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Abstract

Randomized algorithms are used in many state-of-the-
art solvers for constraint satisfaction problems (CSP) and
Boolean satisfiability (SAT) problems. For many of these
problems, there is no single solver which will dominate oth-
ers. Having access to the underlying runtime distributions
(RTD) of these solvers can allow for better use of algorithm
selection, algorithm portfolios, and restart strategies. Previ-
ous state-of-the-art methods directly try to predict a fixed
parametric distribution that the input instance follows. In this
paper, we extend RTD prediction models into the Bayesian
setting for the first time. This new model achieves robust pre-
dictive performance in the low observation setting, as well as
handling censored observations. This technique also allows
for richer representations which cannot be achieved by the
classical models which restrict their output representations.
Our model outperforms the previous state-of-the-art model in
settings in which data is scarce, and can make use of censored
data such as lower bound time estimates, where that type of
data would otherwise be discarded. It can also quantify its
uncertainty in its predictions, allowing for algorithm portfo-
lio models to make better informed decisions about which
algorithm to run on a particular instance.

Introduction

Many of the algorithmic solvers for NP-complete problems,
such as CSP and SAT, rely on backtrack methods. These
solvers can have runtimes which vary substantially, depend-
ing on whether they make mistakes caused by sub-optimal
heuristics during the recursive backtrack calls. Adding ran-
domization and restarts into the backtrack algorithms has
been shown to help alleviate some of the heavy-tail nature
that these runtimes exhibit, decreasing the algorithm’s run-
time by many orders of magnitude in some cases (Harvey
1995; Gomes, Selman, and Kautz 1998).

If the underlying runtime distribution (RTD) is known
for a particular algorithm, then an optimal fixed cutoff-time
restart strategy can be formulated (Luby, Sinclair, and Zuck-
erman 1993). Knowing the underlying RTD can also lead to
efficient use of algorithm portfolios, which can dynamically
assign algorithms to input instances based on the predictive
RTD. These are just a few reasons why it’s important to have
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models which are robust and can give accurate RTD predic-
tions for unseen instances.

The current state-of-the-art RTD prediction models are
designed to give exact parametric distributions as output,
with the model predicting the particular distribution param-
eters (Eggensperger, Lindauer, and Hutter 2018). However,
these models make the assumption that the particular algo-
rithms on the given instances follow a particular parametric
distribution. These models also tend to have their predictive
power hindered in the presence of a small number of obser-
vations per input instance or with censored examples (only
a lower bound for the runtime is known). The goal of our re-
search is to have a robust model under these conditions, and
to try to lift some of the restrictions we put on the models.

The rest of this paper is organized as follows. We first
give a summary of the two areas our research joins for
the first time: randomized algorithm runtime prediction and
Bayesian deep learning. We then show how our model ex-
tends existing methods into the Bayesian setting, and show
how effective our model is in several scenarios. Finally, we
give some insights into where we think the next research
steps are for extending our work.

Background and Related Work

In this section, we give an overview of randomized algo-
rithm runtime prediction and Bayesian learning in neural
networks.

Randomized Algorithm Runtime Prediction

Problems such as CSP and SAT are NP-complete, meaning
that there is currently no guarantee there is a polynomial
time solution technique. The dominant solver technique for
these types of problems is backtrack search, in which heuris-
tics pick an unbound variable, assign a value to it, and the
search proceeds recursively. If an inconsistency is detected,
the algorithm backtracks and tries another assignment to that
variable.

A consequence of using backtrack-based solvers is that
early mistakes can cause long searches down branches of the
search tree which eventually need to be backtracked. This
leads to the so-called “heavy-tail” phenomenon, in which
the runtime of these algorithms exhibit tails which are not
exponentially bounded. Harvey (1995) was the first to show
that adding randomization and restarts into the backtracking



algorithm can alleviate the issue of wasting time on even-
tual dead-ends. Gomes, Selman, and Kautz (1998) presented
general methods for introducing controlled randomization,
and showed that speedups of several orders of magnitude
could be achieved for state-of-the-art algorithms.

Introducing randomness into algorithms means that a
given algorithm run on the same input problem instance has
a runtime which follows some initially unknown distribu-
tion. There are many reasons why one would want the ability
to predict such runtime distributions (RTDs). Luby, Sinclair,
and Zuckerman (1993) showed that if one knows the under-
lying RTD, then it’s possible to construct a fixed cutoff-time
restart strategy that is optimal among all possible universal
strategies, up to a constant factor. Other popular CSP and
SAT solvers use a portfolio of various algorithms, such as
SATzilla (Xu et al. 2008) and ArgoSmArT (Nikoli¢, Mari¢,
and Janici¢ 2009). Knowing the RTDs of each algorithm in
the portfolio allows such solvers to choose the best algo-
rithm for a given problem instance.

The majority of the early work for predicting algorithm
runtimes involved predicting mean instance runtimes, given
the instance’s features. Many of these methods were based
on regression variants, such as ridge regression used in
SATzilla (Xu et al. 2008).

Gagliolo and Schmidhuber (2005) investigated using a
neural network to predict the time remaining before an al-
gorithm reaches the solution on a given problem instance,
in the context of algorithm portfolio time allocation. Pre-
vious methods for predicting RTDs had separate models
for each distribution parameter. DistNet (Eggensperger, Lin-
dauer, and Hutter 2018) established a new state-of-the-art
RTD prediction model which jointly learns the parameters of
the RTD by using a neural network. Each output node of the
neural network corresponds to a parameter for the given dis-
tribution. The neural network’s loss function directly mini-
mizes the negative log-likelihood (NLLH) of the distribution
parameters, given the observed runtimes.

Bayesian Neural Networks

Traditional neural networks can be viewed as a probabilistic
model: given a dataset D = {(z;, y;)} Y ,, the parameterized
model P(y|x, w) takes in a d-dimensional input x € R? and
computes a point estimate for each output y € ). Training
most commonly involves finding the set of weights w which
maximizes the likelihood of the data.

These networks can be prone to overfitting, especially
when the number of model parameters is sufficiently greater
than the number of training samples. Regularization tech-
niques like using weight priors and dropout (Srivastava et al.
2014) have been proposed to mitigate overfitting.

Bayesian neural networks (BNNs) (MacKay 1992; Neal
2012) extended traditional neural networks by replacing the
network’s deterministic weights with a prior distribution
over these weights, and using posterior inference. The full
posterior distribution of the model’s parameters w is used
when making predictions of unseen data. Prediction for this
separate probabilistic model involves taking the expectation
over the optimized posterior distribution P(w|D). The pos-
terior predictive distribution of unseen data (X,y) is given

by
P(y1%) = Ep(w|p) [P(¥]%, W)]
= /P(y|5c,w)P(W|D) dw.

Bayesian neural networks can help with overfitting as the
model implicitly involves using an ensemble of an infinite
number of neural networks by averaging over all possible
weight values, while adding a constant multiple number of
network parameters, determined by how many parameters
the parametric distribution has. Bayesian neural networks
are also able to capture both aleatoric uncertainty and epis-
temic uncertainty in its predictions. Aleatoric uncertainty
captures uncertainties which are inherent to running statis-
tical trials, like the outcome of a dice toss. This type of un-
certainty cannot be reduced, no matter how much data is
collected. Epistemic uncertainty captures the uncertainty in
the model being used, which is due to limited data and/or
knowledge. This type of uncertainty can be reduced with
more data.

Both inference and prediction for BNNs involve calculat-
ing the posterior

_ P(Dw)P(w) _ P(D|w)P(w)
PwIP) = ——ppy — = [ P(Dlw')P(w') dw'"

The prior P(w) is something we can choose, but the inte-
gral involved in the posterior is often computationally in-
tractable. While the above posterior can be approximated us-
ing sampling-based inference algorithms like Markov Chain
Monte Carlo (MCMC) methods (Gelfand and Smith 1990),
these do not scale well as the number of samples and/or pa-
rameters increase (Blei, Kucukelbir, and McAuliffe 2017),
as is the case in neural networks. An alternative, suggested
by Hinton and Van Camp (1993) and Graves (2011), is to use
a variational approximation for the posterior P(w|D). Vari-
ational methods construct a new distribution ¢(w|@), param-
eterized by 6, that approximates the true posterior P(w|D)
by minimizing the Kullback-Leibler (KL) divergence be-
tween the two:

Oy = arggmin KL [q(w|0)||P(w|D)]

_ . q(w|0)
= arg9m1n/q(w|0) log P(w)P(DIw) dw

= arggmin KL[q(w|0)|[P(w)] — Ey(we) [log P(D|w)].

We denote Oy as the parameters found from variational in-
ference methods. Bayes by Backprop (Blundell et al. 2015)
uses the above to form the cost function

Jeee(D,0) = KL[g(w|0) || P(wW)]
—Ey(wlo) [log P(DIw)]. (1)

The intuition for the above cost function is that there is a
tradeoff between having a variational posterior that is close
to the prior we choose yet also able to explain the likelihood
of the data. Despite the simple formulation of the above, the
cost Jppg (D, 0) is still intractable as it involves calculating



posteriors over high-dimensional spaces. While neural net-
works would seem like an appropriate tool to find a function
which minimizes Jggg, we cannot naively apply backpropa-
gation through nodes which involve stochastity. By applying
a generalization of the re-parameterization trick (Opper and
Archambeau 2009; Kingma and Welling 2014), Bayes by
Backprop (Blundell et al. 2015) then provides an approxi-
mation to the cost (Eq. 1) as

Jses (D, 0) ~ Zlogq (w®)6) — log P(w®)

—log P(Dw), (2)

where w(?) is the set of weights drawn from the i-th Monte
Carlo sample of the variational posterior ¢(w|@). Having a
computational efficient way of training BNNs has allowed
extensions to other network architectures like RNNs (Fortu-
nato, Blundell, and Vinyals 2017) and CNNs (Shridhar, Lau-
mann, and Liwicki 2019), as well as studies into utilizing
the uncertainty measures the BNNs provide (Amodei et al.
2016; Kendall and Gal 2017).

Problem Formulation

We follow the same problem statement introduced by
Eggensperger, Lindauer, and Hutter (2018): A randomized
algorithm A is run on a set of n problem instances Z .y, =
{&1,...,&}. Each instance £ € Zyy,; has m instance fea-
tures £(&) = [f()1,-- ., f(§)m]- Since algorithm A is ran-
domized, k runtime observations t(§) = [t(€)1,...,t(&)k]
are gathered by executing A on problem instance &, with
k different random number generator seeds. The goal is to
learn a model that can predict the RTD for unseen instance
&nt1, given features (&, 11).

Because it is common during the data generation stage to
terminate the algorithm on hard problem instances which
take a long time to solve, the exact runtime may not be
known. Ideally, we would like to make use of the measured
runtime lower bound without discarding the data and wast-
ing time. From this motivation, we also consider cases where
there is censoring, i.e., stopping the algorithm execution if it
exceeds a cutoff time ¢.. We define the level of censoring
as the fraction of runtime observations which are censored
due to exceeding a cutoff time ¢.. If there are [V runtimes in
total, with a predetermined level of censoring of ¢, then ¢, is
defined as the u-th fastest runtime where u = [N (1 —¢)].
The adjusted runtimes t'(£); are thus set as min(¢(&);, t.) for
all 4.

A Bayesian Approach to Predicting RTDs

Previous methods for predicting RTDs would fit RTD pa-
rameters to the set of runtimes for each training instance,
then measure loss in the space of RTD parameters 3.
Eggensperger, Lindauer, and Hutter (2018) introduced Dis-
tNet, a new state-of-the-art algorithm runtime prediction
model, which is the first of its kind that jointly learns all
RTD parameters (as opposed to having independent models
for each RTD parameter) by directly minimizing the NLLH
loss function.

In this section, we extend DistNet to the Bayesian setting
to obtain a more robust model in both low sample settings,
and for handling censored observations.

DistNet - A State-of-the-Art Algorithm RTD
Prediction Model

Before we introduce our extensions, we give an overview
of the DistNet model (Eggensperger, Lindauer, and Hutter
2018). DistNet is a simple feed-forward network for a given
distribution F with distribution parameter vector 3. There is
one input neuron for each instance feature, and one output
neuron for each distribution parameter ;. The novelty of
DistNet is that it directly minimizes the NLLH of the chosen
distribution F. The loss function used in DistNet is

k
> > log Lr(Bw se)t©)i),  3)

€€ in =1

JDN (W) = —

where L r is the likelihood function of the parametric distri-

bution F, and B‘M 7(¢) are the parameters of the distribution
from the network output, with current weights w.

Extending DistNet with Bayesian Inference

To extend DistNet with Bayesian inference, which we will
refer to as Bayes DistNet, a few changes need to be made
to the network. We start from the same base network, which
has one input neuron for each input feature, and uses simple
feed-forward layers.

While the straightforward choice for the Bayesian net-
work output would be the parameters 3 of the chosen dis-
tribution F, the actual implementation is non-trivial and is
computationally expensive. The network would produce a
posterior over distribution parameters by sampling the net-
work repeatedly, and these parameters would then be used

in the likelihood Lx (Bw #(©)lt(€)i), with the likelihood
weighted by the posterior, resulting in a posterior predic-
tive distribution. However, this requires a density estimation
method using the set of network samples Bw, f(¢)» such that
the gradient information can still be tracked from the loss
function.

Instead, we choose to have the Bayesian network directly
output predicted runtimes ¢. By sampling the network, a se-
quence of runtimes is produced which is assumed to follow
F. The parameters of F can then be approximated by com-
puting their maximum likelihood estimates (MLEs), denoted

BMLE. The choice of F can ensure that we have analytical

formulations of BMLE, which are fast to compute using deep-
learning framework intrinsics, and whose gradients can be
tracked from the loss function.

To make the network Bayesian, we need to define a vari-
ational posterior ¢(w|@), the prior of the network weights
P(w), and the likelihood of the training data. Following
Blundell et al. (2015), we assume that the variational pos-
terior g(w|@) is a diagonal Gaussian distribution with mean
p and standard deviation o. While it is possible to use a
multivariate Gaussian, a diagonal Guassian allows for sim-
ple computations without major numerical issues. To be
able to use backpropagation, we use the re-parameterization



given by Blundell et al. (2015), which obtains a sample of
weights w for each layer by the following procedure: Sam-
ple the parameter-free noise € ~ AN(0,I), and let ¢ =
log(14-exp(p)). We can then denote @ = (u, p), and the pa-
rameterization of o ensures that the values are always > 0.
The weights w can then be sampled by w = p 4+ o o €,
where o is point-wise multiplication. Once a particular set
of point-wise weights is sampled for each of the layers of
the network, those weights are then used as in the traditional
feed-forward layers.

Since the network’s task is to predict runtimes directly,
it has a single output neuron. The network output y repre-
sents the predicted runtime for a particular set of point-wise
weights which were sampled from each layer. To get a pre-
dictive distribution, Monte Carlo sampling is used, in which
the same input to the network will be used IV times to pro-
duce N separate output values.

From Eq. 2, the term log P(D|w) is replaced with the
likelihood from Jpy, which measures the likelihood of the
data in our new model. The variational approximated cost
function for the network now becomes

N
J(D,0)spn = Y _ log g(w'”|6) — log P(w'")
=1

k
= > > log Lr(BME(S),), )

EE€Eain j=1

where BMLE is s distribution parameter vector computed
by MLE using the N predicted runtimes ¢;, and each g; is
produced by the network using weights w(?) from the i-th
Monte Carlo sample.

Observing Censored Runtimes

In our application domain, censoring occurs when an algo-
rithm needs to be stopped before completion, i.e., we only
know a lower bound on the time it takes to actually com-
plete the algorithm. There is a rich history in survival anal-
ysis on handling different types of censored data, and we
recommend Klein and Moeschberger (2003) for background
reading. Gagliolo and Schmidhuber (2006) first introduced
handling Type I censored sampling in the context of algo-
rithm runtime prediction, and we give the explanation for
clarity.

If censoring time of ¢. is used, then t. is the maximum
time an algorithm can run before being terminated. The
dataset D = {(£(£):,t(£):)}¥, from before now becomes
D = {(f(f)i,ti,éi)}ﬁil, where ti = min(t(f)i,tc), and
d; is a Boolean variable indicating that an individual sample
was not censored (i.e., §; = 1 indicates that ¢(§); < t.).

Let fr denote the density of distribution F with parame-
ters 3, and let S+ denote the survival function of distribution
JF. If the runtime is not censored, then we observe §; = 1,
and its contribution to the likelihood function is the density
function at that time as it normally would be,

AMLE AMLE
Lr(BNt;) = f7(8518™F).
If the runtime is censored, then we observe §; = 0, and all
we can say under censoring is that the runtime exceeds the

cutoff ¢.. This is equivalent to the survival function, and so
its contribution to the likelihood function when censored is

Lr (IéMLE|tj) — S (tj |ﬁMLE).
Combining the above, we get
N N & A 1—46.;
which is then used to replace the likelihood term in the
Bayesian cost function (Eq. 4) from above.

Applying Bayes DistNet to RTD Prediction

For comparative results, we follow the same preprocessing
steps from Eggensperger, Lindauer, and Hutter (2018). Input
instance features are standardized to mean O and standard
deviation 1, and observed runtimes are scaled into the range
of [0, 1]. For a level of censoring ¢, where c is the fraction of
censored runtimes from a total of IV, the cutoff time ¢, is the
u-th fastest runtime, where v = | N(1 — ¢)|. The runtimes
are then set to min(¢(£);, t.), and the observations include
whether censoring occurred or not.

Both the reference DistNet model and our new Bayesian
variant share the majority of the network architecture pro-
posed by Eggensperger, Lindauer, and Hutter. The input
layer has a neuron for each instance feature. This is then fol-
lowed by two hidden fully connected layers, each of which
has 16 neurons. DistNet has a fully connected output layer
with one neuron per parameter for the specific parametric
distribution, whereas Bayes DistNet has a single output.

The Bayes DistNet architecture also has a prior P(w)
and a variational posterior ¢(w|@) that needs to be speci-
fied. As previously noted, we use a diagonal Gaussian vari-
ational posterior, with initial parameters G;pix = (Lbinit, Pinit)>
Winie ~ N(0,0.1) and pinic ~ N (—3,0.1). The chosen ;i
ensures weights are initialized around O (just as we would
for a standard neural network), and pj,; is initialized to a
small value, as we found learning is not as stable otherwise
(Shridhar, Laumann, and Liwicki 2019). For the prior, we
follow the proposal from Blundell et al. (2015) of using a
mixture of two Gaussian distributions

P(w) = Haj\/(wi; 0,02) 4+ (1 — )N (w4; 0, 02),

where N (x; u, 02) is the Gaussian density evaluated at z
with mean ;. and variance o2, with o = 0.5, 01 = 0.3, and
o2 = 0.01. The choice of these parameters did not have a
noticeable difference so long as o7 > o9 and 09 < 1, as
per Blundell et al. (2015). When performing inference and
prediction, we use 16 Monte Carlo samples. As with previ-
ous studies (Fortunato, Blundell, and Vinyals 2017; Shrid-
har, Laumann, and Liwicki 2019), a large number of sam-
ples gives marginally better results at the cost of computa-
tion time. We did not find much improvements beyond 16
samples.

DistNet uses the tanh activation function, with the ex-
ception of the exponential activation function on the output
layer to ensure the output distribution parameters are > 0.
Bayes DistNet, on the other hand, uses softplus (Glorot, Bor-
des, and Bengio 2011) on all layers which is a smooth ap-
proximation to the recitifer activation function, as we want



to ensure that activations for variational posterior variances
never become < 0. We then largely follow the hyperpa-
rameter choices from Eggensperger, Lindauer, and Hutter
(2018), whose DistNet model we are basing our Bayes Dis-
tNet model from. Both network architectures use stochastic
gradient descent (SGD), with batch normalization (Ioffe and
Szegedy 2015), Lo-regularization of le~%, a learning rate
of 1e~3 which exponentially decays to 1le~° over 500 ex-
pected epochs, and gradient clipping of le~2. Early stop-
page (Prechelt 1998) is used on a separate validation set to
reduce overfitting.

Experiments

The focus of our experiments is to see how our Bayesian
model compares with the current state-of-the-art in low ob-
servation number settings, and with various levels of censor-
ship. When gathering data to train the models, using a lower
number of observations allows for less time required for the
data gathering process. Moreover, being able to handle cen-
sored examples also means that one can still use instances
which stop prematurely as training data, instead of throwing
them away. There are also many domains in which much of
the data is censored, such as survival data in medical trials,
or nodes that remain in the open list when heuristic search
methods are used.

For both experiments, we look at two different algorithms
run on different problem instances, with the data gathered
by Eggensperger, Lindauer, and Hutter (2018):

o Clasp-factoring: The Clasp (Gebser, Kaufmann, and
Schaub 2012) CDCL solver running on SAT-encoded fac-
torization problems.

o LPG-Zenotravel: The LPG (Gerevini and Serina 2002)
local search solver for planning graphs running on the
Zenotravel planning domain (Penberthy and Weld 1994).

Both DistNet and Bayes DistNet require a parametric distri-
bution: DistNet directly outputs parameters for this distribu-
tion, and both use the distribution in the loss function. For
both of the above scenarios, Eggensperger, Lindauer, and
Hutter (2018) considered different parametric distributions
to use for DistNet. By using the Kolmogorov-Smirnov (KS)
goodness-of-fit test, they chose the top two distributions to
use in their comparison. For both Clasp-factoring and LPG-
Zenotravel, the inverse Gaussian and lognormal distribution
were found to have the closest fit to the empirical distri-
butions as compared to the other considered distributions.
In our experiments, we also use these two distributions.
The training process uses Python PyTorch 1.5 (Paszke et al.
2019), and we make use of an open source Bayesian Layers
PyTorch library (Shridhar, Laumann, and Liwicki 2019). All
experiments were run on an Intel 17-7820X and Nvidia GTX
1080 Ti, with 64GB of memory running Ubuntu 16.04.

Low Sample Count per Instance

We evaluated the performance of our Bayes DistNet model
by varying the number of observed runtimes per instance.
Every instance starts with 100 observed runtimes, and a ran-
dom subset of those 100 are selected. Having a smaller num-
ber of observed runtimes per instance means that the total

training set is reduced. For testing, we keep all 100 observed
runtimes for every instance in the test set. The evaluation
is performed using a 10-fold cross-validation, repeated with
multiple seeds, and aggregating the results.

Figure 1 reports several metrics to evaluate the goodness-
of-fit of each model, compared to the empirical observed
runtimes of the test set. The likelihood is a way to mea-
sure how probable a model is, given the observed data. A
lower negative log likelihood (NLLH) thus indicates that one
particular model gives the observed data a higher probabil-
ity of occurring. For both scenarios of Clasp-factoring and
LPG-Zenotravel, Bayes DistNet achieves a lower negative
log likelihood across various levels of samples per instance.
Given enough data, both DistNet and Bayes DistNet con-
verge to having an equal likelihood score.

While the likelihood is a way to measure how probable
a model is given the data, it does not indicate the shape of
the predicted runtime distribution. We thus looked at two
metrics to quantity how dissimilar the model’s predictive
distribution shape is compared to the empirical distribu-
tion, namely KL-Divergence and the Kolmogorov-Smirnov
statistic (KS-Distance). The KL-Divergence quantifies the
amount of information /ost if the model’s distribution is used
instead of the empirical distribution. The KS-Distance mea-
sures the maximal distance in height from the model’s CDF
to the empirical CDF. For both metrics, lower is better.

Our Bayesian model achieves lower KL-Divergence and
lower KS-Distance with respect to the empirical distribution,
as compared to the DistNet model across various levels of
samples per instance. This indicates that our Bayesian model
is able to produce predictive RTDs which are closer in shape
to the empirical RTD. Again, given enough data, both Dis-
tNet and our Bayesian model converge to predicting RTDs
which on average are equally close to the empirical RTDs.

Handling Censored Observations

We also evaluated our Bayes DistNet model by keeping the
number of samples per instance constant, but varying the
percentage of censoring in the training data. We decided to
use 8 samples per instance, as this was the number of sam-
ples we start to see both DistNet and our Bayesian variant
perform similarly without censoring. To have an accurate
comparison, we modified the DistNet loss function to in-
clude censored samples as well, following Eq. 5. Figure 2
reports similar metrics as before to evaluate the goodness-of-
fit for both DistNet and our Bayesian variant, as compared
to the empirical RTDs.

The NLLH of both the best DistNet model and Bayes
DistNet are identical under no censoring. As the censoring
percentage increases, both models are trained on less fully
observable data, and we expect the NLLH to increase. In-
terestingly, we see that while both models have their NLLH
increase, Bayes DistNet increases at a slower rate than Dist-
Net. This indicates that our Bayesian model is better able to
capture the uncertainty that comes with using censored data.

Using the distance metrics again, we can see how sim-
ilar our Bayesian model is to the empirical RTD, as com-
pared to DistNet. We expect both the KL-Divergence and the
KS-Distance to increase as the percentage of censored data



Negative Log Likelihood KL Divergence

KS Distance Density Area Outside [0,1.5*MAX(T)]

1.5

1.0

0.5

Clasp-factoring

0.0

0.4

0.3

0.2

0.1

0.0

1 2 4 8
Samples per Instance

16 1 2 4 8
Samples per Instance

16

16
Samples per Instance

2.0
15
1.0
0.5

LPG-Zenotravel

0.0
-0.5

0.8

0.7

0.6

0.5

0.4

0.3

0.5

0.4

0.3

0.2

1 2 4 8 16 1 2 4 8
Samples per Instance Samples per Instance
Distribution InverseGaussian Lognormal

1 2 4 8 16 1 2 4 8 16
Samples per Instance Samples per Instance
Model DistNet ~ —=—- Bayes DistNet |

Figure 1: Comparison of DistNet and Bayes DistNet, for various numbers of observed runtimes per instance. Metrics are
averaged across 10-folds, repeated for multiple seeds. From left to right: NLLH, KL-Divergence, KS-Distance, and percentage
of the density area outside the expected range of 0 to 1.5 times the maximum observed runtime for each instance.

increases. Both the best DistNet model and our Bayesian
model start roughly with similar distance metrics. As the
percentage of censored data increases, our Bayesian model’s
distance metrics increase at a slower rate compared to Dist-
Net. We see that our Bayesian model is able to produce dis-
tributions which are more similar to the empirical RTDs un-
der censoring, as compared to DistNet.

Utilizing Model Uncertainty to Recognize
Overconfidence

A known issue with standard neural networks, which use
point estimates for weights, is that they tend to be overcon-
fident in regions which had little or no data during training.
Neural networks fit a function to training data which mini-
mizes the chosen loss function. If deterministic weights are
used, then a single particular function of many possible ones
is chosen for the data. This function is then extrapolated to
make predictions for inputs which may be far from the data
used to train the network, resulting in overconfident predic-
tions. As a result, adversarial and out-of-distribution inputs
can be given to the network, and the network would give
predictions which it is confident in, which can be exploited
by attackers.

Instead of using point estimates for weights, Bayesian
neural networks make predictions using all possible weight
values, weighted by their posterior probability. We can think
of this as a type of model averaging. When predictions are
made for inputs which are far from the data used to train
the network, the model averaging considers that there are
many possible extrapolations, which result in the confidence
regions diverging.

Figure 3 shows the result of traditional neural networks,
as is the case for the original DistNet model, of being over-
confident in its predictions for adversarial inputs. Both net-

works were trained on the Clasp-factoring dataset, except
for a held out sample, and both models use the lognormal
distribution in the loss function. The held out sample then
had all its features shifted by values in the range [-8,8] to
produce a spectrum adversarial samples.

The predictive distribution mean and interquartile ranges
were then plotted for these samples. DistNet has small in-
terquartile ranges for adversarial samples, which suggests it
does not see adversarial samples any different than the ones
it was trained on. This can be problematic if we were to use
DistNet in sensitive applications, or scenarios where com-
putation is expensive. On the other hand, Bayes DistNet has
interquartile ranges which diverge on adversarial samples.
This suggests that Bayes DistNet has the capability to indi-
cate when it is not confident in its predictions. In sensitive or
computationaly expensive scenarios, a fallback measure can
then be used when the predictive distribution’s interquartile
range falls outside a given threshold.

Discussion

We have shown that in scenarios featuring a low number of
instances or censored observations, our Bayesian model is
able to generate distributions which give higher likelihoods
of the data, and better match the empirical RTD’s shape.
Both DistNet and Bayes DistNet require a parametric dis-
tribution. Both use this distribution in the loss function for
the likelihood, but DistNet also restricts the output distri-
bution to directly be a member of that parametric distribu-
tion class. From Figures 1 and 2, we can see that the choice
of the parametric distribution used has a greater impact on
the predictive performance on DistNet, than it does for the
Bayesian models. It’s almost certain that RTDs do not per-
fectly match known parametric distributions. From the data,
we can see that putting a restriction on the type of distribu-
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Figure 3: Predictive distributions of adversarial inputs for
DistNet and Bayes DistNet. Both models are trained on
the Clasp-factoring dataset, using the lognormal distribution
loss function. Solid lines are mean predictions, with shaded
regions showing interquartile ranges.

tions the model can predict can have a negative impact, as is
the case for DistNet.

We finally give some insight as to why we believe our
Bayesian models outperform DistNet, even when the same
parametric distribution is used. For low samples per instance
and various levels of censoring, Figures 1 and 2 respectively
show where the density of the predicted RTDs lie. We plot
the percentage of total area under the RTDs outside the range
[0, T], where T is 1.5 times the maximum observed runtime
for each instance. We expect that it should be improbable
to see many runtimes outside this range, and thus predicted
RTDs should give little density outside this range if the den-
sity is to be informative. When a low number of samples is
used, we can see from Figure 1 that in some cases, DistNet

is unable to give an informative predictive RTD, as a signif-
icant amount of density is outside the predictable range. For
the censored cases, Figure 2 shows similar results.

We summarize in that both DistNet and our Bayesian vari-
ant perform similarly if given enough non-censored data. As
the level of censoring increases and as the number of sam-
ples per instance decreases, our Bayesian model starts to
outperform DistNet and better matches the empirical RTDs.
It appears from our results that the discrepancy in perfor-
mance between the Bayesian and non-Bayesian versions is
more affected by the number of samples used.

Conclusions and Future Work

In this paper, we have shown that the existing state-of-the-
art RTD prediction model can be extended to the Bayesian
setting. Our Bayesian model Bayes DistNet outperforms the
previous state-of-the-art in the low observation setting, as
well as with handling censored examples. The Bayesian
model also lifts some of the restrictions that occur when pre-
vious models could only output an explicit parametric distri-
bution, when many randomized algorithms do not perfectly
follow these parametric distributions.

Both DistNet and Bayes DistNet require a parametric dis-
tribution F to quantify the likelihood in the loss function.
As previously mentioned, we chose for our Bayesian net-
work to output predicted runtimes directly instead of F’s
parameters. We see as future work coming up with an ef-
ficient method to have the network output F’s parameters,
and compare it with our method. We would also like to see
further extensions of this work which do not depend on a
restrictive class of parametric distributions. Finally, existing
algorithm portfolio methods can be extended to utilize the
features of our Bayesian network, such as having access to
the uncertainty in predicting runtime distributions.
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