
SORTS: A Human-Level Approach to Real-Time Strategy AI

Sam Wintermute, Joseph Xu, and John E. Laird

University of Michigan
2260 Hayward St.

Ann Arbor, MI 48109-2121
{swinterm, jzxu, laird}@umich.edu

Abstract
We developed knowledge-rich agents to play real-time
strategy games by interfacing the ORTS game engine to the
Soar cognitive architecture. The middleware we developed
supports grouping, attention, coordinated path finding, and
FSM control of low-level unit behaviors. The middleware
attempts to provide information humans use to reason about
RTS games, and facilitates creating agent behaviors in Soar.
Agents implemented with this system won two out of three
categories in the AIIDE 2006 ORTS competition.

Introduction
The goal of our research is to understand and create
human-level intelligent systems. Our strategy for achieving
that goal is to develop AI systems in a variety of complex
environments that make differing demands on the
underlying cognitive architecture. Computer games
provide rich and varied environments in which we can
pursue that goal [Laird & van Lent 2001].

A variety of agents have been developed in Soar [Lehman
et al. 1998] for first-person shooter (FPS) games including
Descent 3, Quake 2 [Laird 2001], Unreal Tournament
[Magerko et al. 2004], and Quake 3. These agents
controlled a single embodied entity, emphasizing tactics
over strategy, and explored the capabilities required for
human-level behavior from a first-person perspective.

Real-Time Strategy (RTS) games make very different
demands on the AI than FPS games, both in terms of the
reasoning strategies and knowledge that must be encoded
to win, but also in terms of basic perceptual and cognitive
capabilities. RTS games are distinguished by the following
characteristics:

1. A dynamic, real-time environment. In an RTS, a player
must respond quickly to environmental changes.

2. Regularities at multiple levels of abstraction. Just as
militaries organize soldiers and armaments into squads,
platoons, battalions, and regiments, and strategize over
these units of varying granularity, RTS games exhibit
salient strategic patterns at many different levels.

3. Multiple, simultaneous, and interacting goals. RTS
games require players to manage their army’s resources

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and production capabilities simultaneously with
engaging in battles or defending bases.

4. Knowledge richness. Players control a wide variety of
combative and support units that have distinctive
performance characteristics.

5. Large amounts of perceptual data. Each player can
control hundreds of units at once, and data about each
unit is simultaneously available to the player.

6. The dominance of spatial reasoning. A player must
reason about space to explore the map, defend its home
base, and organize its troops during an attack.

To explore the interplay of these requirements and
intelligent systems, we developed an RTS agent in Soar to
play ORTS [Buro & Furtak 2003]. This involved
interfacing Soar to the ORTS game engine, developing
middleware to support appropriate abstraction of
perception and action, and developing agents in Soar. Our
system is called SORTS, for Soar/ORTS. We entered our
agents in the AIIDE 2006 ORTS competition, winning two
of the three categories.

System Description
The organization of SORTS is shown in Figure 1. ORTS,
the game engine, is on the right, and Soar, our AI engine, is
on the left. In the upper middle is perception, which
includes grouping and attention processing controlled by
Soar. Motor commands initiated by Soar control finite-
state machines that perform primitive actions in ORTS.

Figure 1. Overview of the SORTS architecture.

ORTS
ORTS is an open source RTS game engine being
developed at University of Alberta. ORTS is designed
from the ground up for use in AI research. Among the
advantages of using ORTS are an extensive, low-level C++
API, a server-client approach that allows for secure
competitions over the internet, and easily modifiable game
mechanics specified by scripts, allowing the ORTS engine
to emulate many commercial RTS games.

The design of ORTS presents some challenges for AI
development. First, it takes a minimalist approach to the
game engine and only simulates game physics, leaving
functionality such as complex path finding and default unit
behaviors to the user program. Second, the ORTS API
gives low-level and thus voluminous perceptual data to the
AI: after each tick of the game clock (typically 8 times per
second), the state of every changed game object is sent.

Soar
Our RTS AI is implemented in Soar, an AI architecture
that encodes procedural long-term knowledge as
production rules and represents the current situation in a
declarative working memory, which includes perceptual
and internally derived data. Soar does not select a single
rule to fire, but instead fires all matching rules in parallel.
Soar organizes behavior in terms of decision cycles where
it first elaborates the current situation (using rules),
noticing patterns in the input and deriving task-relevant
structures such as “the worker sent to explore has
finished”. Additional rules then test the situation and
propose alternative actions (called operators). Some
operators involve motor actions in the environment (such
as building a new structure, or assigning a unit to attack an
enemy), while others modify internal data structures, such
as storing the fact that a worker has been commanded to
build a barracks. If an operator cannot be directly executed,
it becomes a goal, which is recursively decomposed into
simpler operators, leading to a stack of goals. Soar can
select and apply only a single operator at a time (although
a single operator can initiate multiple actions) and can have
only a single stack of goals, restricting Soar to following a
“single train of thought.” This has a significant impact on
our approach to implementing an RTS AI in Soar.

Soar has two other characteristics that influenced our
design. First, moving large amounts of data into Soar from
perception is computationally expensive. Soar does not
have built-in capabilities for visual abstraction or filtering.
Second, Soar is primarily a symbolic reasoning system,
and is not designed to process complex numeric
calculations, especially vector and matrix operations – not
unlike human post-perception capabilities.

Key Issues Addressed by the Interface
Our previous experience with modeling human military
pilots [Jones et al. 1999] taught us that achieving human-
level performance starts with the interface between the

environment and the AI system and the middleware that
supports that interface (the center of Figure 1). The
interface must allow the agent to receive the same types of
information experienced by a human, not as pixels, but in
terms of the abstractions that humans have post-perception.
For example, humans can sense groups of units, and must
focus attention on a subset of the perceptual stream.

Similarly, our AI should control units under the same
constraints as a human player who can issue only one
command to a unit or group of units at a time. Thus, the
middleware must provide low-level control of units (path
planning, low-level combat), while the Soar agent provides
higher-level control (go to this location, fight this enemy).

Perceptual System
The purpose of the perceptual system is to take game state
data received from the ORTS server and create appropriate
structures in Soar’s working memory. Game state
information is provided by ORTS for each individual
object, each game frame. In a typical RTS game, there can
be hundreds of objects changing each game frame, and
those objects will each have numerous properties that
could be updated. To avoid an avalanche of perceptual data
and to provide Soar with information similar to what a
human uses, our middleware supports two operations on
the game state information: grouping, which summarizes
the information about individual objects; and attention,
which excludes unnecessary information. Both of these
decrease the amount of incoming data, with grouping
providing a key abstraction for tactical reasoning. These
capabilities should eventually be addressed by the
perceptual system of the cognitive architecture, but is
beyond the scope of what is implemented within Soar.

Grouping. The ability of humans to see sets of similar
objects as unitary wholes, called Gestalt grouping [Kubovy
et. al. 1998], has been well studied by psychologists. The
principles of Gestalt grouping specify that if objects are
spatially close, and have common features such as shape,
color, and motion, they can be perceived as a group. The
observer has some top-down control and can choose to see
individuals or groups. We model this in our system,
enabling it to perceive units and objects grouped by type,
owner, and proximity. By default, groups are formed based
on all three – the grouping rule associate units of the same
type and owner that are within a specified grouping radius,
which the agent can change by issuing a command to the
middleware. By adjusting the grouping radius to 0, the
agent will perceive every unit individually. Figure 2 shows
an example of object grouping – there are seven workers,
five minerals, and a building, which result in three worker
groups, two mineral groups, and a building group.

For each group, the properties of the individual units, such
as health and weapon damage, are summarized and
attributed to the group. This is the information sent to Soar.
Information about individuals is sent only if there is a
single individual in a group.

An agent can decrease the amount of perceptual
information by increasing the grouping radius, while
conversely it can increase the level of detail by decreasing
the grouping radius. Hence, perceptual information is
never completely unavailable, it is only slower to obtain.
Grouping also provides a mechanism for adjusting the
level of reasoning. If an agent wants to micromanage, it
can set the grouping radius to 0 and reason about
individual units, whereas if it wants to assess the overall
distribution of forces on the map, it can set a high grouping
radius where certain patterns are easier to recognize than if
the agent is perceiving individual units. Another benefit is
that the agent can use the same rules to reason about
situations that differ only in level of detail. For example, a
set of rules that can recognize an opponent’s flanking
maneuver can be applied at the level of single units or
multiple armies simply by modifying the grouping radius.

Attention. Even with grouping of objects, the amount of
information can be excessive. Since meaningful tactical
events in an RTS game tend to occur in restricted spatial
areas, it is worthwhile to concentrate perception on a small
area while limiting information about the rest of the scene.

The human visual system provides some inspiration for
this process. A “zoom lens” metaphor is often used to
describe human visual attention [Erikson & St. James
1986, Hill 1999] – some small area of the field of vision is
attended to, providing detailed information, while
surrounding areas present less information. The area of
attention can shift in a guided manner – a human can easily
jump to a single red object in a sea of black, for example.
Feature Integration Theory (FIT) is a common model for
describing this kind of “pop-out” effect [Anderson 2004].
The basic concept of FIT is that unattended objects are
available only as features (like colors or shapes) but the
features are not integrated together into individual objects.
In the example of a red object in a field of black, there is
information that something red exists, but the remaining
features of the object (it is a rectangle, for example) can be
integrated only when attention selects it. Attention can
select the red object without search if it is the only red
object, but if there are many red objects, any particular one
must be found by searching all the red objects, focusing
attention on each individually.

To achieve a similar affect, we overlay a resizable
rectangular viewfield on the game map, so that all visual
information outside this field is ignored. The attentional
“zoom lens” is implemented as a moveable point, or focus,
in the viewfield, around which a fixed number of the
closest groups are perceived in full detail. These are the
attended groups. The viewfield is evenly divided into nine
sectors in a grid layout. The features of unattended groups
are then coalesced into a feature map within each of the
grid sectors, so that there is a count of the number groups
with each features in each sector. Example features include
enemy units, worker units, or units with low health. The
feature maps allow Soar to switch its focus quickly to an
unattended group that has a specific feature of interest.
This scheme, in addition to supporting fast searches, limits
the size of the perceptual input, since unattended groups
are only reflected in the feature counts.

Figure 3 illustrates the attention system. The four groups
closest to the focus point are attended and all information
about them is presented to Soar. The feature information
about groups in each of the sectors outside attention (in this
case, their friendliness) is summarized. The agent can
change the focus by selecting one of the unattended objects
by a feature in a sector, for example, attending to the
enemy group in the upper-left sector.

There could be objects outside of these nine sectors, if the
agent has restricted its viewfield to a region smaller than
the entire world. Since the feature maps have a fixed
number of sectors, restricting the field of vision serves to
increase their resolution. A situation where this is useful is
the identification of an enemy unit in an unusual place. If
the entire map is always in the field of view, a small area
of it being attended to at once, the data in the feature maps
will be very low resolution. If the enemy is in many places,
it is likely at least one enemy unit will be somewhere in
each sector. If one of those sectors also contains a region
the agent is trying to control, there is no way of quickly
knowing if an enemy is inside or outside the region without
attending to it. However, if the agent restricts its field of
view to the region in question, an enemy present in the
feature map will “pop out” and must be an invader.

Figure 2. Grouping of objects by type and proximity.

Figure 3. Filtering of objects through attention.

Execution System
ORTS is a minimalist RTS game engine. The built-in unit
commands include moving in straight lines and executing
behaviors such as mining or attacking, but not much else.
For example, if a unit is ordered to attack a target that is
out of its firing range, the unit will not automatically move
within range of the target before executing the attack.

Most commercial RTS games do not require human
players to command units at such a low level. Instead, they
provide higher-level commands such as attack-move and
harvest looping. Units also typically have default behaviors
such as attacking nearby targets or running away when
unarmed and under attack. While humans are capable of
commanding units to carry out each of these operations
manually, requiring them to do so would be overwhelming.
In order to provide Soar with a human-level interface, we
created middleware to support default unit behaviors via
finite state machines and global coordinators.

Finite state machines. The execution system accepts
commands for groups from Soar and translates them into
atomic actions which are sent to the ORTS server. For non-
atomic Soar commands, the execution system assigns a
finite state machine (FSM). The FSM provides the control
for the detailed execution of the individual units that make
up the group. FSMs persist until either the specified
behaviors are completed or the command is cancelled.
After each game frame, every active FSM is updated.
FSMs are given access to all percepts and can be arbitrarily
complex. However, in adhering to the policy of emulating
commercial RTS games, we have implemented only
common high-level commands and default behaviors such
as attack-move, attack nearby targets, and harvest loop.
FSMs are not tied to the Soar decision cycle in any way.
Once an FSM has been assigned to a unit, the FSM does
not wait for any other output from Soar. This allows units
to act according to their instructions even when Soar is
attending to other tasks.

Global coordinators. In commercial RTS games, units not
only exhibit a certain level of autonomy in executing their
own commands, but often can cooperate in jointly carrying
out a behavior assigned to a group. For example, when a
group of marines are ordered to attack an enemy force in
Starcraft, the computer will automatically distribute the
rifle fire of the group evenly over the enemy units. This
kind of behavior is not possible with FSMs unless each
FSM knows about the presence and state of the other FSMs
they are cooperating with. To achieve this kind of group
behavior, we created global coordinators that direct what
each FSM in a group should do, rather than having them
negotiate a multi-agent policy without executive control.

We have implemented two coordinators: one for managing
resource mining and one for managing attacks. The mine
manager attempts to optimize the assignment of worker
units to resource patches in order to maximize the rate of
resource income. Simple learning is used here—the
manager keeps track of the actual performance of each

worker, and reassigns workers from poorly performing
routes to potentially better routes. The attack manager
attempts to implement the strategy of focusing the entire
group’s fire on one enemy unit at a time, in order of
decreasing threat. The attack manager also handles the
movement and positioning of units during the attack.

We also extended the native ORTS pathfinder by adding
heuristics for cooperative pathfinding. All commands
involving movement use the pathfinder. With these
capabilities, the middleware takes much more processing
time than Soar. Activities such as pathfinding and attack
coordination are computationally expensive, and the
middleware must manage each individual unit.

Multi-tasking
RTS games are typified by having multiple, interacting
tasks. These tasks are hierarchical in nature, such as a
frontal attack decomposing into producing sufficient units
and mounting the attack, tasks which can be further
decomposed themselves. When a player must handle
multiple tasks, it is useful to switch to other tasks when the
current task is waiting on some event. There are also
situations in which the player must respond to some
unexpected event and interrupt the current task for another
more urgent task, such as defending his home base.

In SORTS, tasks are the actions that can be unified under a
single goal. Tasks map well onto Soar’s subgoals:
1. Soar’s subgoaling mechanism is hierarchical, so we can

easily define a hierarchy of tasks.
2. Since Soar can only select operators on the lowest

subgoal, while the subgoal is present Soar can only
send commands to ORTS concerning that subgoal.

3. A subgoal is retracted if a more important subgoal’s
conditions are met, allowing for task preemption.
However, subgoals of equal importance will not
interleave.

4. Soar signals when there is no activity for a current task,
making it easy to implement task switching to another
task that is ready for execution.

As an example, consider a Soar agent that has two tasks,
building up its base and launching an enemy attack. The
agent will first send its troops toward the enemy base, and
will have to wait for them to get there. Since it has nothing
to do for a while, the agent will switch to the building task
and perhaps construct another building. However, as soon
as its troops engage the enemy, the attack task will have
higher priority than the building task and the agent will
preempt the building task. The agent will not switch back
to the building task until the attack task is finished.

Note that this behavior is more comparable to human task-
switching behavior than existing AIs. Human players tend
to stick to a single task until it is finished or there is a clear
hiatus because task switching incurs a high overhead.
However, most existing RTS AIs do not suffer from this
overhead and thus interleave task execution as much as
possible. This is one of the main artificial advantages

existing AIs have over human players, and also one of the
main complaints human players have concerning AIs. Our
system is naturally constrained by Soar to not take unfair
advantage of this discrepancy.

Implemented Agents
We developed agents for the RTS game AI competition at
AIIDE 2006. This competition consisted of three separate
categories of games: 1. a mining competition, 2. a tank
battle, and 3. a complete (but limited) RTS game. We
wrote three agents, one for each game, but kept the
middleware (and Soar) constant over all three games. The
complexities in creating agents for all games meant that
there was limited time to test and debug all behaviors.
Thus, for this first competition, software bugs played a
significant role in the results.

The process of writing all three agents took about two
weeks, much of that time dedicated to fixing bugs in the
middleware. There was minimal sharing of Soar code
between the three agents, as the games presented very
different tactical situations. Note that we are not making
any claims about how natural it is to program RTS agents
in Soar. Instead we found that some aspects of RTS AIs
were better suited for production systems such as Soar,
while other aspects were easier implemented in sequential
programming languages.

Game 1
In this game, the task is to gather as many mineral
resources as possible using multiple workers in a fixed
amount of time. This is difficult because gathering
resources involves many units moving in a small area.
Planning paths for many units is difficult, and alternate
control strategies must be used if the paths cannot be made
collision-free. Even if a perfect cooperative pathfinding
system were available, it is difficult to derive the optimal
assignment of workers to resources – there are difficult
tradeoffs between workers waiting for one another, sharing
the same resource location, and sending them to alternate
locations that may require more travel time.

In SORTS, resource gathering is handled by a mining
coordinator and FSMs in the middleware. Soar only
assigns units to the task. Thus, this game mainly tested the
middleware components. The pathfinder has simple
heuristics to assist cooperative path planning, but does not
guarantee collision-free paths. To remedy this, and to avoid
dynamic obstacles in the game (sheep), the movement
FSM incorporates reactive rules to avoid local collisions.
Route assignment was well-handled by the simple learning
mechanism in the mining coordinator. Overall, these
systems worked well and we won the competition. The
second and third place entries gathered 78% as much as
our agent and the fourth place gathered 38%.

Game 2
In this game, each player starts with 5 bases and 50 tanks.
The goal is to destroy the opponent bases while preserving
one’s own bases. We used a variety of heuristic strategies
that included gathering tanks together and attacking the
enemy with a large group, attacking tanks that are firing at
one’s own bases first, and retreating and regrouping when
one’s forces become scattered.

Even though Soar could have handled viewing all
individual units at once, the ability to group tanks
significantly simplified the reasoning processes, especially
when evaluating force distributions. However, the inability
to perform all but the simplest spatial reasoning made it
difficult to implement sophisticated tactics. Unfortunately,
a few bugs in perception processing resulted in our entry
freezing in many cases, so we lost this competition.

Game 3
The “real RTS” in game 3 started each player with a
control center building and a few worker units, requiring
the player to build up an army by gathering resources and
constructing buildings. Scoring is through a formula
incorporating resource and unit production weighted with
gains and losses in battle. A successful agent in this game
must include many of the capabilities we have discussed –
coordinating the behavior of many units both on a small
scale and towards a common plan, while remaining
responsive to outside factors.

A Soar agent was programmed using task switching and
subgoaling as discussed above. This game, while
complicated, is still much smaller than the scale of game
our system is designed for, which would include many
types of units and multiple opponents. The agent we used
did not reflect the full range of our system’s abilities.

The agent followed a simple overall plan: build a barracks
(which can produce marine units) with one worker, and
mine minerals with the rest. Produce a few more workers,
sending them to mine, in order to generate new resources
as fast as possible. Spend the remaining resources on
producing marines. Once ten marines are available, send a
few out to locate the enemy. As soon as the enemy is
sighted, send marines in groups of five to attack it.

The agent did not rigidly follow its plan. If the base was
attacked, the mining goal was overridden, and miners were
diverted to defend the base, unless sufficient marines were
available. If an exploring marine came across an enemy
unit, it might be destroyed without discovering the enemy
base, necessitating a repeat of the exploration process.

A typical execution sequence might see the agent
executing the exploration subtask, adjusting the grouping
radius to see individuals, and sending out a marine to
explore. Then, there being no more relevant operators in
the exploration subtask, the task switching system might
change the current task to miner assignment. Upon
executing this task, the agent might adjust the grouping

radius to see large groups, and look for a group of
unoccupied workers. This entire group could then be
quickly assigned to mine minerals, resulting in no more
relevant operators in the miner assignment task, triggering
another task switch, etc.

For game 3, the only other entry was from University of
Alberta. Our agent won 60% of 400 games. The Alberta
agent focused on resource collection and defense. As this
was the most comprehensive game in the first ORTS
competition, bugs had a significant impact on both agents’
behavior. In code as complex as these agents, bugs do not
always lead to crashes and they are not encountered on
every run. Our bug was in our perceptual system (since
fixed) and affected ~40% of the games. In ~50% of the
games, one or both agents had buggy behavior. When our
agent’s behavior was bug-free, we found the enemy and
attacked. Either we would destroy them (if they
encountered a bug) or there would be a battle (which we
won 60%). If our agent encountered a bug, we would not
find the enemy and the game became a production race,
which we won about half of the time.

Discussion
As a Soar research environment, SORTS has shown itself
to be very useful. Much of the work described in this paper
addresses general problems for cognitive architectures, and
is useful outside of the RTS domain.

We are working on extensions to further investigate
intelligent systems in domains like ORTS. First, we have
experimented with using Soar’s reinforcement learning
mechanism [Nason & Laird, 2004] with SORTS. While we
successfully demonstrated learning of simple policies on
restricted aspects of the game, our results suggest that it
will be difficult to use reinforcement learning more
generally for RTS games until a method is developed for
extracting useful features to learn over. This is a general
problem in applying reinforcement learning to complex
problems and is not specific to Soar.

The RTS domain is particularly suitable for spatial
reasoning research, due to the large number of dynamic
objects in the world, along with the diagrammatic view. In
SORTS, we originally used simple problem specific
methods in the middleware. These methods will not scale
up to the capabilities required by complete RTS AI agents.
In response, we have developed a comprehensive, general
spatial reasoning system for Soar, which we will use in
future versions of SORTS.

Conclusions
The design of the interface between Soar and ORTS has
been driven by two forces: a commitment to humanlike
game play and reasoning, and a need to resolve conflicting
practical constraints presented by the two systems.
Fortunately, these forces were not at odds. Humans face
the same kinds of interface problems and the mechanisms

they employ solve these problems well. Taking advantage
of these human-inspired mechanisms has resulted in a
system that is different from conventional approaches to
RTS AI, but is still very competent at playing the game.
This points the way for more human-like behavior in RTS
AI, which has the potential of greatly enhancing the single-
player experience so that playing against the computer is
more and more like playing against a human opponent.

In conclusion, RTS games are a useful arena for AI
research. We have encountered challenging research
problems such as grouping, attention, hierarchical control,
and spatial reasoning, while integrating them within a
cognitive architecture. Future research includes integrating
learning and spatial reasoning, in addition to developing
knowledge-rich agents for complete games.

References
Anderson, J. R. Cognitive Psychology and its Implications.
Worth Publishers, New York, 2004.

Buro, M., Furtak, T. RTS Games as Test-Bed for Real-
Time Research, Invited Paper at the Workshop on Game
AI, JCIS 2003.

Erikson, C.W., St. James, J.D. Visual Attention Within and
Around the Field of Focal Attention: A Zoom Lens Model.
Perception & Psychophysics, 40, 225-240, 1986.

Hill, R. Modeling Perceptual Attention in Virtual Humans.
Proc. of the 8th Conference on Computer Generated Forces
and Behavioral Representation, 1999.

Jones, R. M., Laird, J. E., Nielsen P. E., Coulter, K.,
Kenny, P., Koss, F. Automated Intelligent Pilots for
Combat Flight Simulation, AI Magazine, 20(1), 27-42,
1999.

Kubovy, M., Holcombe, A. O., Wagemans, J., On the
Lawfulness of Grouping by Proximity. Cognitive
Psychology, 35, 71-98, 1998.

Laird, J. E., It Knows What You’re Going To Do: Adding
Anticipation to a Quakebot. Agents 2001, Montreal, CA,
385-392, 2001.

Laird, J. E., van Lent, M. Interactive Computer Games:
Human-level AI's Killer Application. AI Magazine, 22(2),
15-25, 2001.

Lehman, J. F., Laird, J. E., Rosenbloom, P. S., A Gentle
Introduction to Soar, an Architecture for Human
Cognition, in Invitation to Cognitive Science, Vol. 4, S.
Sternberg, D. Scarborough, eds., MIT Press, 1998.

Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., Stokes,
D. AI Characters, Directors for Interactive Computer
Games, Innovative Applications of Artificial Intelligence,
2004.

Nason, S., Laird, J. E., Soar-RL: Integrating Reinforcement
Learning with Soar, Cognitive Systems, 6(1), 51-59, 2004.

