considerable
computing effort by virtue of hierarchical task decomposi-
tion. The proposed AI system partitions its forces and re-
sources to a number of entities (we may call commanders)
— each with its own mission to accomplish. Moreover, each
commander could further delegate tasks in a similar fashion
to sub-commanders, groups of units or even individual units.
More similar to the human abstraction mechanism, this flex-
ible approach has a great potential of improving AI strength.

One way of implementing such a layered framework is to
have each layer playing the game at its own abstraction level.
This means we would have to come up with both the abstrac-
tions and a new game representation for each level. Both are
difficult to design and it is hard to prove that they actually
model the real game properly. Another way, which we intro-
duce in this paper, is to partition the game state and to assign
objectives to individual partition elements, such that at the

lowest level we try to accomplish specific goals by search-
ing smaller state spaces, and at higher levels we search over
possible partitions and objective assignments. Our approach
comes with an additional benefit: the main issue that arises
when approximating optimal actions in complex multi-agent
decision domains is the combinatorial explosion of state and
action spaces, which renders classic exhaustive search in-
feasible. For instance, in StarCraft, players can control up
to 200 mobile units which are located on maps comprised of
up to 256×256 tiles, possibly leading to more than 101,926

states and 10120 available actions (Ontañón et al. 2013). The
hierarchical framework we propose has the advantage of re-
ducing the search complexity by considering only a mean-
ingful subset of the possible interactions between game ob-
jects. While optimal game play may not be achieved by this
kind of abstraction, search-based game playing algorithms
can definitely be more efficient if they take into account that
in a limited time frame each agent interacts with only a small
number of other agents (Lisỳ et al. 2010).

Background and Related Work
In implementing a hierarchical framework we extend state
of the art RTS unit combat AI systems that use Alpha-Beta,
UCT, or Portfolio Search (Churchill and Buro 2012;
Churchill, Saffidine, and Buro 2012; Churchill and Buro
2013) and focus only on one abstraction level, namely plan-
ning combat actions at the unit level. By contrast, our pro-
posed search algorithm considers multiple levels of abstrac-
tions. For example, first level entities try to partition the
forces into several second level entities – each with its own
objective.

Similar approaches have been proposed by (Mock 2002)
and (Rogers and Skabar 2014). The latter implements a
framework to bridge the gap between strategy and individ-
ual unit control. It conceptualizes RTS group level micro-
management as a multi-agent task allocation problem which
can in principle be integrated into any layered RTS AI struc-
ture. However, while these papers only deal with the bottom
level, we target several abstraction levels at the same time.
Our goal is to interleave the optimization of direct unit con-
trol with strategic reasoning. Next, we look at competing
algorithms designed for other problem domains whose large
complexity render complete search impractical.

Multi-Agent Planning
A similar problem has been considered in (Lisỳ et al. 2010).
The authors substitute global search considering all agents
with multiple searches over agent subsets, and then combine
the results to form a global solution. The resulting method
is called Agent Subset Adversarial Search (ASAS). It was
proved to run in polynomial time in the number of agents
as long as the size of the subsets is limited. ASAS does
not require any domain knowledge, comparing favourably to
other procedural approaches such as hierarchical task net-
works (HTNs), and greatly improves the search efficiency
at the expense of a small decrease of solution quality. It
works best in domains in which a relatively small number of
agents can interact at any given time. Because we aim our
framework specifically towards RTS games, avoiding using
domain knowledge would be wasteful. Hence, we introduce

a procedural component in the algorithm, in the form of ob-
jectives that each subset tries to accomplish. This will al-
low our algorithm to make abstract decisions at a strategic
level, which should further improve the search efficiency
compared to the ASAS method.

Goal Driven Techniques
Heuristic search algorithms such as Alpha-Beta search and
A* choose actions by looking ahead, heuristically evaluat-
ing states, and propagating results. By contrast, HTNs im-
plement a goal-driven method that decomposes goals into a
series of sub-goals and tries to achieve these. For choos-
ing a move, goals are expanded into sub-goals at a lower
level of abstraction and eventually into concrete actions in
the environment. In (Smith, Nau, and Throop 1998), the
authors successfully deploy HTNs to play Contract Bridge.
Using only a small number of operators proves sufficient for
describing relevant plays (finessing, ruffing, cross-ruffing,
etc.). HTNs have also been successfully applied to Go (Will-
mott et al. 2001). The advantage is that Go knowledge (e.g.,
in books) is usually expressed in a form appropriate for en-
coding goal decompositions by using a rich vocabulary for
expressing reasons for making moves. However, HTNs gen-
erally require significant effort for encoding strategies as
goal decompositions, and in some domains such as RTS
games this task can be very difficult. For example, (Menif,
Guettier, and Cazenave 2013) uses HTNs to build a hier-
archical architecture for Infantry Serious Gaming. Only a
small set of very simple actions are supported, such as mon-
itoring and patrolling tasks, and we can already see that the
planning domain would become quite convoluted with the
addition of more complex behaviour.

Goal Based Game Tree Search
Goal based game tree search (GB-GTS) (Lisỳ et al. 2009) is
an algorithm specifically designed for tackling the scalabil-
ity issues of game tree search. It uses procedural knowledge
about how individual players tend to achieve their goals in
the domain, and employs this information to limit the search
to the part of the game tree that is consistent with the play-
ers’ goals. However, there are some limitations: goals are
only abandoned if they are finished, policy which doesn’t al-
low replacing the current plan with a potentially better one.
Also, goals are assigned on unit-basis level and more units
following the same goal require more computational effort
than if they were grouped together under the same objective.
This is more similar to a bottom-up approach, the goals in
GB-GTS serving as building blocks for more complex be-
haviour. It contrasts with HTN-based approaches where the
whole strategies are encoded using decompositions from the
highest levels of abstraction to the lower ones.

Hierarchical Adversarial Search
The basic idea of our algorithm we call Hierarchical Ad-
versarial Search is to decompose the decision making pro-
cess into three layers: the first layer chooses a set of objec-
tives that need to be accomplished to win the game (such
as build an expansion, create an army, defend one of our
bases or destroy an enemy base), the second layer gener-
ates action sequences to accomplish these objectives, and

the third layer’s task is to execute a plan. Here, executing
means generating “real world” moves for individual units
based on a given plan. Games can be played by applying
these moves in succession. We can also use them to roll the
world forward during look-ahead search which is crucial to
evaluating our plans. An objective paired with a group of
units to accomplish it is called a task. A pair of tasks (one
for each player) constitutes a partial game state. We con-
sider partial game states independent of each other. Hence,
we ignore any interactions between units assigned to differ-
ent partial game states. This assumption is the reason for
the computational efficiency of the hierarchical search al-
gorithm, because searching one state containing N units is
much more expensive than searching M states with N/M
units each. Lastly, a plan consists of disjoint partial game
states, which combined represent the whole game state.

Application Domain and Motivating Example
Our implementation is based on SparCraft (Churchill 2013),
which is an abstract combat simulator for StarCraft that is
used in the current UAlbertaBot StarCraft AI to estimate the
chance of winning fights before engaging the enemy. Since
simulation must be faster than real-time, SparCraft abstracts
away game details such as building new structures, gathering
resources or training units. Because of this limitation we
consider simpler base-defense scenarios in this paper instead
of playing full RTS games, and we focus on the lower two
levels of the search: constructing and executing plans, while
fixing the objective to destroying or defending bases. With
extra implementation effort these scenarios could be set up
in StarCraft as well, likely leading to similar results.

Fig. 1(a) shows a sample plan with three partial game
states. The blue (solid, bottom) player chose three units to
defend the left base (task 1), one unit to defend the mid-
dle base (task 2) and eight units to attack the enemy base to
the right (task 3). Analogously, the red (striped, top) player
chose two attacking tasks (tasks 1 and 2) and one defend-
ing task (task 3), assigning four units to each. In this ex-
ample the first partial game state contains the first task of
each player, the second partial game state the second task,
and the last partial game state the third task. After a while
the red units of the middle (second) partial game state get
within attack range of the blue units assigned to the third
partial game state and re-planning is triggered. One possible
resulting scenario is shown in Fig. 1(b):
• the blue player still chooses to defend with three units

against four on the left side in the first partial game state
• he switches his nine units to attack the middle enemy

A

D

A

D
A

A

D

A

D

D

(a) Initial plan

A

D

A

D
A

A

A

D

D

A

(b) Re-planning

Figure 1: An example of two consecutive plans

base, and is opposed by four enemy units in the second
partial game state

• the blue player chooses to do nothing about the right base,
so the third partial game state will only contain four en-
emy units attacking (blue player has an idle objective).

Bottom Layer: Plan Evaluation and Execution
The bottom layer serves two purposes: in the hierarchical
search phase (1) it finds lowest-level actions sequences and
rolls the world forward executing them, and in the plan ex-
ecution phase (2) it will generate moves in the actual game.
In both phases we first create a new sub-game that contains
only the units in the specific partial game state. Then, in
phase (1) we use fast players with scripted behaviour spe-
cialized for each objective to play the game, as the num-
bers of playouts will be big. During (1) we are not con-
cerned with returning moves, but only with evaluating the
plans generated by the middle layer. During phase (2) we
use either Alpha-Beta or Portfolio search (Churchill and
Buro 2013) to generate moves during each game frame, as
shown in Fig. 2. The choice between Alpha-Beta or Port-
folio search depends on the number of units in the partial
game state. Portfolio search is currently the strongest algo-
rithm for states with large numbers of units, while Alpha-
Beta search is the strongest for small unit counts. These
processes are repeated in both phases until either a prede-
fined time period has passed, or any task in the partial game
state has been completed or is impossible to accomplish.

Middle Layer: Plan Selection
The middle layer search, shown in Fig. 3, explores possi-
ble plans and selects the best one for execution. The best
plan is found by performing a minimax search (described in
Algorithm 1), where each move consists of selecting a num-
ber of tasks that will accomplish some of the original ob-
jectives. As the number of moves (i.e., task combinations)
can be big, we control the branching factor with a parameter
X: we only consider X heuristically best moves for each
player. With good move ordering we expect the impact in
plan quality to be small. We sort the moves according to
the average completion probability of the tasks. For each
task, this probability is computed using the LTD2 (“Life-
Time Damage 2”) score (the sum of the square root of hit
points remaining of each unit times its average attack value
per frame (Churchill and Buro 2013)) of the player units as-
signed to that task compared to the LTD2 score of the enemy

T

T2T1 T3

T2’T1’ T3’

Figure 2: Alpha-Beta search on partial game states.

t0

Game Time

t1

t2

t3

t4

Figure 3: Middle layer search: the middle layer performs
minimax search on abstract moves (rectangles depict max
nodes, circles depict min nodes). The bottom layer executes
scripted playouts to advance the game. Given more time,
scripts can be replaced by search.

units closest to the task. We assume that enemy units influ-
ence only the task closest to them.

One of the players makes a move by generating some
tasks (line 7) and applying them successively (line 9), the
other player independently makes his move (line 14), and
the opposing tasks are paired and combined into a plan con-
sisting of several partial game states (line 15). We call a plan
consistent if the partial game states don’t interfere with each
other, i.e., units from different partial game states can’t at-
tack each other (Fig. 1(b)). If a plan is not consistent we
skip it and generate the next plan to avoid returning a plan
that would trigger an immediate re-plan. Otherwise, we do
a playout using the scripted players for each partial game
state and roll the world forward, until either one of the tasks
is completed or impossible to accomplish or we reach a pre-
defined game time (line 17). Fig. 3 shows two playouts at
the same search depth, finishing at different times t1 and t2.

At this point we combine all partial game states into
a full game state (line 18) and recursively continue the
search (line 19). The maximum search depth is specified in
game time, not search plies. Hence, some branches in which
the playouts are cut short because of impossible or com-
pleted objectives might trigger more middle layer searches
than others, like the leftmost branch in Fig. 3.

Finally, for leaf evaluation (line 5), we check the comple-
tion level of the top layer objectives (for example, how many
enemy buildings we destroyed if we had a destroy base ob-
jective). Node evaluations can only be done at even depths,
as we need both players to select a set of tasks before split-
ting the game into several partial game states.

After the middle layer completes the search, we will have
a plan to execute: our moves from the principal variation of
the minimax tree (line 22). At every game frame we update
the partial game states in the plan with the unit data from
the actual game, and we check if the plan is still valid. A
plan might become invalid because one of its objectives is
completed or impossible, or because units from two different

Algorithm 1 Hierarchical Adversarial Search (2 layers)
1: procedure PLANSEARCH(Depth d, State s, Task

oppTask, Player p)
2: best← −∞;
3: if EMPTY(oppTask) then . First player gen. tasks
4: if ENDSEARCH() then
5: return EVALUATE(s) . w.r.t. objectives
6: else
7: tasks← GENTASKS(s, p)
8: for Task t in tasks do
9: val← - PLANSEARCH(d+1,s,t,OPP(p))

10: if val > best then
11: best← val;
12: return best
13: else . Second player gen. tasks
14: tasks← GENTASKS(s,p)
15: plans← GENPLANS(s,enemyTask,tasks,p)
16: for Plan plan in plans do
17: PLAYOUT(plan)
18: MERGE(s) . Merge partial game states
19: val← - PLANSEARCH(d+1,s,<>,OPP(p))
20: if value > best then
21: best← val;
22: UPDATEPRINCIPALVARIATION()
23: return best

partial game states are within attack range of each other. If
the plan is invalid, re-planning is triggered. Otherwise it
will be executed by the bottom layer using Alpha-Beta or
Portfolio search for each partial game state, and a re-plan
will be triggered when it is completed. To avoid re-planning
very often, we do not proactively check if the enemy follows
the principal variaton but follow the more lazy approach of
re-planning if his actions interfere with our assumption of
what his tasks are.

We did not implement the top layer and we simply con-
sider destroy and defend all bases as objectives to be accom-
plished by the middle layer, but we discuss more alternatives
in the last section, as future work.

Implementation Details
After receiving a number of objectives that should be com-
pleted from the top layer, the middle layer search has to
choose a subset of objectives to be accomplished next. To
generate a move we need to create a task for each objec-
tive in this subset: each task consists of some units as-
signed to accomplish a particular objective. Such assign-
ments can be generated in various ways, for instance by
spatial clustering. Our approach is to use a greedy bid-
ding process similar to the one described in (Rogers and
Skabar 2014) that assigns units to tasks dependent on prox-
imity and task success evaluations. The first step is to con-
struct a matrix with bids for each of our units on each pos-
sible objective. Bids take into account the distance to the
target and an estimate of the damage the unit will inflict
and receive from enemy units close to the target. Let O
be the total number of objectives, and N ∈ {1, · · · , O} a
smaller number of objectives we want to carry out in this
plan. We consider all permutations of N objectives out of

O possible objectives (for a total of O!/(O −N)!). For ex-
ample, if O = 4 and N = 2, we consider combinations
(1, 2), (2, 1), (1, 3), (3, 1), . . . , (3, 4), (4, 3). The difference
between (x, y) and (y, x) is objective priority: we assign
units to accomplish objective x or y first.

For each of these combinations and each objective, we it-
erate assigning the unit with the highest bid to it until we
think that the objective can be accomplished with a certain
probability (we use 0.8 in the experiments) and then con-
tinue to the next objective. This probability is estimated
using a sigmoid function and the LTD2 scores of the Hier-
archical Adversarial Search player’s units assigned to com-
plete that objective versus the LTD2 score of the enemy units
closest to the objective. The moves will be sorted according
to the average completion probability of all the O tasks (the
assigned N as well as the O−N we ignored). Consider the
case in which one of the left-out objectives is a defend base
objective. Consequently, the middle layer did not assign any
units for this particular objective. In one hypothetical case
there are no enemy units close to that particular base, so we
will likely be able to accomplish it nonetheless. In another
case, that particular base is under attack, so there will be a
very low probability of saving it as there are no defender
units assigned for this task. If the middle layer sorts the
moves only using the probabilities for the N tasks to which
it has assigned units, it won’t be able to differentiate between
the previous two cases and will treat them as equally desir-
able. Hence, we need to consider the completion probability
of all tasks in the move score, even those to which the middle
layer did not assign units.

After both players choose a set of tasks, we need to match
these tasks to construct partial game states. Matching is
done based on distances between different tasks (currently
defined as the minimum distance between two units assigned
to those tasks). Because partial game states are considered
independent, we assign tasks that are close to each other to
the same partial game state. For example, “destroy base A”
for player 1 can be matched with “defend base A” for player
2 if the attacking units are close to base A. If the units or-
dered to destroy base A for player 1 are close to the units
that have to destroy base B for player 2, then we have to
match them because the involved units will probably get into
a fight in the near future. However, we now also need to
add the units from “defend base A” and “defend base B” to
the same partial game state (if they exist) to avoid conflicts.
After matching, if there are any unmatched tasks, we add
dummy idle tasks for the opponent.

While performing minimax search, some of the plans gen-
erated by task matching might still be illegal, i.e., units in
one partial game state are too close to enemy units from an-
other partial game state. In that case we skip the faulty plan
and generate the next one.

In our current implementation, when re-planning is
needed, we take the time needed to search for a new plan.
In an actual bot playing in a tournament, we would have a
current plan that is being executed, and a background thread
searching for a new plan. Whenever the current plan is
deemed illegal, we would switch to the latest plan found.
If that plan is illegal, or if the search for a new plan hasn’t
finished, we would fall back to another algorithm, such as

Alpha-Beta, UCT, or Portfolio Search.
For plan execution, the time available at each frame is di-

vided between different Alpha-Beta searches for each partial
game state. The allotted time is proportional to the number
of units in each, which is highly correlated to the branching
factor of the search. As the searches usually require expo-
nential effort rather than linear, more complex time division
rules should be investigated in the future.

It is worth noting that both plan execution and evalua-
tion are easily parallelizable, because each partial game state
is independent of each other. Plan search can be paral-
lelized with any minimax parallelization technique such as
ABDADA (Weill 1996). Because at each node in the plan
search we only explore a fixed number of children and ig-
nore the others, the search might also be amenable to random
sampling search methods, such as Monte Carlo tree search.

Empirical Evaluation
Two sets of experiments were carried out to evaluate the per-
formance of the new Hierarchical Adversarial Search algo-
rithm. In the first set we let the Hierarchical Adversarial
Search agent which uses Portfolio Search for plan execu-
tion play against the Alpha-Beta, UCT, and Portfolio Search
agents presented in (Churchill and Buro 2013). All agents
have the same amount of time available to generate a move.
In the second set of experiments Hierarchical Adversarial
Search using Alpha-Beta Search for plan execution plays
against an Alpha-Beta Search agent whose allocated time
varies.

Similar to (Churchill and Buro 2013), each experiment
consists of a series of combat scenarios in which each player
controls an identical group of StarCraft units and three
bases. Each base consists of four (on half of the maps) or
five (on the other half) structures: some are buildings that
cannot attack but can be attacked (which are the objectives
in our game), and some are static defences that can attack
(e.g., photon cannons in StarCraft). Both players play the
Protoss race and the initial unit/building placement is sym-
metric to ensure fairness.

The battlefields are empty StarCraft maps of medium size
(128×72 tiles) without obstacles or plateaus because none
of the tested algorithms has access to a pathfinding mod-
ule. Experiments are done on four different maps, with three
bases totalling 12 to 15 buildings for each player. The set-up
is similar to Fig. 1(a), though on some maps the position of
the middle base for the two players is swapped. To investi-
gate the performance of the different algorithms we vary the
number of units — 12, 24, 48, or 72 per player, equally split
between the three bases.

For the first experiment we generate 60 battles for each
unit configuration. For the second experiment we use only
one map with 72 units per player, and play 10 games for
each Alpha-Beta time limit. Each algorithm was given a 40
ms time limit per search episode to return a move. This time
limit was chosen to comply to real-time performance restric-
tions in StarCraft, which runs at 24 frames per second (42 ms
per frame). The versions of Alpha-Beta, UCT, and Portfo-
lio Search (depending on parameters such as maximum limit
of children per search node, transposition table size, explo-
ration constant or evaluation) are identical to those used in

AB UCT Portfolio Search

12 0.515 0.500 0.250

24 0.691 0.636 0.296

48 0.941 0.956 0.295

72 0.985 1.000 0.600

12 12 1224 24 2448 48 4872 72 72
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U

n
it

s

 S
co

re
 (

W
in

s
+

D
ra

w
s/

2
)

Hierarchical Search Scores

Figure 4: Results of Hierarchical Adversarial Search against
Alpha-Beta, UCT and Portfolio Search for combat scenarios
with n vs. n units (n = 12, 24, 48 and 72). 60 scenarios
were played allowing 40 ms for each move. 95% confidence
intervals are shown for each experiment.

(Churchill and Buro 2013). It is important to note that the
Alpha-Beta Search agent uses a fall-back strategy: in cases
when it can’t complete even a 1-ply search it will execute
scripted moves. In our experiments we impose a time limit
of 3000 frames for a game to finish, at which time we de-
cide the winner using the LTD2 score. All experiments were
performed on an Intel(R) Core2 Duo P8400 CPU 2.26GHz
with 4 GB RAM running Fedora 20, using single-thread im-
plementations. The software was implemented in C++ and
compiled with g++ 4.8.2 using -O3 optimization.

Results
In the first set of experiments, we compare Hierarchical
Adversarial Search using Portfolio Search for partial game
states against Alpha-Beta, UCT and Portfolio Search. Fig. 4
shows the win rate of the hierarchical player against the
benchmark agents, grouped by number of units controlled
by each player. Hierarchical Adversarial Search has simi-
lar performances against Alpha-Beta and UCT algorithms.
It is roughly equal in strength when playing games with the
smallest number of units, but its performance grows when
increasing the number of units. From a tie at 12 vs. 12 units,
our algorithm exceeds 90% winning ratio for 48 vs. 48 units
and reaches 98% for the largest scenario. As expected, per-
forming tree searches on the smaller game states is more
efficient than searching the full game state, as the number
of units grows. Against Portfolio Search, our method does
worse on the smaller scenarios. Hierarchical Adversarial
Search overcomes Portfolio Search only in the 72 vs. 72
games, which are too complex for Portfolio to execute the
full search in the allocated 40 ms.

In the second set of experiments, we compare Hierarchi-
cal Adversarial Search using Alpha-Beta Search for partial
game states against Alpha-Beta Search. Hierarchical Adver-
sarial Search computing time is limited to 40 ms and Alpha-
Beta Search agent’s time was varied using 20 ms steps to
find at which point the advantage gained by partitioning the
game state can be matched by more computation time. Fig. 5
shows the win ratio of Alpha-Beta in scenarios with 72 units
for each player. Hierarchical Adversarial Search still wins

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40ms 60ms 80ms 100ms 120ms

Alpha-Beta win ratio

Figure 5: Alpha-Beta Search strength variation when in-
creasing computation time, playing against Hierarchical Ad-
versarial Search using 40 ms per move and Alpha-Beta
Search for plan execution. 10 experiments using 72 units
on each side were performed for each configuration.

when Alpha-Beta Search has double the search time (80 ms),
but loses when tripling Alpha-Beta’s time. These results
suggest that our Hierarchical Abstract Search implementa-
tion can be improved by complete enumeration of tasks in
the middle layer and/or conducting searches in the bottom
layer once unit counts drop below a certain threshold.

Conclusions and Future Work
In this paper we have presented a framework that attempts
to employ search methods for different abstraction levels in
a real-time strategy game. In large scale combat experi-
ments using SparCraft, our Hierarchical Adversarial Search
algorithm outperforms adaptations of Alpha-Beta and UCT
Search for games with simultaneous and durative moves, as
well as state-of-the-art Portfolio search. The major improve-
ment over Portfolio Search is that Hierarchical Adversarial
Search can potentially encompass most areas of RTS game
playing, such as building expansions and training armies, as
well as combat.

As for future work, the first area of enhancements we en-
vision for our work is adding pathfinding to Alpha-Beta,
UCT, and Portfolio Search to test Hierarchical Adversarial
Search on real StarCraft maps. We also plan to improve the
task bidding process by using a machine learning approach
similar to the one described in (Stanescu et al. 2013) for pre-
dicting battle outcomes. It would still be fast enough but
possibly much more accurate than using LTD2 scores, and
could also integrate a form of opponent modelling into our
algorithm. Finally, we currently only use two of the three
layers and generate fixed objectives for the middle layer
(such as destroy opponent bases) instead of using another
search algorithm at the top layer. If we extend SparCraft
to model StarCraft’s economy, allowing the agents to gather
resources, construct buildings, and train new units, the top
layer decisions become more complex and we may have to
increase the number of abstraction layers to find plans that
strike a balance between strengthening the economy, build-
ing an army, and finally engaging in combat.

References
Blizzard Entertainment. 1998. StarCraft: Brood War.
http://us.blizzard.com/en-us/games/sc/.
Buro, M., and Churchill, D. 2012. Real-time strategy game
competitions. AI Magazine 33(3):106–108.
Buro, M. 2004. Call for AI research in RTS games. In Pro-
ceedings of the AAAI-04 Workshop on Challenges in Game
AI, 139–142.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte Carlo
planning in RTS games. In IEEE Symposium on Computa-
tional Intelligence and Games (CIG).
Churchill, D., and Buro, M. 2011. Build order optimization
in StarCraft. In AI and Interactive Digital Entertainment
Conference, AIIDE (AAAI), 14–19.
Churchill, D., and Buro, M. 2012. Incorporating search al-
gorithms into RTS game agents. In AI and Interactive Digi-
tal Entertainment Conference, AIIDE (AAAI).
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In AI and Inter-
active Digital Entertainment Conference, AIIDE (AAAI).
Churchill, D. 2013. SparCraft: open source StarCraft com-
bat simulation. http://code.google.com/p/sparcraft/.
Heinermann, A. 2013. Brood War API.
http://code.google.com/p/bwapi/.
Lisỳ, V.; Bošanskỳ, B.; Jakob, M.; and Pechoucek, M. 2009.
Adversarial search with procedural knowledge heuristic. In
Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009).
Lisỳ, V.; Bošanskỳ, B.; Vaculı́n, R.; and Pechoucek, M.
2010. Agent subset adversarial search for complex non-
cooperative domains. In Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on, 211–218. IEEE.
Menif, A.; Guettier, C.; and Cazenave, T. 2013. Planning
and execution control architecture for infantry serious gam-
ing. In Planning in Games Workshop, 31.
Mock, K. J. 2002. Hierarchical heuristic search techniques
for empire-based games. In Proceedings of the International
Conference on Artificial Intelligence (IC-AI), 643–648.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG.
Ontañón, S. 2013. The combinatorial multi-armed bandit
problem and its application to real-time strategy games. In
AIIDE.
Rogers, K., and Skabar, A. 2014. A micromanagement task
allocation system for real-time strategy games. Computa-
tional Intelligence and AI in Games, IEEE Transactions on.
Sailer, F.; Buro, M.; and Lanctot, M. 2007. Adversarial
planning through strategy simulation. In Computational In-
telligence and Games, 2007. CIG 2007. IEEE Symposium
on, 80–87. IEEE.

Smith, S. J.; Nau, D.; and Throop, T. 1998. Computer
Bridge: A big win for AI planning. AI magazine 19(2):93.
Stanescu, M.; Hernandez, S. P.; Erickson, G.; Greiner, R.;
and Buro, M. 2013. Predicting army combat outcomes
in StarCraft. In Ninth Artificial Intelligence and Interactive
Digital Entertainment Conference.
Synnaeve, G., and Bessiere, P. 2012. Special tactics: a
Bayesian approach to tactical decision-making. In Compu-
tational Intelligence and Games (CIG), 2012 IEEE Confer-
ence on, 409–416.
Synnaeve, G. 2012. Bayesian programming and learning for
multi-player video games. Ph.D. Dissertation, Université de
Grenoble.
Weill, J.-C. 1996. The ABDADA distributed minimax
search algorithm. In Proceedings of the 1996 ACM 24th
annual conference on Computer science, 131–138. ACM.
Willmott, S.; Richardson, J.; Bundy, A.; and Levine, J. 2001.
Applying adversarial planning techniques to Go. Theoretical
Computer Science 252(1):45–82.
Wintermute, S.; Joseph Xu, J. Z.; and Laird, J. E. 2007.
SORTS: A human-level approach to real-time strategy AI. In
AI and Interactive Digital Entertainment Conference, AIIDE
(AAAI), 55–60.

