
ar
X

iv
:2

40
4.

13
15

0v
1

 [
cs

.A
I]

 1
9

A
pr

 2
02

4

Transformer Based Planning in the Observation Space with Applications to Trick
Taking Card Games

Douglas Rebstock1, Christopher Solinas1, Nathan R. Sturtevant1,2, Michael Buro1

1Department of Computing Science, University of Alberta
2Alberta Machine Intelligence Institute (Amii)

{drebstoc,solinas,nathanst,mburo}@ualberta.ca

Abstract

Traditional search algorithms have issues when applied to
games of imperfect information where the number of pos-
sible underlying states and trajectories are very large. This
challenge is particularly evident in trick-taking card games.
While state sampling techniques such as Perfect Information
Monte Carlo (PIMC) search has shown success in these con-
texts, they still have major limitations.

We present Generative Observation Monte Carlo Tree Search
(GO-MCTS), which utilizes MCTS on observation sequences
generated by a game specific model. This method performs
the search within the observation space and advances the
search using a model that depends solely on the agent’s obser-
vations. Additionally, we demonstrate that transformers are
well-suited as the generative model in this context, and we
demonstrate a process for iteratively training the transformer
via population-based self-play.

The efficacy of GO-MCTS is demonstrated in various games
of imperfect information, such as Hearts, Skat, and ”The
Crew: The Quest for Planet Nine,” with promising results.

1 Introduction

In games of imperfect information, applying traditional
search algorithms is often not feasible since the underlying
state is unknown and the space of possible histories is too
large. Trick-taking card games are examples of imperfect
information games in which these issues often exist. Perfect
Information Monte Carlo search (PIMC) (Levy 1989) has
been shown to be effective in trick-taking card games (Long
et al. 2010), however it is fundamentally limited as it solves
sampled underlying states and not the original imperfect in-
formation problem.

We introduce Generative Monte Carlo Tree Search
(GO-MCTS), a method that performs MCTS (Kocsis and
Szepesvári 2006) search in the observation spaces, with state
transitions provided by a generative model. In this paper,
we chose to use a relatively small transformer for the gen-
erative model. By doing search on this observation space
and advancing the search using a model conditioned solely
on the search agent’s observations, we sidestep the need
for knowing the underlying state. This change avoids com-
mon issues found in PIMC such as strategy fusion and non-
locality (Frank and Basin 1998), and greatly reduces the
search space. Strategy fusion refers to how PIMC can use

different strategies in different sampled worlds (not possi-
ble) and non-locality refers to how sub-tree values can be
affected by values of nodes outside of the sub-tree, which is
not the case for perfect information games. The approach is
applicable to all games of imperfect information, however
it is best suited to games where the observations are eas-
ily tokenized, whereas games with complex trajectories of
raw inputs (such as video-games) would present difficulties.
Transformers can be trained using only the raw observations
as inputs, allowing the approach to be easily applied to new
domains.

We also demonstrate how to train such a transformer, ei-
ther bootstrapping from a uniform random player or from
an existing weak policy. We do this through iterative pol-
icy improvement using Neural Fictitious Self-Play (NSFP)
(Heinrich and Silver 2016), and parameterizing the popula-
tion policies with the transformer. We provide experimental
results for Hearts, Skat, and The Crew: The Quest for Planet
Nine (Sing 2020), all popular trick-taking card games. We
show that in all of these games, GO-MCTS is able to di-
rectly improve upon the final trained policy from the itera-
tive learning process, and provides new state of the art re-
sults in Hearts and the Crew.

2 Problem Background

Within the broad domain of artificial intelligence (AI) re-
search, games have traditionally been used as test beds for
creating novel algorithms. One of the basic properties of a
game is whether it features perfect or imperfect information .
Games of perfect information have the property that all play-
ers have access to all the game information at all times. Well
studied games such as Chess, Go, and Checkers all feature
perfect information since the players can directly observe
the current state of the board as well as all actions taken by
the other players and actions are taken sequentially.

Tree search has been used to great effect in perfect in-
formation games. In tree search, a player evaluates differ-
ent sequences of moves that follow from the current state,
and selects an action based on the result of this search. Tree
search techniques have been used to solve Checkers (Schaef-
fer et al. 2007), and surpass human playing ability in Chess
(Campbell, Hoane Jr, and Hsu 2002) and Go (Silver et al.
2016). Simple state-based tree search cannot be naively ap-
plied in games of imperfect information, since the player

1

http://arxiv.org/abs/2404.13150v1

may not always know what state they are in. Figure 1 shows
a simple example of an imperfect information game in which
Player 2 (P2) does not know whether they are in the left or
right branch of the game tree since they do not observe the
first action of P1. Since they don’t know what state they are
in, they don’t know which next state they will transition into
for a given action, thus making the required tree traversal
impossible. The collection of all states that the player thinks
they may be in is termed the information set, and is indi-
cated by the dashed box in the figure. This causes P2 to have
to consider all the branches in the tree and reason upon the
strategy of P1. While this often can be done in small games,
this reasoning over possible states can be intractable when
the information state is extremely large, which is often the
case in the domain of trick-taking card games. While there
are inherent difficulties, search has been used for games of
imperfect information to great success in poker with Deep-
Stack (Moravčı́k et al. 2017) and Libratus (Brown and Sand-
holm 2018). The specific methods and algorithms that em-
ploy search in imperfect information games are quite varied
and depend heavily on the intricacies of the game itself.

2.1 Trick Taking Card Games

Trick-taking card games are a popular category of card
games that generally share certain features. The game is
played as a sequence of hands in which each player is dealt a
set of private cards. The hand itself is made up of the play of
a number of tricks. The trick is the basic unit of play, as the
players take turns placing one of their cards face up on the
table. In most games once each player has played a card, the
player with the highest valued card wins (takes) the trick.
The outcome of the hand is tied to who won which tricks,
however the scoring differs from game to game.

Since trick-taking card games feature private information,
they are examples of imperfect information games. Due to
this, and the large number of possible initial deals, the in-
formation set sizes are extremely large. For example, in the
game of Hearts, 52 cards are dealt to four players, so there
would be over 5× 1026 deals and the size of the information
set for a player after the initial deal would be over 8× 1016.
Each state would then have a set of possible trajectories that

P1

(20, 0)

Left

(0, 2)

Right

A

(1, 0)

Left

(0,−500)

Right

B

P2

Figure 1: An example of an imperfect information game. P2

cannot distinguish between states inside the information set
(dotted rectangle) since they could not observe the private
move made by P1.

Function GO-MCTS(hinit, Player, n)
Tree← ∅
root ← hinit

for i← 1 to n do
h← root
while h not Terminal do

if Player is to move then
if h is in Tree then

a← Select(h, Tree)
h← h || a

else
Expand(h, Tree)
h← Rollout(h)
break

end

else
o← Sample(h)
h← h || o

end

end
Backup(h, T ree)

end
return Argmax(Tree, root)

Algorithm 1: Generative Observation Monte Carlo Tree
Search (GO-MCTS) algorithm. h represents the obser-
vation history from the view of the current player, a is
an action, and Tree is a set that maintains the summary
statistics for the tracked observation histories. Player
indicates search player, hinit is the root observation his-
tory of the search player, and n is the number of runs.
Sample uses the generative model to produce the next
observation, which is appended to create the next obser-
vation history. Argmax returns the action with the high-
est value. Select chooses the action with the highest
score which is likewise appended to the history. A more
detailed version is depicted in the supplemental material

is exponential in the number of cards since all cards are se-
quentially played. In the worst case where all other play-
ers cannot follow the lead suit throughout the game, this
would be 12! × 13!3, over 1 × 1038. Due to this, the size
of the search space is too large for the direct application of
tree search algorithms. The multiplayer aspect (usually more
than two players) also provides unique challenges (Khan and
Sun 2002). Also, the games can feature partial or full co-
operation, which can provide different challenges than the
more typical fully adversarial settings seen in most other
well studied games.

3 Generative Observation MCTS

We present Generative Observation MCTS (GO-MCTS) in
Algorithm 1. In this proposed algorithm, we sidestep the is-
sue of not knowing the true underlying state of the game
by performing search in the observation space. GO-MCTS
works by using an approximation of the observation dynam-
ics model to perform MCTS in this generated observation
space. We also provide the following theoretical background

2

to provide intuition on the search.
When we formulate the problem in this way, we roll all

other players and the environment into the dynamics model.
Given fixed policies for the other players and fixed transi-
tion probabilities, there trivially exists fixed transition prob-
abilities between underlying states. The problem can be for-
mulated as a Partially Observable Markov Decision Process
(POMDP) (Åström 1965), since the transition only depends
on the current state and the player cannot fully observe the
states. By defining the state to be the observation sequence
at the point in which the agent chooses an action, the prob-
lem can be represented as a regular MDP. This work follows
from (Kaelbling, Littman, and Cassandra 1998). In our anal-
ysis, we assume that the strategies to feature perfect recall
and the games are of finite length.

Since the observation sequence is directly constructed by
appending new observations, sequential queries of a genera-
tive model can be used to transition to the next state after the
agent chooses an action. This method of using a generative
model to implicitly represent an MDP is shown in (Kearns,
Mansour, and Ng 2002) along with its usage in various solu-
tion concept. If the generative model produces a distribution
of sequences that matches the true state distribution of the
original MDP describing the game in question, solving for
the implicit MDP will be sufficient.

Monte Carlo Tree Search (MCTS) has been shown to
converge to find the highest value action for finite-horizon
MDPs (Kocsis and Szepesvári 2006), so GO-MCTS will
converge to this optimal solution in the limit if the genera-
tive model aligns with the true distribution. This connection
was shown in (Silver and Veness 2010), however sampling
discrete underlying states was used in that work. In prac-
tice though, the model will usually represent an approxima-
tion of the true observation dynamics. This can lead to com-
pounding errors and arbitrarily bad results. Also, the cost to
query such models can be very expensive computationally.
Furthermore, the model corresponds to fixed policies, thus
GO-MCTS is useful for best response against fixed oppo-
nents, not for directly solving for solution equilibria amongst
strategic actors. And finally, we must have access to a rea-
sonably good generative model, which is often not the case.

Within the algorithm, any generative model would work
as long as it could generate the next observation given the
current observation state. In our application, we chose to
use transformers due to their strength in sequence genera-
tion in Natural Language Processing (NLP). We reason that
the game-play in trick-taking card games bears resemblance
to natural language. For example, a card can be played to
communicate information to another player, however the
meaning needs to be derived in context with conventions
and previously played actions. In the analogy of a game and
sentence, the actions would be the words and the grammar
would be the rules and conventions.

In the experimental implementation, a transformer is used
for generating the next observation state, value initialization
for expanded nodes, and value approximation for early stop-
ping. While the transformer was used for the state transi-
tions, the game simulator was used to determine the player
to move, the final result, and move legality for the search

PIMC(InfoSet I , int n)
for a ∈ A(I) do

v[a] = 0
end
for i ∈ {1..n} do

s← Sample(I, p) ;
for a ∈ A(I) do

v[a]← v[a]+PerfectInfoVal(s, a)
end

end
return argmaxav[a]

Algorithm 2: Basic PIMC algorithm; p is the probabil-
ity of being sampled, a is action, v is value, and n is the
number of worlds evaluated.

agent. Since the generative model predicts observations of
opponent actions without explicit knowledge of legal obser-
vations, the generative model is capable of generating im-
possible histories. For the terminal histories, we can retro-
spectively construct the original state and verify legality of
the actions. If any actions were illegal or no original state
could be constructed, we deem the history to be illegal and
bias the search away from the nodes that were part of the run.
This is important since the value estimation on illegal paths
is very noisy, so the search can optimize towards these ille-
gal trajectories. This procedure is part of Backup and the
full details can be found in the supplemental materials. An-
other way of avoiding illegal trajectories altogether is to only
allow the generation of legal observations, however, gener-
ating the set of legal actions at each point has been shown
to be generally intractable (Solinas et al. 2023), which is re-
lated to why we pursued the use of the generative model in
the first place.

4 Related Work

In this section, we highlight developments in search method-
ologies within imperfect information settings, particularly in
trick-taking card games, and explored the integration of gen-
erative models in game planning and decision-making.

4.1 Search in Trick Taking Card Games

Determinized search is often used in the application of
search based techniques in imperfect information settings.
This approach samples a possible state from the player’s
information set, and then performs a search rooted at that
state. PIMC is a form of determinized search in which all
possible actions are evaluated by sampling states from the
current information state, and averaging the values over the
states which were determined using perfect information al-
gorithms (Levy 1989). Algorithm 2 is a basic version of
PIMC.

The first notable application of PIMC in a trick-taking
card game was in Contract Bridge (Ginsberg 2001). This
also represents the first major success in using determinized
search in this domain. PIMC has shown great success in
other trick-taking card games including Skat with the Ker-

3

mit bot (Buro et al. 2009), and Hearts with the xinxin
bot (webdocs.cs.ualberta.ca/ nathanst/hearts.html). Both of
these players represent the current state-of-the-art in their
respective domains, and are used as the baseline players for
experimentation in this paper.

Information Set Monte Carlo Search (Cowling, Powley,
and Whitehouse 2012) is another determinized search algo-
rithm, with applications in card games. It has many variants,
however the basic premise is similar to PIMC in the sense
that it relies on sampling underlying states from information
sets. Counter Factual Regret (CFR) algorithms have shown
to be very effective in certain card games such as poker
(Moravčı́k et al. 2017), but have not found success in the
trick taking domain. This is primarily due to the large size
of the underlying tree in trick taking card games which in
practice does not scale well with CFR.

One common thread in these approaches is the need to
sample the underlying state. Due to the extremely large size
of the information sets, sampling relevant states can be very
costly, as the majority of all possible states can often be dis-
regarded in the context of any sensible playing strategy. Fur-
thermore, the challenge of even constructing or generating
sample states has shown to be generally intractable (Solinas
et al. 2023). This problem of sampling underlying states is
general in nature and is present in many different solution
methods across many domains. While determinized search
is the main method of applying traditional search methods
in imperfect information games, another option is to directly
search over an implicit representation of the game.

4.2 Generative Search in Games

The concepts introduced in this paper, particularly concern-
ing Generative Observation Monte Carlo Tree Search (GO-
MCTS), resonate with various notable works in the field of
planning and decision-making in stochastic or hidden envi-
ronments.

Dyna-Q (Sutton 1990) is a reinforcement learning (RL)
algorithm that integrates planning, acting, and learning. The
main idea behind Dyna-Q is to use experiences to update a
model of the environment, and then use this model to sim-
ulate and learn from hypothetical experiences in addition to
real interactions with the environment. This formulation has
been popular and has been influential in learning and plan-
ning systems, but in this context the planning is used as a
means of learning and not for online search. Incorporation of
generative models into the planning processes, particularly
in the domain of robotics, has been extensively surveyed and
recognized for its potential (Deisenroth et al. 2013).

Generative Adversarial Tree Search (GATS) (Azizzade-
nesheli et al. 2018) uses a generative adversarial network
(GAN) as a dynamics model to enable MCTS search. The
algorithm was tested on select Atari games but was found to
perform poorly.

MuZero (Schrittwieser et al. 2020) uses a custom recur-
rent model to allow for MCTS search in the latent space.
The model uses the past observed states as input to get the
root hidden state and recurrently creates subsequent hidden
states by using the selected action as the input. The hidden
state is used as an input to the learned policy, value, and re-

ward functions which are used in the adversarial search. A
key point here is that the hidden state is not directly opti-
mized for reconstruction loss but is learned in the process
of optimizing for the policy, value, and reward losses. The
way the algorithm was presented, it was not suitable for im-
perfect information games. Also, due to the deterministic
nature outlined for producing the hidden states, the process
was only suited for deterministic games.

Vector Quantised-Variational AutoEncoders (VQ-VAE)
have been used to enable MCTS search in stochastic games
(Ozair et al. 2021). This approach involves taking past ob-
servations to create a discrete latent state. A learned tran-
sition model then generates the next latent state given an
action. This approach relies on separately training the auto-
encoder to minimize reconstruction loss of the actual state,
and the transition model between latent states. Furthermore,
the stochastic games investigated either had a straightfor-
ward simulator-based approach in the case of chess or else
had the complexity of the domain dominated by the problem
associated with planning in video games. Similarly, stochas-
tic MuZero (Antonoglou et al. 2021) uses a VQ-VAE with a
codebook of a fixed size, such that each entry relates to a sin-
gle one-hot vector. This allows them to do Gumbel sampling
and simplifies the MCTS search. They also stress the idea of
after-states, which are positions in the search between a de-
cision point. The experiments were in 2048, Backgammon,
and 9x9 Go, all games that do not feature hidden states.

Besides their effectiveness in NLP, transformers have
demonstrated substantial potential in modeling arbitrary se-
quences. Works such as Decision Transformers (Chen et al.
2021) and Sequence Transformers (Janner, Li, and Levine
2021) have shown how these models can be adapted for rein-
forcement learning. Both these models model the sequence
of state, action, rewards which differs from this work, as we
chose to model only the trajectory of observations from a
single player’s perspective and the focus was on the RL con-
trol problem. Transformers were used in conjunction with
MCTS for SameGame, a single-player puzzle game (Yaari
et al. 2022). This work is similar to previous work done on
SameGame (Seify and Buro 2020) and is closer to the orig-
inal AlphaGo approach, as the transformer is used to guide
the perfect information state simulator. Using transformers
for imitation learning can be seen in Othello-GPT (Li et al.
2022) but it does not explore search-based methods using it.

5 Learning Generative Model
The second half of this paper focuses on producing the trans-
former to be used in GO-MCTS, and is separate from the
search algorithm. Training such a transformer requires a
large amount of data in the form of observation sequences
from previously played games. If a large body of represen-
tative game data exists, it can be used directly to train the
transformer or if representative policies are known and com-
putationally inexpensive to run, the data can be created as a
first step. If neither are available, we can learn the policies
as a first step. We took this latter approach in this paper, as it
allows for this method to be more flexible and applicable to
novel domains. To be clear, we did not employ GO-MCTS
in this learning phase.

4

5.1 Transformer Architecture

We used a PyTorch (Paszke et al. 2019) implementation of
the GPT2 architecture (Radford et al. 2019) from the Hug-
gingface Transformers library (Wolf et al. 2019) as the base
for the network architecture. The encoded sequence of ob-
servations by the agent are directly fed into the network,
which it uses to predicts the next observation. A secondary
classification head was added to the model to predict the
outcome score of the game. This output is analogous to
the value head commonly seen in other policy-value predic-
tor models. However, instead of predicting a real value, the
model outputs the outcome probability distribution. This can
be fed into the agents value function. We set a fixed value to
each outcome, and thus the observation state value function
is simply defined by:

V (O) =
∑

o

p(o|O) ∗ v(o) (1)

where v is the user defined outcome value function, O is the
observation sequence, o is the outcome, p is the probability
of the outcome from the network. This was done to avoid
issues we have encountered with regressors in non-Gaussian
data as well to add flexibility in the value function for the
agent. This flexibility can be used in reward shaping during
the learning process or even during online search, however
we did not explore these avenues here.

Using Neural Networks to predict the next move or cur-
rent value from a player’s observations typically involves ex-
pert handcrafted encoding. In our case, we bypassed this by
using the observation sequence directly as the input. How-
ever, we still had to define what constitutes an observation
for the game. For example, being dealt a Queen of Diamonds
is very different from seeing the player to the left of you
playing the same card. In this case, we opted for encoding
the card only, and left the resulting observation sequence to
be understood through context. The next observation state
is trivially encoded by appending a token corresponding to
the new observation to the previous observation state encod-
ing. At each iteration’s training step, the most recent model
is used to initialize the parameters. The training loss con-
sists of the next observation prediction loss and the final out-
come prediction loss. We use cross entropy loss for both and
weighted the observation loss at 0.9 and the outcome loss at
0.1. The heavier weighting of the observation loss is done
with the intuition that the prediction outcome is more of an
auxiliary task in modelling the dynamics. We used the de-
fault AdamW optimizer (Loshchilov and Hutter 2017) Fur-
ther details on architecture and training can be found in the
supplemental materials.

5.2 Learning through Self-Play

In order to produce the trained transformer, we employed it-
erative policy improvement using neural fictitious selfplay
(Heinrich and Silver 2016) using a population based ap-
proach (Bansal et al. 2017). The basic idea is to parameter-
ize a policy using the transformer network, and to perform
iterative policy improvement. The initial batch of data was
produced by either a computationally inexpensive baseline

Table 1: Number of observation encoding tokens for Hearts,
Skat, The Crew.

Game Token Type Number

Hearts

Cards 52
Positions 4
Pass Directions 4
Total 60

Skat

Cards 32
Bids / Replies 68
Pickup/Hand 2
Game Declarations 7
Declaration Modifiers 4
Total 113

Crew

Cards 40
Positions 4
Allocation 4
Tiles 11
Special 18
Communication 4
Replies 2
Radio Comms 4
Total 83

search player or a uniform random player. We then trained
the transformer network on this data-set. While the architec-
ture was not the focus of the paper, trial and error was used
to set parameters to jointly optimize for memory footprint,
training time, and time to run an inference pass. For the sub-
sequent iterations, we set one player to greedily select the
action with the highest action-value estimate from the most
recent network, and the rest of the players were set to sam-
ple from a policy previous iteration. This was done to avoid
instability issues.

The greedy policy uses the trained network to select the
highest valued action, so long as the predicted move prob-
ability is above a given threshold. For the remainder of the
paper we will refer to it as the ArgmaxVal* policy, and its
formulation is given as

πArgmaxV al∗(h, a) = argmax(VL(h, a) (2)

where

VL(h, a;λ) =

{

V (h, a) ifplegal(a|h) ≥ λ
−∞ otherwise

(3)

in which plegal is the probability normalized over all legal
actions, h is the state defined by the observation history, a is
the action, and λ is the user defined threshold.

6 Experimentation

In this section, we detail the empirical investigations con-
ducted to assess the effectiveness of Generative Monte Carlo
Tree Search (GO-MCTS) in navigating the complex deci-
sion spaces of trick-taking card games, specifically Hearts,
Skat, and The Crew: The Quest for Planet Nine.

5

6.1 Hearts

Hearts is a 4 person trick taking card game in which play-
ers try to collect the least amount of points. It is commonly
played such that the player with the lowest score when a
single player hits 100 points is the winner. All cards of
suit hearts are worth one point, and the queen of spades
is worth 13 points. In this variant, the player with the two
of clubs goes first and if a single player collects all the
point cards (shooting the moon), they receive negative 26
points and all other players are awarded 0 points. We did
not award points for Jack of diamonds or avoiding all tricks,
both common variants. Full rules for hearts can be found
at www.pagat.com/reverse/hearts.html. We defined an out-
come by the allocation of points among the players, which
resulted in 2234 unique outcomes.

This game is quite large, as 52 cards are dealt to 4 differ-
ent players, and then all cards are sequentially played. Addi-
tional complexity comes from the initial phase of passing, in
which all players will choose 3 cards to pass in a prescribed
direction (alternates between right, left, across, and no pass).

Training We built upon the Hearts implementation in the
OpenSpiel repository (Lanctot et al. 2019). We create an
agent in that could directly interface with the existing code
and built a tournament manager to create game experience.

We created 4,000,000 legal random play-outs and used
the corresponding observation sequences to train the base
network. We then performed 10 iterations of experience gen-
eration and retraining of the network. In the first experience
generation, we set all players to follow the ArgMaxVal* pol-
icy. We did this to aggressively move the learning process
into a space that resembled sensible play. The outcome value
function, v(o), for the player was set to

v(o)hearts =
−cpplayer + cpopponents

26
(4)

where cpplayer is the card points of the search player and
cpopponents is the average card points of all other players.
We chose to normalize it by a factor of 26, which is the total
card points available to be allocated.

If we were to assume the opponent points are spread
evenly amongst themselves in expectation, then this value
would represent the difference between the players score
and their opponents in the limit. This is a simplification for
our purposes since it matters which opponent gets the points
taking into account termination when a player reaches 100
points.

In the subsequent generation steps, we set one player to
use the ArgMaxVal* policy, and the remaining players were
set to sample from the imitation policy parameterized from
a previous iteration. The iteration for each imitation player
was selected uniform randomly and was used for the en-
tirety of the hand. We only used the observation data for the
ArgMaxVal* players when training the next iteration. We
did this to increase stability of the training process and avoid
narrow exploitation of a single policy. Each generation step
produced 500,000 hands. Further experimentation would be
needed to determine the effects of each of these choices, but
this was not the focus of this paper. Further details can be
found in the supplemental material.

Table 2: Baseline results for hearts experimental players
against the baseline xinxin bot

All 3A/1B 2A/2B 1A/3B

ArgmaxVal* (A) 4.02 4.46 3.98 3.63
Xin-Xin (B) 4.97 5.51 4.96 4.42
∆ -0.95 -1.05 -0.98 -0.79

GO-MCTS (A) 3.89 4.53 3.80 3.39
Xin-Xin (B) 5.64 6.52 5.61 4.79
∆ -1.74 -1.99 -1.81 -1.39

Performance We chose the xinxin bot as the baseline
player since it represents the current state-of-the-art in com-
puter Hearts AI. Despite the absence of a dedicated pub-
lication detailing its construction, the bot’s development is
informed by key research by its author in several pertinent
areas: challenges in multiplayer games (Sturtevant 2004),
opponent modeling (Sturtevant, Zinkevich, and Bowling
2006), learning feature representation (Sturtevant and White
2007), and analysis of Upper Confidence Tree (UCT) search
in multiplayer games (Sturtevant 2008). It utilizes PIMC
with evaluations done using UCT. It was made available
within the OpenSpiel framework (Lanctot et al. 2019). We
set its parameters to 2000 runs, 50 worlds, and C to 0.4,
which is the default highest setting in its implementation.
We chose to do a 14-way tournament in which every seating
permutation of Player A (the experimental bot) and Player
B (xinxin) are seated for a given deal, with the exception
of all A or all B. Neither player was designed to change
its play based on the identity of the other players. We ran
a 3000 match tournament with the experimental bot using
the ArgMaxVal* policy paramterized by the final iteration
of the trained transformer. All results reported were found
to be significant (p < 0.001) using the Wilcoxon Ranked
sign test. As indicated in Table 2, the ArgMaxVal* player
outperforms the xinxin bot by 0.95 points on average, with
further breakdowns provided in the table. When both are ran
in the single thread settings we used for experimentation,
the ArgMaxVal* player spends only 71 ms per turn whereas
the xinxin bot spends much longer at around 2.9 seconds
per turn. The 0.95 points advantage is extremely large in the
context of Hearts, as it would equate to a 19.1 point differ-
ence when extrapolated in games to 100 points.

We repeated the same procedure, but now with the GO-
MCTS player. Again, we used the final iteration of the trans-
former, and the same value function as the ArgMaxVal*
player. From the Table 2, we can see the performance of
the experimental player increased when we switched from
the ArgMaxVal* player to the GO-MCTS player, perform-
ing 1.74 points better than the baseline, and 31.0 points when
extrapolated to playing to 100 points. The increased perfor-
mance came at a cost of greatly diminished speed, as it took
around 25.6s per turn. From this work we believe that this
GO-MCTS implementation represents the new state of the
art in computer Hearts AI. Further details on the hyper pa-
rameters of the experimental bots can be found in the sup-
plemental material.

6

6.2 Skat

Skat is a three person trick taking card game, popular in
Germany. It features a shortened 32 card deck, and three
phases of gameplay: bidding, declaring, and cardplay. Af-
ter each player is dealt 10 cards, players sequentially bid
higher game values until two of the players have passed, i.e.
they stopped bidding. The high bidder becomes the soloist
and plays against the other two players. The soloist may
pick up two hidden cards (the skat) and then secretly dis-
cards two cards to get down to 10 and then declares a game
type of a greater or equal value to their bid. In the card-
play phase, the player tries to achieve the game type victory
conditions through a series of tricks. The three main game
types are suit, grand, and null. In suit and grand games the
Jacks are trump cards, and the winning condition is usu-
ally to get the majority of card points. In addition to the
Jacks, the suit the soloist chooses is also trump. The other
main game type is null, in which there are no trump and the
soloist wins if they can win no tricks. Full rules can be found
at www.pagat.com/schafkopf/skat.html. Due to the size of
the game, and the added complexities due to bidding, dec-
laration, and discards, there are no strong full game search
players. Kermit, the baseline player, uses PIMC only for the
cardplay and uses a variety of other methods for the bidding,
declaration, and discarding.

Training Like Hearts, each possible allocation of tourna-
ment points over the three players were assigned as a unique
outcome. Tournament points refers to the total points that a
player would receive for the played hand under the standard
tournament rules. For Skat, this works out to be 397 unique
outcomes. The outcome value function was defined as

v(o)skat =
TP player(o)− TP opponents(o)

100
(5)

where o is the outcome, TP player is the tournament points

awarded to the player and TP opponents is the average tour-
nament points awarded to the opponents. In this context, op-
ponents refer to all other players. This was done with the
same rationale as Hearts, with the dividing by 100 being an
arbitrary choice to scale the values down. We encoded the
observations in a similar manner to Hearts, but the added
complexities in Skat necessitated a richer vocabulary as seen
in Table 1.

We created the initial batch of data using a mixture of
uniform random players and XSkat (Gerhardt 2004) bots, a
weak scripted player. 4,000,000 games were produced using
all permutations of the two bots. We originally attempted to
use only uniform random players, however we found that the
learning process was unstable. We believe that this was due
to the high degree of heterogeneity, the complicated bidding
process, and the reward structure. For example, a player can
bid any of almost 70 values, with only a small fraction of
these being suitable. And again, randomly selecting a sensi-
ble game type and discard combination is extremely improb-
able. To make matters worse, the cardplay dynamics hinge
greatly on the aforementioned decisions. Due to the asym-
metry between defender and soloist and players seated posi-
tion, we found that the learning process quickly collapsed as

the players learned to not bid at all, as the reward is simply 0
for all players. This negative result should remind the reader
that the process in the current form can perform poorly and
still requires adaptation to the individual game itself.

We used the same base model architecture as described
for Hearts and followed the same iterative training approach,
however, we continued to 20 iterations, but kept old itera-
tions from the self-play pool up to a maximum of 10 itera-
tions. We choose to do this since the quality of the player was
quite poor after 10 iterations, and we hoped that dropping
old policies would help the learning process. Again, produc-
ing the trained transformer was not the focus of this paper, so
further experimentation would be necessary to validate these
decisions. Further details can be found in the supplementary
material.

Performance We evaluated the players after the final iter-
ation against the Kermit baseline player. We chose to do a
six-way tournament in which every seating permutation of
players A and B are seated for a given deal, with the excep-
tion of all A or all B. We used standard tournament scor-
ing and again, the identity of the players are not revealed.
We ran a 3000 match tournament with the experimental bot
using the ArgMaxVal* policy and the final iteration of the
trained transformer, with the results indicated in Table 3. The
baseline Kermit player outperforms ArgMaxVal* player by
16.31 points on average. When both are ran in the single
thread settings we used for experimentation, the ArgMax-
Val* player spends 72ms per turn whereas the Kermit bot
spends around 0.55 s per turn. All the results were found to
be statistically significant, and furthermore, the 16.31 points
advantage is extremely large in the context of Skat.

We repeated the same procedure, but now with the GO-
MCTS player. Again, we used the final iteration of the trans-
former, and the same value function as the ArgMaxVal*
player. As seen in the results from Table 3, the GO-MCTS
player performs 9.84 points worse than Kermit, however this
is a 6.47 points improvement over the ArgMaxVal* player.
The increased performance came at a cost of greatly dimin-
ished speed, as it took around 42 seconds per turn. Even with
the large performance boost when applying GO-MCTS, the
baseline player is clearly much stronger. All values reported
were found to be significant (p < 0.001) using the Wilcoxon
Ranked sign test. Further details can be found in the supple-
mentary material.

Table 3: Baseline results for skat experimental players
against the baseline Kermit bot

All 1A/2B 2A/1B

ArgmaxVal* (A) 14.12 16.45 9.44
Kermit (B) 30.42 33.46 28.91
∆ -16.31 -17.01 -19.46

GO-MCTS (A) 17.97 19.35 15.20
Kermit (B) 27.81 30.02 26.70
∆ -9.84 -10.67 -11.50

7

6.3 The Crew: The Quest for Planet Nine

The Crew: The Quest for Planet Nine is a popular cooper-
ative trick taking card game published in 2019. While the
game allows between 2-5 players, the default rules assume
the 4 player case, therefore this is the version we used. The
objective of the game is to win all 50 missions in the fewest
number of attempts possible, however, each mission can be
played in a standalone fashion.

The 40 card deck features four colored suits (Pink, Blue,
Green, Yellow) each with cards numbered 1 through 9, and a
default highest ranking suit (Rockets) with cards numbered
1 through 4. To start a mission, the cards are dealt evenly
between the 4 players, and the player that received the 4 of
Rockets becomes the commander of the mission. The play-
ers attempt to take the tricks in such a way that achieves the
mission objective. If they do so successfully, they all win.
Otherwise they must repeatedly attempt the mission until
they succeed.

Each mission is different, however many share common
features. The most typical mission would start with the al-
location of tasks followed directly by the game play. A task
is completed when the assigned player wins the task’s cor-
responding card in a trick. The method of task allocation,
the number of tasks, the order in which tasks must be com-
pleted, and rules on communication can vary from mission
to mission. While around 30 missions follow this general
formulation, the remaining missions feature either unique
modifications to this blueprint or diverge completely. Offi-
cial game rules are provided on the publishers website at
store.thamesandkosmos.com/products/the-crew.

Training Due to the rules being different for each mis-
sion, in addition to the observation sequence, we included
a unique prefix corresponding to the levels rules. Within the
same formulation, one could interpret the prefix of tokens
as series of chance moves by the world in the same manner
as the deal. We decided to encode the mission using a cus-
tom language for the common features with the addition of
a unique token for the remaining ones. The intuition behind
this choice was to enable the learning agent to generalize
knowledge between missions, as well as aid in the simplic-
ity of the approach as it necessitates a single transformer.
All relevant game information is encoded sequentially into
the beginning of the sequence, including the mission encod-
ing, the players position, the commanders position, as well
as their dealt cards. Like the other games, the sequence cor-
responding to the next observation state is produced by ap-
pending the new observation token to the previous sequence.
The choice of token vocabulary is indicated in Table 1 .

Success or failure are the only two outcomes, so we as-
signed a value of 1 for all players when the team succeeded
and 0 when they failed. We trained the initial network on
a set of 10,000,000 games generated by a uniform random
player. However, due to the sparsity of successful trials in
the more difficult missions, we generated more games until
we had a higher number of successful examples. This is an
indication that this learning method would likely not scale
with difficulty, as the amount of trials to randomly achieve
even a single success could become prohibitively large.

One major difference in the training was that we chose to
have all the agents using ArgmaxVal* policy from the most
recent iteration. This choice was motivated by the fact that
all players are working cooperatively, so we reasoned that
the optimization process would be smoother than in the ad-
versarial case seen in Hearts and Skat. Also, initial testing in-
dicated initial learning improvements with this method. Our
goal was to simply train a transformer to test the GO-MCTS
efficacy. For game play generation, we sampled all 50 mis-
sions with uniform probability. We performed 10 iterations,
with 2,000,000 games per iteration. Figure 3 indicates the
relative success rate for each of the 50 missions over the 10
iterations. We set the threshold value to 0.05. We can see
the general improvement in the success rate, and it is clear
that there was still an improvement trend when the training
ended.

Performance Since this was a fully cooperative game
without access to a baseline player for comparative analy-
sis, we evaluated the performance based on the success rate,
segmented by mission number. We conducted tests on both
the ArgmaxVal* and the GO-MCTS players, executing each
level 3,000 times to ensure statistical relevance. The out-
comes, as depicted in Figure 3, highlight the superior per-
formance of the GO-MCTS player across all missions when
compared to the ArgmaxVal* player. To ensure fairness in
evaluation, pre-cardplay chance events were standardized
for both players. A statistical analysis utilizing the Wilcoxon
Signed-Rank test confirmed the significance of the observed
differences, with p < 0.001. However, this enhanced per-
formance of the GO-MCTS player comes with increased
computational demands, averaging 5.9 seconds per turn, in
stark contrast to the 41 milliseconds per turn required by the
ArgmaxVal* player. For a comprehensive overview of the
configurations used for both the search and greedy player,
refer to the supplemental material.

7 Discussion

In all three domains, we clearly saw that we were able to
improve the performance of the trained network player by
performing local search through GO-MCTS. For Hearts, we
surpassed the strength of the strong baseline player through
an inexpensive one-step greedy policy (ArgMaxV al∗)
and provided the new state-of-the-art with our GO-MCTS
player. In Skat, we were not able to surpass the strength
of the baseline player, however we were able to produce a
medium strength player and illuminate possible issues in the
approach that would need to be further explored. And for
The Crew, we were able to create a strong baseline player in
a complicated game and provide a basis for further research
to build on. The strength of the GO-MCTS player is below
that of an average experienced player, but we believe that
surpassing this is doable within this framework without ma-
jor changes. Over all domains, the GO-MCTS player used
substantially more time per move than the ArgMaxV al∗ or
baseline player. However we believe the time per turn could
be substantially reduced through simple but time consuming
optimizations for the code.

In Hearts and The Crew, we were able to bootstrap the

8

1 2 3 4 5 6 7 8 9 10
Iteration Number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Su
cc

es
s R

at
e

Figure 2: Average success rate for each mission in each training iteration (not using search).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Success Rate

1

10

20

30

40

50

M
iss

io
ns

Player
GO-MCTS
ArgMaxVal*

Figure 3: Average success for the final iteration of the ArgmaxVal* and GO-MCTS players. Results broken down for each
mission.

learning process off of random play-outs. While we could
have bootstrapped existing policies for Hearts, starting from
uniform random shows that the learning process is not lim-
ited to refining and exploiting existing policies. And for The
Crew, the choice was out of necessity as we did not have
access to any expert data or desire to produce handcrafted
player. As we move to more and more complex domains,
this necessity will be the norm.

While the approach in this paper was shown to have merit,
there is much to explore on how to make all aspects of the
process more effective. The choice for the network archi-
tecture, observation encoding, learning algorithms and tar-
gets, batch sizes, and many other hyper-parameters makes a
large difference in the efficacy of the training process. And
for the GO-MCTS algorithm itself, the performance relies
heavily on seemingly arbitrary parameter settings. Further
refinement and exploration over these degrees of freedom

could provide substantial improvements in both the perfor-
mance and understanding of the process and how it relates
to the domains in question.

8 Conclusion

In this paper we introduced a practical approach to searching
over the observation space in imperfect information games
through GO-MCTS. We provided our intuition on why a
transformer is well suited in dealing with sequences in trick-
taking card games, and demonstrated effective usage of a
transformer as a generative model that could fit seamlessly
into existing search paradigms. We also demonstrated an it-
erative neural fictitious population based self-play method
to train the transformer, and provided experimental results
in three large and complex trick-taking card games. While
we got the process to work in Skat by bootstrapping off of a

9

weak rule based policy, the resultant GO-MCTS player per-
formed worse than the baseline. In Hearts and The Crew, we
provided new state-of-the-art results and were able to do so
while bootstrapping off of uniform random play-outs.

8.1 Future Work

We believe further work in optimizing the implementation
and further refinement of the process and hyper parameter
choices could vastly improve the strength of the players in
the trick-taking games studied while making them run much
more efficiently. This would be a necessary step if we were
to focus on the interplay between humans and bots in trick-
taking card games, an area of possible future work.

We limited the domain to trick-taking card games, how-
ever this approach could be used in many imperfect infor-
mation settings. A next step would apply this process past
trick-taking games, in order to demonstrate generality and
characterize the domains and conditions that it is effective.

We would also like to investigate how to effectively incor-
porate GO-MCTS into the learning process and how to form
the population dynamics and the learning updates to effec-
tively utilize this additional computation while maintaining
stability. Also, we would like to standardize the learning ap-
proach and perform ablations to determine the effects of our
design choices.

10

9 Supplemental Materials

9.1 Model Architecture

The custom GPT2PolicyValue model was built on-top of the GPT2PretrainedModel.
Modifications in the initialization:

1 class GPT2PolicyValueModel(GPT2PreTrainedModel):

2 def __init__(self, config, num_labels):

3 super().__init__(config)

4 self.num_labels = num_labels

5 self.transformer = GPT2Model(config)

6 self.lm_hidden = nn.Linear(config.n_embd, config.n_embd, bias=False)

7 self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

8 self.val_hidden = nn.Linear(config.n_embd, config.n_embd, bias=False)

9 self.val_head = nn.Linear(config.n_embd, self.num_labels, bias=False)

10 self.init_weights()

Modifications in the forward pass:

1 lm_logits = self.lm_hidden(hidden_states)

2 lm_logits = F.gelu(lm_logits)

3 lm_logits = self.lm_head(lm_logits)

4 val_logits = self.val_hidden(hidden_states)

5 val_logits = F.gelu(val_logits)

6 val_logits = self.val_head(val_logits)

Modifications in the loss calculation:

1 loss_fct = CrossEntropyLoss()

2 loss_lm = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

3 shift_val_logits = val_logits[..., :-1, :].contiguous()

4 shift_val_labels = val_labels[..., 1:].contiguous()

5 loss_val = loss_fct(shift_val_logits.view(-1, shift_val_logits.size(-1)),

shift_val_labels.view(-1))

6 loss = (loss_val + loss_lm * 9) / 10

Table 4: Detailed Model Configuration Parameters

Parameter Value Parameter Value

activation function gelu new layer norm epsilon 1e-05
attn pdrop 0 model type gpt2
bos token id None n embd 256
embd pdrop 0.05 n head 8
gradient checkpointing false n inner 1024
initializer range 0.02 n layer 8
scale attn by inverse layer idx false reorder and upcast attn false
scale attn weights true resid pdrop 0.05
summary activation null summary proj to labels true
summary first dropout 0 summary type cls index
summary use proj true torch dtype float32
transformers version 4.12.5 use cache true

Table 5: Game Specific Model Configuration Parameters for
Hearts, Skat, and Crew

Parameter Hearts Skat Crew

vocab size 61 119 103
n positions 75 145 128
n ctx 75 145 128
eos token id 60 118 102
n labels 2237 397 2

Table 6: Additional Training Parameters

Parameter Value

Optimizer AdamW

Learning rate 1× 10−4

LR scheduler type Linear
Number of epochs 3

11

9.2 GO-MCTS Details

In Algorithm 3, we provide more details on GO-MCTS as it was implemented in this paper.

Function GO-MCTS(hroot, Tree, player, Nruns, Nsteps,
GM, C, µ, threshold)

for run← 1 to Nruns do
h← hroot

while h not Terminal do
if not ToMove(h, player) then

h.Append(Sample(h, GM))
else

if h is in Tree then
action = Select(Tree, h, C)
h.Append(action)

else
Expand(Tree, h, GM, threshold)
h← Rollout(h, player, Nsteps)

break

end

end

end
Backup(Tree, h, GM, µ, player)

end
return Argmax(Tree[hroot])

Function Select(Tree, h, C)
totalVisits← 0
foreach action, (val, visits) in Tree[h].children do

totalVisits← totalVisits + visits
end
maxScore← −∞
bestAction← NULL
foreach action, (val, visits) in Tree[h].children do

uctScore← val
visits

+ C ·
√

log(totalV isits)
visits

if uctScore > maxScore then
maxScore← uctScore
bestAction← action

end

end
return bestAction

Function Expand(Tree, h, GM, threshold)
node← NewNode()
legalActions← LegalActions(h)
policy← GetLegalPolicy(h, GM)
foreach action ∈ legalActions do

if policy[action] > threshold then
h′ = h.Append(action)
value← PredictValue(h′, GM)
node.children[action]← (value, 1)

end

end
Tree[h]← node

Function Rollout(h, player, Nsteps)

while Nsteps > 0 and h not Terminal do
h.Append(Sample(h, GM))
if ToMove(h, player) then

Nsteps ← Nsteps − 1
end

end
return h

Function Backup(Tree, h, GM, µ, player)
value← OutcomeValue(h, player) if h is Terminal else

PredictValue(h, GM)
legal = IsLegal(h)
while h 6= ∅ do

a = h.PopBack()
if h in Tree then

node← Tree[h]
(val, visits)← node.children[a]
if legal then

node.children[a]← (val + value, visits + 1)
else

node.children[a]← (val - µ, visits)
end

end

end

Algorithm 3: Generative Observation Monte Carlo Tree Search (GO-MCTS) algorithm. hroot represents the initial obser-
vation state, Tree is the search tree, player denotes the player for whom the decision is being made, Nruns is the number of
iterations, Nsteos is the maximum number of steps in the rollout, GM is the generative model used for simulation, C is the
exploration constant in UCT, µ is the penalty for illegal moves, and threshold is used to filter actions based on policy pre-
dictions. Sample simulates the next observation state, Argmax selects the action with the highest value, Select chooses
the action using UCT, Expand adds new nodes to the tree, and Backup updates node values based on rollout outcomes.
Legality of history is assumed to be true for non-terminal histories.

9.3 Tournament Experimental Settings

In our study, the state-based simulator was integrated into the Monte Carlo Tree Search (MCTS) framework, as described in
Algorithm 1. This integration facilitated the identification of the active player and the legal actions available to the search
player, specifically tailoring the decision-making process to the search player and excluding considerations for other players or
environmental interactions.

The efficacy of the Generative Observation Monte Carlo Tree Search (GO-MCTS) player was evaluated through a series of
tournaments in various card games, with distinct configurations for each tournament:

12

• Hearts Tournament Against Xinxin: The GO-MCTS player was configured with 100 runs, a maximum of 2 rollouts, an
exploration constant C = 0.4, a policy action selection threshold of 0.05, and a penalty value µ = 0.01 for illegal moves.
The comparison Argmax player had its selection threshold set to 0.05.

• Skat Tournament Against Kermit: For this tournament, the GO-MCTS player settings included 100 runs, up to 5 rollouts,
an exploration constant C = 0.3, with the policy action selection threshold and the penalty for illegal moves maintained at
0.05 and 0.01, respectively. The Argmax player’s selection threshold was also set to 0.05.

• Crew Tournament (Self-Play, No Baseline): The GO-MCTS player was adjusted to 50 runs, 5 maximum rollouts, an
exploration constant C = 0.1, and a lower policy action selection threshold of 0.01, with the penalty for illegal moves µ
remaining at 0.01. The selection threshold for the Argmax player was set to 0.05.

13

References

Antonoglou, I.; Schrittwieser, J.; Ozair, S.; Hubert, T. K.;
and Silver, D. 2021. Planning in Stochastic Environments
with a Learned Model. In International Conference on
Learning Representations.

Åström, K. J. 1965. Optimal Control of Markov Processes
with Incomplete State Information I. Journal of mathemati-
cal analysis and applications, 10: 174–205.

Azizzadenesheli, K.; Yang, B.; Liu, W.; Lipton, Z. C.;
and Anandkumar, A. 2018. Surprising Negative Results
for Generative Adversarial Tree Search. arXiv preprint
arXiv:1806.05780.

Bansal, T.; Pachocki, J.; Sidor, S.; Sutskever, I.; and Mor-
datch, I. 2017. Emergent Complexity via Multi-Agent Com-
petition. arXiv preprint arXiv:1710.03748.

Brown, N.; and Sandholm, T. 2018. Superhuman AI for
Heads-up No-limit Poker: Libratus Beats Top Professionals.
Science, 359(6374): 418–424.

Buro, M.; Long, J. R.; Furtak, T.; and Sturtevant, N. 2009.
Improving State Evaluation, Inference, and Search in Trick-
Based Card Games. In Twenty-First International Joint Con-
ference on Artificial Intelligence.

Campbell, M.; Hoane Jr, A. J.; and Hsu, F.-h. 2002. Deep
Blue. Artificial intelligence, 134(1-2): 57–83.

Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I.
2021. Decision transformer: Reinforcement Learning via
Sequence Modeling. Advances in neural information pro-
cessing systems, 34: 15084–15097.

Cowling, P. I.; Powley, E. J.; and Whitehouse, D. 2012. In-
formation Set Monte Carlo Tree Search. IEEE Transactions
on Computational Intelligence and AI in Games, 4(2): 120–
143.

Deisenroth, M. P.; Neumann, G.; Peters, J.; et al. 2013. A
Survey on Policy Search for Robotics. Foundations and
Trends® in Robotics, 2(1–2): 1–142.

Frank, I.; and Basin, D. 1998. Search in Games with Incom-
plete Information: A Case Study using Bridge Card Play.
Artificial Intelligence, 100(1-2): 87–123.

Gerhardt, G. 2004.

Ginsberg, M. L. 2001. GIB: Imperfect Information in a
Computationally Challenging Game. Journal of Artificial
Intelligence Research, 14: 303–358.

Heinrich, J.; and Silver, D. 2016. Deep Reinforcement
Learning from Self-Play in Imperfect-Information Games.
arXiv preprint arXiv:1603.01121.

Janner, M.; Li, Q.; and Levine, S. 2021. Offline reinforce-
ment Learning as one Big Sequence Modeling Problem. Ad-
vances in neural information processing systems, 34: 1273–
1286.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artificial intelligence, 101(1-2): 99–134.

Kearns, M.; Mansour, Y.; and Ng, A. Y. 2002. A Sparse
Sampling Algorithm for Near-Optimal Planning in Large

Markov Decision Processes. Machine learning, 49(2): 193–
208.

Khan, M. A.; and Sun, Y. 2002. Non-Cooperative Games
with Many Players. Handbook of game theory with eco-
nomic applications, 3: 1761–1808.

Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In European conference on machine learn-
ing, 282–293. Springer.

Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; Hennes, D.; Morrill, D.; Muller, P.;
Ewalds, T.; Faulkner, R.; Kramár, J.; Vylder, B. D.; Saeta,
B.; Bradbury, J.; Ding, D.; Borgeaud, S.; Lai, M.; Schrit-
twieser, J.; Anthony, T.; Hughes, E.; Danihelka, I.; and
Ryan-Davis, J. 2019. OpenSpiel: A Framework for Rein-
forcement Learning in Games. CoRR, abs/1908.09453.

Levy, D. 1989. The Million Pound Bridge Program, Heuris-
tic Programming in Artificial Intelligence: The First Com-
puter Olympiad.

Li, K.; Hopkins, A. K.; Bau, D.; Viégas, F.; Pfister, H.; and
Wattenberg, M. 2022. Emergent World Representations:
Exploring a Sequence Model Trained on a Synthetic Task.
arXiv preprint arXiv:2210.13382.

Long, J. R.; Sturtevant, N. R.; Buro, M.; and Furtak, T. 2010.
Understanding the Success of Perfect Information Monte
Carlo Sampling in Game Tree Search. In Twenty-Fourth
AAAI Conference on Artificial Intelligence.

Loshchilov, I.; and Hutter, F. 2017. Decoupled Weight De-
cay Regularization. arXiv preprint arXiv:1711.05101.

Moravčı́k, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-Level Artificial Intelligence in
Heads-Up No-Limit Poker. Science, 356(6337): 508–513.

Ozair, S.; Li, Y.; Razavi, A.; Antonoglou, I.; Van Den Oord,
A.; and Vinyals, O. 2021. Vector Quantized Models for
Planning. In international conference on machine learning,
8302–8313. PMLR.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, 8024–8035. Curran As-
sociates, Inc.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language Models are Unsuper-
vised Multitask Learners. OpenAI blog, 1(8): 9.

Schaeffer, J.; Burch, N.; Bjornsson, Y.; Kishimoto, A.;
Muller, M.; Lake, R.; Lu, P.; and Sutphen, S. 2007. Checkers
is Solved. science, 317(5844): 1518–1522.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis,
D.; Graepel, T.; et al. 2020. Mastering Atari, Go, Chess
and Shogi by Planning with a Learned Model. Nature,
588(7839): 604–609.

14

Seify, A.; and Buro, M. 2020. Single-Agent Optimization
Through Policy Iteration using Monte-Carlo Tree Search.
arXiv preprint arXiv:2005.11335.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
Game of Go with Deep Neural Networks and Tree Search.
nature, 529(7587): 484–489.

Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. Advances in neural information processing
systems, 23.

Sing, T. 2020. The Crew: The Quest for Planet Nine.

Solinas, C.; Rebstock, D.; Sturtevant, N. R.; and Buro, M.
2023. History Filtering in Imperfect Information Games: Al-
gorithms and Complexity. arXiv preprint arXiv:2311.14651.

Sturtevant, N. 2004. Current challenges in multi-player
game search. In International Conference on Computers and
Games, 285–300. Springer.

Sturtevant, N. 2008. An analysis of UCT in multi-player
games. ICGA Journal, 31(4): 195–208.

Sturtevant, N.; Zinkevich, M.; and Bowling, M. 2006. Prob-
maxˆ n: Playing N-player Games with Opponent Models. In
AAAI, volume 6, 1057–1063.

Sturtevant, N. R.; and White, A. M. 2007. Feature Con-
struction for Reinforcement Learning in Hearts. In Com-
puters and Games: 5th International Conference, CG 2006,
Turin, Italy, May 29-31, 2006. Revised Papers 5, 122–134.
Springer.

Sutton, R. S. 1990. Integrated Architectures for Learning,
Planning, and Reacting Based on Approximating Dynamic
Programming. In Machine learning proceedings 1990, 216–
224. Elsevier.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s Transformers: State-of-the-Art Natural
Language Processing. arXiv preprint arXiv:1910.03771.

Yaari, G.; Rokach, L.; Puzis, R.; and Katz, G. 2022. MC-
Transformer: Combining Transformers and Monte-Carlo
Tree Search for Offline Reinforcement Learning.

15

