
RTS Games and Real–Time AI Research

Michael Buro & Timothy M. Furtak
Department of Computing Science, University of Alberta, Edmonton, AB, T6J 2E8, Canada

email: (mburo|furtak)@cs.ualberta.ca

Abstract

This article1 motivates AI research in the area
of real–time strategy (RTS) games and describes
the current status of the ORTS project whose
goals are to implement an RTS game program-
ming environment and to build AI systems that
eventually can outperform human experts in this
popular and challenging domain.

Keywords: Real–time AI, simulation, multi–player games

1 Introduction
Commercial computer games are a growing part of the en-
tertainment industry and simulations are a critical aspect
of modern military training. These two fields have much
in common, cross–fertilize, and are driving real–time AI
research [11]. With the advent of fast personal comput-
ers, simulation–based games have become very popular.
Today, these games constitute a multi–billion dollar en-
terprise. Examples are sports games — in which players
control entire hockey, soccer, basketball teams, etc. — and
real–time strategy (RTS) games where players command
armies which clash in real–time. The common elements of
simulation games are severe time constraints on player ac-
tions and a strong demand of real–time AI which must be
capable of solving real–world decision tasks quickly and
satisfactorily. Popular simulation games are therefore ideal
test applications for real–time AI research. RTS games —
such as the million-sellers Starcraft and Warcraft by Bliz-
zard Entertainment and Age of Empires by Ensemble Stu-
dios — can be viewed as simplified military simulations.
In these games several players struggle over resources scat-
tered over a 2D terrain by setting up economies, building
armies, and guiding them into battle in real–time. The cur-
rent AI performance in commercial RTS games is poor by
human standards. This may come as a surprise because
RTS games have been around for more than ten years al-
ready and today’s low–end computers can execute more
than a billion operations per second. The main reasons
why the AI performance in RTS games is lagging behind
developments in related areas such as classic board games
are the following:

• RTS game worlds feature many objects, imperfect in-
formation, micro actions, and fast-paced action. By
contrast, World–class AI players mostly exist for slow–
paced, turn–based, perfect information games in which the
majority of moves have global consequences and human

1A preliminary and condensed version of this paper has been
presented in the IJCAI–2003 poster session.

planning abilities therefore can be outsmarted by mere
enumeration.

• Market dictated AI resource limitations. Up to now
popular RTS games have been released solely by game
companies who naturally are interested in maximizing
their profit. Because graphics is driving games sales and
companies strive for large market penetration only about
15% of the CPU time and memory is currently allocated
for AI tasks. On the positive side, as graphics hardware
is getting faster and memory getting cheaper, this percent-
age is likely to increase – provided game designers stop
making RTS game worlds more realistic.

• Lack of AI competition. In classic two–player games
tough competition among programmers has driven AI re-
search to unmatched heights. Currently, however, there
is no such competition among real–time AI researchers in
games other than computer soccer. The considerable man–
power needed for designing and implementing RTS games
and the reluctance of game companies to incorporate AI
APIs in their products are big obstacles to AI competition
in RTS games.

In what follows, we first take a closer look at AI challenges
in RTS games to motivate this domain as being well-suited
for real–time AI research. Then we will describe the ORTS
project in some detail whose goals are the implementation
of an RTS game programming environment and to build AI
systems that can defeat human RTS game players. Finally,
we discuss related work and close with an outlook.

2 RTS Games and AI Research
RTS games offer a large variety of fundamental AI re-
search problems, unlike other game genres studied by the
AI community so far:

• Adversarial real–time planning. In fine–grained real-
istic simulations, agents cannot afford to think in terms of
micro actions such as “move one step North”. Instead, ab-
stractions of the world state have to be found that allow
AI programs to conduct forward searches in a manageable
abstract space and to translate found solutions back into
action sequences in the original state space. Because the
environment is also dynamic, hostile, and smart — adver-
sarial real–time planning approaches need to be investi-
gated.

A typical strategic problem that illustrates the necessity
for adversarial planning is shown in Fig. 1. All corner re-
gions are sealed off by strips of trees. In this Warcraft–2
map lumber and gold are the resources and no air trans-
ports are available. It does not take long for human play-
ers to realize that it is necessary to cut through the trees

A

B

C

1 2

Figure 1: RTS game scenario. The start locations of up to
four players (marked with crosses) are sealed off by strips
of trees. Triangles represent gold mines. An acceptable AI
system needs to figure out that chopping trees right away
to reach the mine in the center quickly is necessary to win
the game.

right away to claim and defend the gold mine in the cen-
ter [A]. The computer player (2), however, is clueless and
only starts chopping trees after running out of gold. It lost
after being sieged by the human player (1) [B,C].

• Decision making under uncertainty. Initially, players
are not aware of the enemies’ base locations and inten-
tions. It is necessary to gather intelligence by sending out
scouts and to draw conclusions to adapt. If no data about
opponent locations and actions is available yet, plausible
hypotheses have to be formed and acted upon.

• Opponent modeling, learning. One of the biggest
shortcomings of current (RTS) game AI systems is their
inability to learn quickly. Human players only need a cou-
ple of games to spot opponents’ weaknesses and to ex-
ploit them in future games. New efficient machine learning
techniques have to be developed to tackle these important
problems.

• Spatial and temporal reasoning. Static and dynamic
terrain analysis as well as understanding temporal relations
of actions is of utmost importance in RTS games — and
yet, current game AI programs largely ignore these issues
and fall victim to simple common–sense reasoning [8].

• Resource management. Players start the game by gath-
ering local resources to build up defenses and attack forces,
to upgrade weaponry, and to climb up the technology tree.
At any given time the players have to balance the resources
they spend in each category. For instance, a player who
chooses to invest too many resources into upgrades, will
become prone to attacks because of an insufficient number
of units. Proper resource management is therefore a vital
part of any successful strategy.

• Collaboration. In RTS games groups of players can join
forces and intelligence. How to coordinate actions effec-
tively by communication among the parties is a challeng-
ing research problem. For instance, in case of mixed hu-
man/AI teams, the AI player often behaves awkwardly be-
cause it does not monitor the human’s actions, cannot infer
the human’s intentions, and fails to synchronize attacks.

• Pathfinding. Finding high–quality paths quickly in 2D
terrains is of great importance in RTS games. In the past,
only a small fraction of the CPU time could be devoted to
AI tasks, of which finding shortest paths was the most time
consuming. Hardware graphics accelerators are now al-
lowing programs to spend more time on AI tasks. Still, the
presence of hundreds of moving objects and the urge for
more realistic simulations in RTS games make it necessary
to improve and generalize pathfinding algorithms. Keep-
ing unit formations and taking terrain properties, minimal
turn radii, inertia, enemy influence, and fuel consumption
into account greatly complicates the once simple problem
of finding shortest paths.

Playing RTS games is challenging. Even more challenging
is the creation of autonomous real–time systems capable of
outperforming human experts in this domain. The range of
applications of RTS real–time AI modules is by no means
limited to creating smart opponents to entertain human
players. High–performance simulators are in high demand
for training military personnel today and will become the
core of automated combat and battlefield decision–support
systems of tomorrow. In [22] it is predicted that 20% of
the U.S. armed forces will be robotic by 2015. The current
state of real–time command and control (C2) AI, in par-
ticular in the RTS games domain, is less than satisfactory:
computer opponents do not: smartly adapt to adversaries,
learn from their own mistakes, look–ahead in abstracted
search spaces, reason about spatial and temporal object
relations, nor do they collaborate and communicate well.
Human experts, on the other hand, excel in all those areas.
This is true not only for the chosen domain. However, by
concentrating on a concrete and bounded real–time deci-
sion task that features a number of challenging but man-
ageable sub–problems of general interest, we think the
chance of accomplishing the goal of creating a strong au-
tonomous C2 AI system within a couple of years is good.
The results of RTS game research will increase our under-
standing of fundamental AI problems — such as opponent
modeling and adversarial real–time planning — and will
have considerable impact on the real–time control domain
in general and the computer games industry in particular
which is in need of creating credible computer controlled
agents.

It is important to note that our and the games indus-
try’s AI objectives differ: while we are interested in cre-
ating strong AI systems capable of defeating the best hu-
mans, game developers want to maximize the replay value
of their titles which precludes average customers losing
all the time against computer players. We acknowledge
this fact but point out that strong AI components can be
toned down to adjust to weaker players, whereas creating

games in which people enjoy interacting with computer
allies and opponents is virtually impossible when using
weak AI modules. A good example is the widely used
technique of scripting RTS game AI based on rule sets.
While those systems may be challenging when played by
beginners for the first time, humans quickly learn how to
counter canned computer strategies and to exploit holes in
the fixed rule base.

3 The ORTS Project
RTS games have become quite popular in recent years.
Tournaments with considerable prize money are being held
regularly all over the world. The development of high–
performance AI systems can therefore benefit a lot from
human expertise. Thus, it is natural to tap into available
RTS game resources to learn from human experts and to
measure AI performance in tournaments. Unfortunately,
game companies are not inclined to release communication
protocols or to add AI interfaces to their products. Both
of these features are needed to let AI researchers integrate
AI modules with a game to aid human players or to play
games autonomously. Moreover, current RTS game sim-
ulations rely on client–side simulations in which all client
machines run the entire game simulation and just hide in-
formation from the respective players. While this approach
saves bandwidth in case the command frequency is small,
it is prone to map–revealing hacks which spoil the game
experience just as badly as revealing opponents’ cards in
poker.

To overcome these problems, the Open–Real–Time–
Strategy (ORTS) project was conceived in 2001 [4]. The
short term project goal is to set up a programming environ-
ment for conducting real–time AI experiments. The long
term goal of the ORTS project is the creation of AI sys-
tems whose performance surpasses that of human experts
in real–time command and control domains. Central to
this is the implementation of an RTS game server which
allows researchers to connect their AI systems to measure
AI performance in real–time domains with the following
properties:

• Objects navigate and interact in initially uncharted
worlds in real–time. Terrain features include deep
seas, rivers, plateaus, and ramps. Objects have radar–
like vision which is only obstructed by elevation.
They can be airborne, land–based, or naval.

• Players compute actions for a set of objects at their
command. The computational model can range from
local to global with respect to the objects in order to
reflect given command hierarchies and different lev-
els of physical restrictions imposed by the world.

• Object actions include straight–line motion2, attack-
ing objects, gathering resources, trading goods, build-
ing, upgrading, and repairing objects.

• Team players can communicate and can share views
of the world and object control.

2This seems to be a severe restriction. However, curved tra-
jectories can be approximated arbitrarily well by line segments.

• Top–level goals of the players include: destroying all
opponent objects, reaching a designated location first,
or gathering as much resources as possible in a given
time period.

Compared with commercial RTS titles the ORTS system
has the following advantages:

• Free Software. ORTS is released under the GNU Pub-
lic License (GPL) which means that anyone can download
the source code at no cost in order to learn how the system
works and to contribute to the project by submitting bug
fixes and adding new features. It also means that projects
that incorporate ORTS code need to release their source
code as well. It is important to point out that this does not
prevent users of GPL’ed code from selling their software.
The benefit of GPL’ed software releases to the community
is huge as witnessed by the success of the Linux, KDE,
and Mono projects. We invite game companies to release
source code of their popular but no longer sold or main-
tained games to the community so that we all can learn.

• Flexible Game Specification. ORTS is a generic RTS
game programming environment. It provides the infras-
tructure for RTS games including a server and a graphics
client. However, the actual game played when using the
ORTS system is not fixed — as in commercial RTS games
— but scripted. A script is used to define unit properties —
such as size, sight range and maximum speed — and unit
actions. The freedom to adjust RTS games to the needs of
AI researchers is important. However, we also acknowl-
edge the importance of providing standard setups in order
to attract human players and to spark competition in form
of tournaments. The community can help here because
ORTS is free software.

• A hack–free server–side simulation. The ORTS game
server maintains the entire world state and sends only visi-
ble information to players which connect from remote ma-
chines. Map–revealing client hacks that are common in
commercial client–side simulations are therefore impossi-
ble. The additional bandwidth requirement is mitigated by
compressed incremental updates.

• Total object control. Today’s commercial RTS games
confine users to single view graphical user interfaces, fix
low–level unit behavior, and sometimes use veiled com-
munication. The ORTS system, on the other hand, em-
ploys an open message protocol that allows AI researchers
and players to connect whatever client software they like
— ranging from split–screen GUIs, over hybrid systems
in which AI components aid the human player, to fully au-
tonomous AI systems. ORTS clients have complete knowl-
edge of all their units and visible terrain at all times. There-
fore, there is no need for switching focus back and forth
in case of multiple simultaneous battles. Another big ad-
vantage is that in ORTS there is no prescribed low–level
unit behavior, which in commercial RTS games often is
too simplistic and awkward. Instead, clients send each and
every micro action — including breaking down paths into
straight line segments — to the server. Furthermore, in
each simulation cycle actions can be generated for all units

unlike in client–side simulations where the command fre-
quency is very limited. ORTS clients are therefore in total
control of their units.

• Remote AI. In commercial client–side simulations the
AI code for all players runs on all peer nodes to save band-
width and to keep the simulations synchronized. This cre-
ates unwanted CPU load. Moreover, user configurable AI
behavior is limited to simple scripts because there are no
APIs to directly connect AI systems that run on remote
machines. By contrast, conducting AI experiments in the
ORTS environment is easy. Its open message protocol al-
lows users to even connect super computers to either play
RTS games autonomously or to aid human players.

Popular games in which human players still have the up-
per hand are ideal test–domains for AI research. By pro-
viding a free software RTS game environment we hope to
spark interest in the C2 domain among real–time AI re-
searchers. The open design allows the construction of hy-
brid AI systems in which human players are aided by AI
modules of growing capabilities. Competitive game play-
ing on an ORTS Internet game server is therefore likely to
improve AI performance and ergonomic GUI design.

4 ORTS Components and Performance
In this section we will give a high–level overview of the
currently implemented ORTS components (Fig. 2), judge
their performance with respect to the outlined project
goals, and discuss future enhancements.

ORTS games are defined by blueprints that describe ob-
jects, their properties — such as sight range and armor
— and their possible actions in the ORTS world. When
starting the server it reads this information together with
the terrain description and initial unit locations from a text
file. The server then waits for all ORTS clients to connect,
sends the game description to them, and enters the simu-
lation loop. In this loop the server first sends out the in-
dividual world views to all clients, it then waits a specific
time for the clients’ action messages, updates the world
state accordingly, and repeats this process until the game
is over.

The critical components with respect to server/client
performance are object vision, motion, and collision com-
putation, as well as data transmission between server and
clients. Efficient algorithms for object motion, collision
detection, and incremental client view updates were al-
ready presented in [4]. Since then we increased the per-
formance of these parts and added game scripting, view
obstruction by elevation, a new robust network protocol,
and a 3D graphics client to the ORTS system. In what fol-
lows we will sketch the new developments.

4.1 Game Scripting
Scripting languages are often used in modern commercial
games to simplify game development. By providing a sim-
plified interface to the game engine — often in the form of

GUI GUI

Differential View Computation + Compression/Action Decompression

Game Specification
Terrain Definition
Start Positions/Units

Script

TCP/IP TCP/IP

View Decompr./Action Compression View Decompr./Action Compression

RTS Game Server

RTS Game Client RTS Game Client...

...

AI AI

Simulation Rate: 25 updates/sec, 1000 objects (Athlon 1GHz)

Terrain Features:
water, ground, plateaus, ramps

Object Types:

High Resolution Object Motion
Fast Collision Test

submerged, on water, on gournd, in air

View Obstruction by Elevation
Scripted Unit Actions

Partial View

Partial View

Figure 2: ORTS Component Overview

interpreted high–level languages — developers are spared
from dealing with intricate source code. Instead, adjust-
ments to scripts that concisely describe game attributes can
be tested rapidly because no recompilation is needed. In
RTS games scripting is useful in several places. We started
by scripting the game definition and plan to extend script-
ing to unit control and GUI customization.

ORTS objects are represented as containers for integer
variables, actions, and sub–objects. From these containers
a set of blueprints is defined which describes the names
and initial values of attributes, the available actions, and
the structure of an object. All objects in the game are in-
stances of one of the blueprints which are read from a file at
the start of a game. With the exception of certain attribute
names such as “hitpoints” and “sight”, the server does not
infer meaning from these elements. Rather, it is the actions
attached to each object, all of which may be scripted, that
define the interactions within the world. This allows for a
wide range of games to be described and simulated in the
ORTS environment without the need to add special exten-
sions. The action scripts refer to attributes, components,
and actions by name and so do not depend on any knowl-
edge about the object’s type. The scripts themselves are
able to perform complex actions including:

• creating new objects – permanent and temporary ob-
jects can be created from a blueprint and assigned an
owner.

• queuing actions – either for immediate evaluation or
for a later cycle.

• interfacing with the game state – accessing and

modifying internal data structures via registered func-
tions.

• iterating over objects in a region – allowing the
scripting of area effects.

The scripting language is defined recursively in terms of
integer values (either constants, variables, or object at-
tributes), basic arithmetic and logical connectives, condi-
tional expressions, and pre–defined functions. These func-
tions are inserted as compiled expressions within the script
and are used as helpers to provide access to low–level data
structures and commonly used internal functions. It is of-
ten the case that when the scripting language is unable or
is too awkward to use for a specific task, a helper function
may be quickly created by defining a keyword and associ-
ating a function within the script parser.

In addition to scripted actions defined within the
blueprints, actions may be compiled functions within the
server that are explicitly added to a list of available ac-
tions. These actions can then be referenced by name within
the object description and a link to the compiled function
added to the internal blueprint.

4.2 Object Motion and Vision
The most time consuming server tasks are object motion
and visibility computations. In each game cycle moving
objects have to be advanced and checked for collisions. In
the ORTS implementation sector based computations re-
duce the naive implementation’s Θ(n2)–time for checking
(

n

2

)

potential object interactions to O(n) [4].
A recent addition to the server is view obstruction by ter-

rain elevation which adds more realism and tactical options
to ORTS games. Quickly computing what is visible in RTS
games is nontrivial because potentially hundreds of objects
are constantly moving and thereby changing their view.
The tile–based nature of the ORTS world naturally lends
itself to describing an object’s visual field in terms of the
regions visible from the tiles it is occupying. Regardless
of the criteria used to determine visibility, the highly static
nature of terrain obstructions allow the results of those vis-
ibility computations to be reused for any object looking out
from that tile afterward.

ORTS generates the entire view independent of the last
cycle. As a result, it is unaffected by changes in unit posi-
tions or by large portions of the view being quickly hidden
and revealed as would be the case when moving troops
through highly obstructed terrain. Because the number
of interactions (collisions, enemy encounters, etc.) in-
creases with the number of moving objects, computations
have been optimized to reduce the resources needed in this
worst case. The execution time of the vision computation
is linear in the number of objects (N), the number of tiles
(T), and the number of players (P), for a time complexity
of O (N + P ·T) per simulation cycle (Fig. 3). The per-
formance is initially greater for small map sizes due to a
greater number of objects being on the same tile. This re-
duces the number of tile views used relative to the number
of objects. The space complexity is also O (N + P ·T) if
one assumes a fixed maximum sight range.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 575 1050 1525 2000
0%

5%

10%

15%

20%

25%

30%

35%

40%

se
co

nd
s /

 10
00

 cy
cle

s

%
 of

 C
PU

 us
ed

 at
 10

 H
z

a) number of objects

 0

 2

 4

 6

 8

 10

 12

 14

 16

642 3002 4202 5122
0%

2%

4%

6%

8%

10%

12%

14%

16%

se
co

nd
s /

 10
00

 cy
cle

s

%
 of

 C
PU

 us
ed

 at
 10

 H
z

b) number of tiles

wo/ actions
w/ actions

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8
40%

60%

80%

100%

120%

140%

160%

180%

200%

se
co

nd
s /

 10
00

 cy
cle

s

%
 of

 C
PU

 us
ed

 at
 10

 H
z

c) number of players

wo/ actions
w/ actions

Figure 3: Wallclock benchmarks on an Athlon XP 2400+
with respect to changes in a single variable. Constant val-
ues for each graph are: a) one player, 32768 tiles; b) one
player, 200 objects; c) 3622 tiles, 1680 objects. The run-
ning time flattens out in b) around 3002 tiles as the number
of objects per occupied tile decreases to one.

4.3 Communication and Networking

In each cycle the server sends the state of the world to each
client as they perceive it and the client responds by send-
ing a list of actions for the objects it has control of. As the
world is explored and portions of the map are revealed, the
server sends a list of the newly visible tiles along with a de-
scription of their topography (height, ground type, whether
or not the tile slopes in a particular direction). Objects are
entirely described by the index of the blueprint used to cre-
ate the object, and a vector of their current attribute values.
Subsequent viewings of the same object (if the object has

not been lost from sight) are given in terms of the attribute
changes from the previous frame.

With the increasing speed of network communication,
such data rates are within the limits of current high–speed
Internet connections. By applying a moderate amount of
compression to the client’s view prior to sending it, the
necessary throughput is greatly reduced to acceptable lev-
els for even large multi–player games (Fig. 4).

The experimental results reported in [4] suggest that
the main communication bottleneck when using server–
side simulation and high–speed connections such as cable–
modems or DSL is lag rather than data throughput. Lag
is induced by data transfer over networks and by associ-
ated computational overhead such as message compres-
sion/inflation and updating data structures on both commu-
nication ends. For the sake of simplicity the first ORTS im-
plementation ignored network lag and indeed used block-
ing TCP I/O on both the server and client side. As we

0

10

20

30

40

50

60

 400 800 1200 1600 2000

kil
ob

yte
s /

 fr
am

e

number of visible objects

uncompressed

upload
download

1

2

3

4

 400 800 1200 1600 2000

kil
ob

yte
s /

 fr
am

e

number of visible objects

compressed

upload
download

Figure 4: Server–side data rates — with and without com-
pression — averaged over 1000 frames with client gener-
ated actions. Each object has on average 26 attributes, and
requires approximately 1 byte per attribute to encode the
change from the previous cycle. The sending of tile infor-
mation is included in these measurements, although their
contribution to the average approaches zero since each tile
is only sent once.

are now moving towards a fully functional RTS game en-
vironment latency issues need to be addressed. The most
pressing question is what should happen when during a
game one or more players experience unusually high net-
work lag. In current commercial RTS games clients detect
communication lag and adjust to it by first slowing down
the game up to the certain point when players are discon-
nected.

For ORTS we have developed an alternative scheme that
avoids the decision on whether or when to kick out play-
ers based on network lag altogether. The idea is that rather
than disconnecting clients when they do not answer in time
they just forfeit the opportunity to issue actions to their
units in that particular simulation frame. Two problems
have to be addressed: what should happen when the server
blocks while sending out the current view to a client or
when the server receives multiple action messages from a
client? Both problems can be solved by using buffered I/O:
in the first case messages accumulate in the server’s send
buffer. In order to quickly recover from heavy network lag,
several consecutive differential view messages in the send
buffer can be replaced by single messages that encode the
current view without referring to earlier messages. For re-
solving the second problem the server needs to be able to
remove multiple messages from the receive buffer in a sin-
gle simulation frame because otherwise clients that experi-
enced lag can never catch up. A simple and effective strat-
egy is to merge action messages from several frames. The
outlined asynchronous communication scheme has another
big advantage: combined with proactive action messages
sent by lagging clients it solves the lag issue in RTS games
— provided that a good response to the next world view(s)
is highly predictable. In this regard the start/stop nature of
actions in ORTS is helpful because even if action messages
are delayed, units will — for instance — continue moving
or attacking targets once those actions have been initiated.

4.4 ORTS Client Software
Ergonomic graphical user interfaces are essential for hu-
man RTS game players. Because fast actions and reactions
are of utmost importance in this game genre players wel-
come keyboard shortcuts for common actions, short mouse
move distances, action queues, rally points, associating
keys with unit groups etc. While most commercial RTS
games now provide these functions, their human–machine
interface is still limited compared to what is possible in an
open software environment like ORTS. For instance, com-
mercial RTS games still only provide a single sector view
of the playing field. This forces players to quickly switch
views back and forth in case different parts of the playing
field need attention. Other problems are the limited ability
to tailor GUIs and insufficient AI support in the client.

We recently added a 3D graphics client to the ORTS sys-
tem on top of the client software which communicates with
the server and maintains the game state. The screen shot
in Fig. 5 shows a part of the playing area on the left hand
side featuring hilly terrain, some ground and air units, and
a building. On the right hand side command buttons for
the selected aircraft is displayed as well as the minimap

Figure 5: A screen shot of the ORTS OpenGL graphics
client.

which gives the player a global view of the currently visi-
ble regions and units. It is important to note that ORTS’s
open architecture does not confine users to a particular in-
terface. Everybody is free to connect their own client.
Knowledge of C++ and the willingness to study parts of
the ORTS code makes it possible to add new functionality
to the ORTS GUI with direct implications to game play-
ing performance. Consider for instance scripts attached to
units for handling low–level behavior such as fleeing in the
face of strong opposition or patrolling between two loca-
tions. Because the entire behavior of all units is controlled
by client software it is possible to plug in smart AI helper
modules for many tasks that require multitasking and quick
reactions. Prominent examples are automatic attacks when
opponent units come into sight or handling close combat
situations efficiently. Currently, players have to micro–
manage many activities such as concentrating fire. This
is unacceptable in large RTS game scenarios where often
hundreds of units are engaged at different locations simul-
taneously.

We have just begun to add scripting support to the graph-
ics client which eventually will greatly simplify its cus-
tomization. Once scripting has matured and a standard
ORTS game has been designed we envision interested peo-
ple to start contributing to the project in form of AI mod-
ules and further GUI enhancements.

5 Related Work

Research on computer soccer pursues goals similar to
those outlined in this paper and has become quite pop-
ular [19]. This domain can be regarded as a simplified
RTS game with only a few objects, no economy, unre-
markable terrain features, and more or less complete infor-

mation. Another big difference is that agents in computer
soccer are required to compute their actions locally. While
this decision makes perfect sense when studying collabo-
ration in autonomous multi–agent settings, there is no way
of strictly enforcing it in games played on wide–area net-
works. In RTS games the player’s role is a manager who
by definition has a global view and needs to think globally.
Given its limited view, no single object in RTS games can
even approximate global plans because the playing field is
big and possibly many local battles in different regions are
fought simultaneously. Thus, the AI focus in RTS games
has to be on planning on the global scale and the AI system
does not need to be restricted to computation local to the
units. It is therefore possible to connect any client software
running on remote machines to the server without worry-
ing about cheating.

ORTS is not the first and only free software RTS game
project. Most of these projects are poorly maintained or
are still in the design phase with limited working code
available for use by AI researchers. The notable excep-
tion is Stratagus (www.nongnu.org/stratagus) — formerly
known as FreeCraft. Stratagus uses client–side simulation
and is therefore prone to client hacks and not suited for
real–time internet AI competitions. Nevertheless, it has re-
cently been used as test–vehicle for MDP related planning
research [10].

Many articles on robot motion, planning, temporal and
spatial reasoning, and learning are relevant to constructing
AI systems for RTS games. The SOAR architecture —
for instance — and its application to first–person shooter
games [14; 15] as well as M. Atkin’s work on the GRASP
system that is applied to a capture–the–flag war game [1;
2] are highly significant. Both projects have created high–
performance game programs and represent the state–of–
the–art in planning research applied to games.

The other large body of literature relevant to this work
is on military analyses and applications. Research in this
area spans from mathematical combat models [12] over
computer generated forces — which are used in simula-
tion and training — to decision–support systems that aid
commanders and troops on the battle–field or even control
entire weapon systems autonomously. This project brings
both research communities together.

6 Conclusion and Outlook
In this paper we have motivated AI research in the domain
of RTS games. We also described the current state of the
ORTS project whose goal it is to implement a program-
ming infrastructure for RTS game AI research and to build
AI systems that eventually outperform human players. The
rich set of research problems that have to be tackled in or-
der to reach human performance in these games span from
pathfinding over temporal reasoning to adversarial real–
time planning. Most of these problems have applications
outside the game domain. Examples include autonomous
robot navigation in hostile environments and simulators for
training military personnel. We encourage AI researchers
to consider RTS games as test–domain and invite program-
mers to join our efforts to make our free software RTS

game system attractive to both human players and AI re-
searchers. The resulting competition will then hopefully
drive real–time AI performance to new heights as it did in
many classic game domains.

Acknowledgments
We thank Harry Wentland and Keith Yerex for contribut-
ing to the ORTS client software. This research is partly
funded by the first author’s NSERC discovery grant and
the second author’s NSERC scholarship.

References
[1] M.S. Atkin. AFS and HAC: Domain-general agent simula-

tion and control. In AAAI Workshop on Software Tools for
Developing Agents, 1998.

[2] M.S. Atkin and P.R. Cohen. Physical planning and dynam-
ics. In Working notes of the AAAI Fall Symposium on Dis-
tributed Continual Planning. 1998.

[3] M. Buro. From simple features to sophisticated evaluation
functions. In LNCS volume 1558 – Proceedings of the First
International Conference on Computers and Games, pages
126–145. Springer–Verlag, 1998.

[4] M. Buro. ORTS: A hack-free RTS game environment.
In Proceedings of the Third International Conference on
Computers and Games, pages 156–161, 2002. Software:
http://www.cs.ualberta.ca/˜mburo/orts/orts.html.

[5] C. Dawson. Formations. In Steve Rabin, editor, AI Game
Programming Wisdom, pages 260–271, 2002.

[6] M.E. des Jardins, E.H. Durfee, C.L. Ortiz, and M.J. Wolver-
ton. A survey of research in distributed, continual planning.
AI Magazine, 20(4):13–22, 1999.

[7] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classifica-
tion. John Wiley and Sons, 2001. 2nd edition.

[8] K.D. Forbus, J.V. Mahoney, and K. Dill. How qualitative
spatial reasoning can improve strategy game AIs. IEEE In-
telligent Systems, 17(4):25–30, July 2002.

[9] J. Gratch and R. Hill. Continuous planning and collab-
oration for command and control in joint synthetic bat-
tlespaces. In Proceedings of the Sixth Conference on Com-
puter Generated Forces and Behavioral Representation,
1998.

[10] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Gen-
eralizing plans to new environments in relational MDPs. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, Acapulco, Mexico, 2003. Software avail-
able at http://dags.stanford.edu/Freecraft/.

[11] J.C. Herz and M.R. Macedonia. Computer games and the
military: Two views. Defense Horizons, Center for Tech-
nology and National Security Policy, National Defense Uni-
versity, 11, April 2002.

[12] A. Ilachinski. Land warfare and complexity. CRM 96-68,
Center for Naval Analysis Research, 1996.

[13] A. Ilachinski. Irreducible semi-autonomous adaptive com-
bat: An artificial-life approach to land warfare. Memoran-
dum 97-61.10, Center for Naval Analysis Research, 1997.

[14] J. Laird. Using a computer game to develop advanced AI.
Computer, 34(7):70–75, July 2001.

[15] J. Laird, A. Newell, and P.S. Rosenbloom. SOAR: An ar-
chitecture for general intelligence. Artificial Intelligence
Journal, 33(3):1–64, 1987.

[16] D. Pottinger. Terrain analysis in real–time strategy games.
In Proceedings of Computer Game Developer Conference.
2000.

[17] D. Reece, M. Kraus, and P. Dumanoir. Tactical movement
planning for individual combatants. In Proceedings of the
9th Conference on Computer Generated Forces and Behav-
ioral Representation. 2000.

[18] P. Stone. Layered Learning in Multi–Agent Systems. Com-
puter Science Department, Carnegie Mellon University,
1998. Ph.D. Thesis CMU–CS–98–187.

[19] P. Stone. Multiagent competitions and research: Lessons
from RoboCup and TAC. In RoboCup International Sym-
posium, Fukuoka, 2002.

[20] P. Tozour. Strategic assessment techniques. In M. DeLoura,
editor, Game Programming Gems 2, pages 298–306, 2001.

[21] W. van der Sterren. Terrain reasoning for 3D action games.
In M. DeLoura, editor, Game Programming Gems 2, pages
307–323, 2001.

[22] S. von der Lippe, R.W. Franceschini, and M. Kalphat. A
robotic army: The future is CGF. In Proceedings of the 8th
Conference on Computer Generated Forces and Behavioral
Representation, Florida, USA, 1999.

Author Biographies
MICHAEL BURO is an associate professor for computer
science at the University of Alberta. After receiving his Ph.D. in
Germany he worked as a scientist at the NEC Research Institute
in Princeton for seven years before he moved to Edmonton in
2002. His main research interests are heuristic search in AI
and machine learning applied to games. He is the author of
LOGISTELLO – a learning Othello program that defeated the
human World–champion 6–0 in 1997.

TIMOTHY M. FURTAK is a third year honors mathematics
major at the University of Alberta. He has spent the last nine
months working on the ORTS game engine and is interested in
applying machine learning to games.

