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Abstract

In this paper we propose using a Genetic Algorithm to op-
timize the placement of buildings in Real-Time Strategy
games. Candidate solutions are evaluated by running base as-
sault simulations. We present experimental results in Spar-
Craft — a StarCraft combat simulator — using battle setups
extracted from human and bot StarCraft games. We show that
our system is able to turn base assaults that are losses for the
defenders into wins, as well as reduce the number of surviv-
ing attackers. Performance is heavily dependent on the qual-
ity of the prediction of the attacker army composition used
for training, and its similarity to the army used for evaluation.
These results apply to both human and bot games.

Introduction
Real-Time Strategy (RTS) games are fast-paced war-
simulation games which first appeared in the 1990s and en-
joy great popularity ever since. RTS games pose a multitude
of challenges to AI research:

• RTS games are played in real-time — by which we mean
that player actions are accepted by the game engine sev-
eral times per second and that game simulation proceeds
even if some players elect not to act. Thus, fast to com-
pute but non-optimal strategies may outperform optimal
but compute-intensive strategies.

• RTS games are played on large maps on which large num-
bers of units move around under player control — col-
lecting resources, constructing buildings, scouting, and at-
tacking opponents with the goal of destroying all enemy
buildings. This renders traditional full-width search infea-
sible.

• To complicate things even further, most RTS games fea-
ture the so-called “fog-of-war”, whereby players’ vision
is limited to areas around units under their control. RTS
games are therefore large-scale imperfect information
games.

The initial call for AI research in RTS games (Buro 2004)
motivated working on RTS game AI by describing the re-
search challenges and the great gap between human and
computer playing abilities, arguing that in order to close it

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

classic search algorithms will not suffice and proper state
and action abstractions need to be developed. To this day,
RTS game AI systems are still much weaker than the top
human players. However, the progress achieved since the
original call for research — recently surveyed in (Ontanón
et al. 2013) — is promising. The main research thrust so
far has been on tackling sub-problems such as build-order
optimization, small-scale combat, and state and action in-
ference based on analysing thousands of game transcripts.
The hope is to combine these modules with high-level search
to ultimately construct players able to defeat strong human
players. In this paper we consider the important problem of
building placement in RTS games which is concerned with
constructing buildings at strategic locations with the goal of
slowing down potential enemy attacks as much as possible
while still allowing friendly units to move around freely.

Human expert players use optimized base layouts,
whereas current programs do not and therefore become
prone to devastating base attacks. For example, Figure 1
shows a base that is laid-out well by a human player, while
Figure 2 depicts a rather awkward layout generated by a
top StarCraft bot. The procedure we propose here assumes a
given build-order and improves building locations by means
of maximizing survival-related scores when being exposed
to simulated attack waves whose composition has been
learned from game transcripts.

In what follows we will first motivate the building place-
ment problem further and discuss related literature. We then
present our algorithm, evaluate it empirically, and finish the
paper with concluding remarks and ideas for future work.

Background
Strategic building placement is crucial for top-level play
in RTS games. Especially in the opening phase, player’s
own bases need to be protected against invasions by creat-
ing wall-like structures that slow opponents down so that
they cannot reach resource mining workers or destroy cru-
cial buildings. At the same time, building configurations
that constrain movement of friendly units too much must be
avoided. Finding good building locations is difficult. It in-
volves both spatial and temporal reasoning, and ranges from
blocking melee units completely (Certicky 2013) to creating
bottlenecks or even maze-like configurations that maximize
the time invading units are exposed to own static and mobile



Figure 1: Good building placement. Structures are tightly
packed and supported by cannons. (Screenshot taken from a
Protoss base layout thread in the StarCraft strategy forum on
TeamLiquid1)

Figure 2: Weak building placement: structures are scattered
and not well protected. (Screenshot taken from a match
played by Skynet and Aiur in the 2013 AIIDE StarCraft AI
competition (Churchill 2013a).

defenses. Important factors for particular placements are ter-
rain features (such as ramps and the distance to expansion
locations), the cost of constructing static defenses, and the
type of enemy units.

Human expert players are able to optimize building loca-
tions by applying general principles such as creating choke-
points, and then refining placement in the course of playing
the same maps over and over and analyzing how to counter
experienced opponent attacks. Methods used in state-of-
the-art RTS bots are far less sophisticated (Ontanón et al.
2013). Some programs utilize terrain analysis library BWTA
(Perkins 2010) to identify chokepoints and regions to decide
where to place defenses. Others simply execute pre-defined

1http://www.teamliquid.net/forum/
bw-strategy/64136-protoss-base-layout

building placement scripts program authors have devised for
specific maps. Still others use simple-minded spiral search
around main structures to find suitable building locations.
In contrast, our method — that will be described in the
next section in detail — combines fast combat simulation
for gauging building placement quality with data gathered
from human and bot replays for attack force estimation and
stochastic hillclimbing for improving placements. The end
result is a system that requires little domain knowledge and
is quite flexible because the optimization is driven by an eas-
ily adjustable objective function and simulations rather than
depending on hard-coded domain rules — described for in-
stance in (Certicky 2013).

Building placement is a complex combinatorial optimiza-
tion problem which can’t be solved by exhaustive enumera-
tion on today’s computers. Instead, we need to resort to ap-
proximation algorithms such as simulated annealing, tabu
search, and Genetic Algorithms — which allow us to im-
prove solutions locally in an iterative fashion. In this paper
we opt for Genetic Algorithms because building placement
problem solutions can be easily mapped into chromosomes
and mutation and crossover operations are intuitive and can
be implemented efficiently. Good introductions to the sub-
ject can be found in (Mitchell 1998) and (Goldberg 1989).
For the purpose of understanding our building placement al-
gorithm it suffices to know that Genetic Algorithms
• are stochastic hill-climbing procedures that
• encode solution instances into objects called chromo-

somes,
• maintain a pool of chromosomes which initially can be

populated randomly or biased towards good initial solu-
tions,

• generate new generations of chromosomes by random
mutations and using so-called crossover operations that
take two parents based on their fitness to generate off-
spring,

• and in each iteration remove weak performers from the
chromosome pool.

Genetic Algorithms have been applied to other RTS game AI
sub-problems such as unit micro-management (Liu, Louis,
and Nicolescu 2013), map generation (Togelius et al. 2010),
and build-order optimization (Köstler and Gmeiner 2013).

Algorithm and Implementation
Our Genetic Algorithm (GA) takes a battle specification (de-
scribed in the next paragraph) as input and optimizes the
building placement. To asses the quality of a building place-
ment we simulate battles defined by the candidate building
placements and the mobile units listed in the battle specifi-
cation. Our simulations are based on fast scripted unit be-
haviors which implement basic combat micro-management,
such as moving towards an enemy when a unit is getting
shot but doesn’t have the attack range to shoot back, and
smart No-OverKill (NOK) (Churchill, Saffidine, and Buro
2012) targeting. The defending player tries to stay close to
his buildings to protect them, while the attacker tries to de-
stroy buildings if he is not attacked, or kill the defender units



otherwise. Probes — which are essential for the economy
— and pylons — needed for supply and for enabling other
buildings — are considered high-priority targets. Retreat is
not an option for the attacker in our simulation because we
are interested in testing the base layout against a determined
attack.

Our GA takes a battle specification from a file. This input
consists of starting positions and initial health points of all
units, and the frame in which each unit joined the battle to
simulate reinforcements. The units are split between the de-
fender player, who has buildings and some mobile units, and
the attacking player who does not have any buildings.

This data can be obtained from assaults that happened in
real games — as we do in our experiments — or it could be
created by a bot by listing the buildings it intends to con-
struct, units it plans to train, and its best guess for the com-
position and attack times of the enemy force.

Starting from a file describing the battle setup, a genome
is created with the buildings positions to be optimized. Fixed
buildings, such as a Nexus or Assimilator, and mobile units
are stored separately because their positions are not subject
to optimization.

We implemented our GA in C++ using GAlib 2.4.7 (Wall
2007) and SparCraft (Churchill 2013b). GAlib is C++ li-
brary that provides the basic infrastructure needed for im-
plementing GAs. SparCraft is a StarCraft combat simulator.
We adapted the version from (Churchill 2013b) by adding
required extra functionality such as support for buildings,
the ability to add units late during a battle, and basic colli-
sion tests and path-finding. In this implementation, all build-
ing locations are impassable to units and thus constrain their
paths, and also possess hit points, making them a target for
enemy units. The only buildings which have extra function-
ality are static defenses such as Protoss Photon Cannons,
which can attack other units, and Pylons, which are needed
to power most Protoss buildings. StarCraft (Blizzard En-
tertainment 1998), one of the most successful RTS games
ever, has become the de-facto testbed for AI research in
RTS games after a C++ library was released in 2009 that
allows C++ programs to interact with the game engine to
play games (Heinermann 2014).

Genetic Algorithm
Our GA is a generational Genetic Algorithm with non-
overlapping populations and elitism of one individual. This
is the simple Genetic Algorithm described in (Goldberg
1989), which in every generation creates an entirely new
population of descendants. The best individual from the pre-
vious generation is copied over to the new population by
elitism, to preserve the best solution found so far. We use
roulette wheel selection with linear scaling of the fitness.
Under this scheme, the probability of an individual to get
selected is proportional to its fitness. The termination condi-
tion is a fixed number of generations.

Genetic Representation
Each gene contains the position of a building, and an indi-
vidual’s chromosome is a fixed size array of genes. Order
is always maintained (e.g., i-th gene always corresponds to

the i-th building) to be able to relate each gene to a specific
building.

Initialization
From a population of N individuals, the first N − 1 indi-
viduals are initialized by randomly placing the buildings in
the area originally occupied by the defender’s base. A repair
function is then called to fix illegal building locations by
looking for legal positions moving along an outward spiral.
Finally, we seed the population (the N -th individual) with
the actual building locations from the battle description file.
Using real layouts taken from human games is a feasible
strategy, not only for our experimental scenario, but for a
real bot competing in a tournament. Major tournaments are
played on well known maps, for which we have access to
at least several hundreds game replays each, and it is highly
likely that some of those use a similar building composition
as our bot. Otherwise, we can use layout information from
our own (or another) bot’s previous games, which we later
show to produce similar results.

Genetic Operators
Because the order of the buildings in the chromosome does
not hold any special meaning, there is no “real-world” re-
lationship between two consecutive genes which allows us
to use uniform crossover rather than the more traditional N -
point crossover. Each crossover operation takes two parents
and produces two children by flipping a coin for each gene
to decide which child gets which parent’s gene. Afterwards,
the same repairing routine that is used in the initialization
phase is applied if the resulting individuals are illegal.

For each gene in a chromosome, the mutation operator
with a small probability will move the associated building
randomly in the vicinity of its current location. The vicinity
size is a configurable parameter that was set to a 5 build tile
radius for our experiments.

Fitness Function
Fitness functions evaluate and assign scores to each chromo-
some. The higher the fitness, the better solution the chromo-
some represents. To compute this value, we use SparCraft to
simulate battles between waves of attackers and the individ-
ual’s buildings plus mobile defenders. After the battle is con-
cluded, we use the value (negative if the attackers won) of
the winner’s remaining army as the fitness score. For a given
army, we compute its value using the following simple rules,
created by the authors based on their StarCraft knowledge:

• the value of an undamaged unit is the sum of its mineral
cost and 1.5 times its gas cost (gas is more difficult to
acquire in StarCraft)

• the value of a damaged unit is proportional to its remain-
ing health (e.g., half the health, half the value)

• values of workers are multiplied by 2 (workers are cheap
to produce but very important)

• values of pylons are multiplied by 3 (buildings cannot
function without them, and they increase the supply limit)



• finally, the value of the army is the sum of the values of
its units and structures.

If we are simulating more than one attacker wave, the fitness
is chosen as the lowest score after simulating all battles. Pre-
liminary experiments showed that this gives a more robust
building placement than taking the average over all battles.

Evaluation
We are interested in improving the building placement for
StarCraft scenarios that are likely to be encountered in
games involving highly skilled players. In particular, we fo-
cus on improving the buildings’ location for given build or-
ders and probable enemy attack groups. To obtain this data,
we decided to use both high-level human replays (Synnaeve
and Bessiere 2012) and replays from the top-3 bots in the
last AIIDE StarCraft competition (Churchill 2013a).

For a given replay, we first parse it and identify all base
attacks, which are defined as a group of units attacking at
least one building close to the other player’s base. A base
attack ends when the game is finished (if one player is com-
pletely eliminated) or when there was no unit attack in the
last 15 seconds. We save all units present in the game during
such a battle in a Boolean “adjacency” matrix A, where two
units are adjacent if one attacked the other one or if at some
point they were very close to each other during this battle
interval (this matrix is symmetric). By multiplying this ma-
trix repeatedly we can compute an “influence” matrix (e.g.,
A2 tells us that a unit X influenced a unit Z if it attacked
or was close to a unit Y that attacked or was close to Z).
From this matrix we can read the connected components —
in which any two units are connected to each other by paths
— and thus we can easily separate different battles across
the map and extract base assaults. We then filter or fix these
battles according to several criteria, such as the defending
base containing at least three buildings, and both players
having only unit types that are supported by SparCraft. An-
other limitation is that SparCraft implements fast but inaccu-
rate path-finding and collisions, so in a small percentage of
games units can get “stuck”. We eliminate these games from
our data analysis, and thus can end up with different number
of battles in different experiments. At this point the Protoss
faction is the one with the most features supported by the
simulator. We therefore focus on Protoss vs. Protoss battles
in this paper. After considering all these restrictions, 57 bat-
tles from human replays and 31 from bot replays match our
criteria.

To avoid having too few examples for each experiment,
we ran the GA over this dataset several (2 to 4 depending
on the experiment) times. The results vary because GA is a
stochastic algorithm.

Each base assault has a fixed (observed) build order for
the defending player and a list of attacking enemy units,
which can appear at different time points during the battle.
Using the GA presented in the previous section we try to
improve the building placement and then simulate the base
attack with SparCraft to test the new building configuration.

We found that most extracted base assaults strongly
favour one of the players. In real games either the attacker

Figure 3: Bad building placement (created manually). The
red arrow indicates the attack trajectory.

Figure 4: Typical improved building placement.

has just a few units and tries to scout and destroy a few build-
ings and then retreat, or he already defeated most defender
units in a battle that was not a base assault and then uses
his material superiority to destroy the enemy base. These in-
stances are not very useful test cases because if the army
compositions are too unbalanced, the building placement is
of little importance. Consequently, to make building place-
ment relevant, we decided to transform all games into a win
for the attacker (i.e., destroying all defender units) by adding
basic melee units (zealots), while keeping the build order un-
changed. We believe this is the least disruptive way of bal-
ancing the armies. Additionally, it allows us to show statis-
tics on the percentage of games lost by the defender that can
be turned into a win (i.e, destroying all attacker units and
keeping some buildings alive) by means of smarter building
placement.

An example of a less than optimal initial Protoss base lay-
out is shown in Figure 3. Figure 4 shows an improved layout
for the same buildings, proposed by our algorithm. The at-
tacking units follow the trajectory depicted by the red arrow.

For every base assault the algorithm performs simula-
tions using the defender buildings and army described in
the battle specification file and attack groups from all other
base assaults extracted from replays on the same map and



close in time to the original base attack used for training.
These attack waves try to emulate the estimate a bot could
have about the composition of the enemy’s army, having
previously played against that opponent several times. Af-
ter the GA optimizes the configuration the final layout is
tested against the original attack group (which was not used
for training/optimizing). We call this configuration cross-
optimized.

As a benchmark we also run the GA optimization against
the attacker army that appeared in the actual game that we
actually use for testing. This provides an upper bound esti-
mate on the improvement we could obtain in a real game if
we had a perfect estimate of the enemy’s army. We call this
configuration direct-optimized.

All experiments were performed on an Intel(R) Core2
Duo P8400 CPU 2.26GHz with 4 GB RAM running Fedora
20. The software was implemented in C++ and compiled
with g++ 4.8.2 using -O3 optimization.

Results
Figure 5 shows the improvements obtained by the GA using
a population of 15 individuals and evolving for 40 genera-
tions. This might seem too little for a regular GA, but it is
necessary due to the time it takes to run a simulation, and
as the results show, it is sufficient. The cross-optimized GA
manages to turn about a third of the battles into wins, while
killing about 3% more attackers. If it had perfect knowl-
edge of what exact attack wave to expect, represented by the
direct-optimized GA, it could turn about two thirds of the
battles into wins while killing about 19% more attackers.

Work on predicting the enemy’s army composition would
prove very valuable when combined with our algorithm.
However, we are not aware of any such work, except for
some geared toward identifying general strategies (Weber
and Mateas 2009) or build orders (Synnaeve and Bessière
2011).

Figure 6 compares results obtained optimizing human and
bot building placements. There is some indication that bot
building placement gains more from using our algorithm
as more attackers are killed after optimization. However, it
seems that the advantage gained is not enough to turn more
defeats into victories. This result might be explained by the
fact that we do not directly compare human and bot building
placements, as the base assaults are always balanced such as
the attacker wins before optimization. This takes away any
advantage the human base layout might initially hold over
ones that bots create.

Figure 7 shows that running longer experiments with a
larger population and more generations leads to better re-
sults, as expected. A bot with a small number of pre-set
build orders having access to some of his opponent’s past
games could improve its building placement by optimizing
the building placements offline. Decent estimates for the at-
tacking armies could be extracted from the replays and the
bot could then use bigger GA parameters to obtain better
placements because time is not an issue for offline training.
However, Figure 5 shows that the best scores are attained by
using accurate predictions of the enemy’s army — which are
more likely to be obtained during a game rather than from
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Comparing different training approaches

Figure 5: Percentage of losses turned into wins and extra at-
tackers killed when cross-optimizing and direct-optimizing.
115 cross-optimized and 88 direct-optimized battles were
played . Error bars show one standard error.
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Improving Human/Bot building placement

Figure 6: Percentage of losses turned into wins and extra at-
tackers killed when cross-optimizing, comparing results for
human and bot data. 106 human battles and 52 bot battles
were played. Error bars show one standard error.
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Performances for different GA settings

Figure 7: Percentage of losses turned into wins, extra attack-
ers killed, and average run time for three direct-optimizing
GA settings. We compare populations of 6, 10 and 15 indi-
viduals, running for 10, 20 and 40 generations respectively.
98 battles were played for each configuration. Error bars
show one standard error.

past replays — indicating that another possible promising
approach is to use a small and fast in-game optimizer seeded
with the solution from a big and slow offline optimization.



Conclusions and Future Work

We have presented a technique for optimizing building
placement in RTS games that applied to StarCraft is able
to help the defending player to better survive base assaults.
In our experiments between a third and two thirds of the los-
ing games are turned into wins, and even if the defender still
loses games, the number of surviving attackers is reduced by
3% to almost 20% depending on our ability to estimate the
attacker force. The system’s performance is highly depen-
dent on how good this estimate is, inviting some research in
the area of opponent army prediction.

The proposed algorithm can easily accommodate differ-
ent maps and initial building placements. We ran experi-
ments using over 20 StarCraft maps, and base layouts taken
from both human and bot games. Bot games show a slightly
larger improvement after optimization, as expected. Using
simulations instead of handcrafted evaluation functions en-
sures that this technique can be easily ported to other RTS
games for which simulators are available.

We see three avenues for extending our work:

• extending the application,

• enhancing the simulations, and

• improving the optimization algorithm itself.

The application can be naturally extended by including
the algorithm in a bot to optimize preset build orders against
enemy armies extracted from previous replays against an en-
emy we expect to meet in the future. When a game starts, the
closest one to our needs can be loaded and used either as is,
or as a seed for online optimization. Exclusive offline op-
timization can work because bots don’t usually perform a
wide variety of build orders. Online, at roughly 30 seconds
per run, can be done as long as the bot has a way of predict-
ing the most likely enemy army.

Another possible extension is to add functionality for
training against successive attack waves, arriving at differ-
ent times during the build order execution. The algorithm
would optimize the base layout until the first attack wave,
and then consider all previous buildings as fixed. Until the
next attack wave arrives, it would optimize only the posi-
tions of the buildings to be constructed. The fitness function
would take into account the scores for all successive waves.

The simulations could be greatly enhanced by adding sup-
port for more advanced unit types and game mechanics, such
as bunkers, flying units, spell-casters and cloaking. This
would allow us to explore Terran and Zerg building place-
ments in StarCraft, at any point in the game.

Finally, the algorithm could benefit from exploring differ-
ent ways of combining the evaluation of attack waves into
the fitness function. Currently the fitness is the lowest score
obtained after simulating all attack waves, which led to bet-
ter results than using the average. The GA could also bene-
fit from the use of more informed operators which integrate
domain knowledge, and are aware of choke-points, how to
build “walls”, or how to protect the worker line.
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