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Abstract 
We developed knowledge-rich agents to play real-time 
strategy games by interfacing the ORTS game engine to the 
Soar cognitive architecture. The middleware we developed 
supports grouping, attention, coordinated path finding, and 
FSM control of low-level unit behaviors. The middleware 
attempts to provide information humans use to reason about 
RTS games, and facilitates creating agent behaviors in Soar. 
Agents implemented with this system won two out of three 
categories in the AIIDE 2006 ORTS competition. 

Introduction 
The goal of our research is to understand and create 
human-level intelligent systems. Our strategy for achieving 
that goal is to develop AI systems in a variety of complex 
environments that make differing demands on the 
underlying cognitive architecture. Computer games 
provide rich and varied environments in which we can 
pursue that goal [Laird & van Lent 2001].  

A variety of agents have been developed in Soar [Lehman 
et al. 1998] for first-person shooter (FPS) games including 
Descent 3, Quake 2 [Laird 2001], Unreal Tournament 
[Magerko et al. 2004], and Quake 3. These agents 
controlled a single embodied entity, emphasizing tactics 
over strategy, and explored the capabilities required for 
human-level behavior from a first-person perspective. 

Real-Time Strategy (RTS) games make very different 
demands on the AI than FPS games, both in terms of the 
reasoning strategies and knowledge that must be encoded 
to win, but also in terms of basic perceptual and cognitive 
capabilities. RTS games are distinguished by the following 
characteristics: 

1. A dynamic, real-time environment. In an RTS, a player 
must respond quickly to environmental changes. 

2. Regularities at multiple levels of abstraction. Just as 
militaries organize soldiers and armaments into squads, 
platoons, battalions, and regiments, and strategize over 
these units of varying granularity, RTS games exhibit 
salient strategic patterns at many different levels.  

3. Multiple, simultaneous, and interacting goals. RTS 
games require players to manage their army’s resources 
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and production capabilities simultaneously with 
engaging in battles or defending bases. 

4. Knowledge richness. Players control a wide variety of 
combative and support units that have distinctive 
performance characteristics. 

5. Large amounts of perceptual data. Each player can 
control hundreds of units at once, and data about each 
unit is simultaneously available to the player.  

6. The dominance of spatial reasoning. A player must 
reason about space to explore the map, defend its home 
base, and organize its troops during an attack.  

To explore the interplay of these requirements and 
intelligent systems, we developed an RTS agent in Soar to 
play ORTS [Buro & Furtak 2003]. This involved 
interfacing Soar to the ORTS game engine, developing 
middleware to support appropriate abstraction of 
perception and action, and developing agents in Soar. Our 
system is called SORTS, for Soar/ORTS. We entered our 
agents in the AIIDE 2006 ORTS competition, winning two 
of the three categories.  

System Description 
The organization of SORTS is shown in Figure 1. ORTS, 
the game engine, is on the right, and Soar, our AI engine, is 
on the left. In the upper middle is perception, which 
includes grouping and attention processing controlled by 
Soar. Motor commands initiated by Soar control finite-
state machines that perform primitive actions in ORTS.  

Figure 1. Overview of the SORTS architecture. 



ORTS 
ORTS is an open source RTS game engine being 
developed at University of Alberta. ORTS is designed 
from the ground up for use in AI research. Among the 
advantages of using ORTS are an extensive, low-level C++ 
API, a server-client approach that allows for secure 
competitions over the internet, and easily modifiable game 
mechanics specified by scripts, allowing the ORTS engine 
to emulate many commercial RTS games.  

The design of ORTS presents some challenges for AI 
development. First, it takes a minimalist approach to the 
game engine and only simulates game physics, leaving 
functionality such as complex path finding and default unit 
behaviors to the user program. Second, the ORTS API 
gives low-level and thus voluminous perceptual data to the 
AI: after each tick of the game clock (typically 8 times per 
second), the state of every changed game object is sent.  

Soar 
Our RTS AI is implemented in Soar, an AI architecture 
that encodes procedural long-term knowledge as 
production rules and represents the current situation in a 
declarative working memory, which includes perceptual 
and internally derived data. Soar does not select a single 
rule to fire, but instead fires all matching rules in parallel. 
Soar organizes behavior in terms of decision cycles where 
it first elaborates the current situation (using rules), 
noticing patterns in the input and deriving task-relevant 
structures such as “the worker sent to explore has 
finished”. Additional rules then test the situation and 
propose alternative actions (called operators). Some 
operators involve motor actions in the environment (such 
as building a new structure, or assigning a unit to attack an 
enemy), while others modify internal data structures, such 
as storing the fact that a worker has been commanded to 
build a barracks. If an operator cannot be directly executed, 
it becomes a goal, which is recursively decomposed into 
simpler operators, leading to a stack of goals. Soar can 
select and apply only a single operator at a time (although 
a single operator can initiate multiple actions) and can have 
only a single stack of goals, restricting Soar to following a 
“single train of thought.” This has a significant impact on 
our approach to implementing an RTS AI in Soar.  

Soar has two other characteristics that influenced our 
design. First, moving large amounts of data into Soar from 
perception is computationally expensive. Soar does not 
have built-in capabilities for visual abstraction or filtering. 
Second, Soar is primarily a symbolic reasoning system, 
and is not designed to process complex numeric 
calculations, especially vector and matrix operations – not 
unlike human post-perception capabilities. 

Key Issues Addressed by the Interface 
Our previous experience with modeling human military 
pilots [Jones et al. 1999] taught us that achieving human-
level performance starts with the interface between the 

environment and the AI system and the middleware that 
supports that interface (the center of Figure 1). The 
interface must allow the agent to receive the same types of 
information experienced by a human, not as pixels, but in 
terms of the abstractions that humans have post-perception. 
For example, humans can sense groups of units, and must 
focus attention on a subset of the perceptual stream.  

Similarly, our AI should control units under the same 
constraints as a human player who can issue only one 
command to a unit or group of units at a time. Thus, the 
middleware must provide low-level control of units (path 
planning, low-level combat), while the Soar agent provides 
higher-level control (go to this location, fight this enemy). 

Perceptual System 
The purpose of the perceptual system is to take game state 
data received from the ORTS server and create appropriate 
structures in Soar’s working memory. Game state 
information is provided by ORTS for each individual 
object, each game frame. In a typical RTS game, there can 
be hundreds of objects changing each game frame, and 
those objects will each have numerous properties that 
could be updated. To avoid an avalanche of perceptual data 
and to provide Soar with information similar to what a 
human uses, our middleware supports two operations on 
the game state information: grouping, which summarizes 
the information about individual objects; and attention, 
which excludes unnecessary information. Both of these 
decrease the amount of incoming data, with grouping 
providing a key abstraction for tactical reasoning. These 
capabilities should eventually be addressed by the 
perceptual system of the cognitive architecture, but is 
beyond the scope of what is implemented within Soar.  

Grouping. The ability of humans to see sets of similar 
objects as unitary wholes, called Gestalt grouping [Kubovy 
et. al. 1998], has been well studied by psychologists. The 
principles of Gestalt grouping specify that if objects are 
spatially close, and have common features such as shape, 
color, and motion, they can be perceived as a group. The 
observer has some top-down control and can choose to see 
individuals or groups. We model this in our system, 
enabling it to perceive units and objects grouped by type, 
owner, and proximity. By default, groups are formed based 
on all three – the grouping rule associate units of the same 
type and owner that are within a specified grouping radius, 
which the agent can change by issuing a command to the 
middleware. By adjusting the grouping radius to 0, the 
agent will perceive every unit individually. Figure 2 shows 
an example of object grouping – there are seven workers, 
five minerals, and a building, which result in three worker 
groups, two mineral groups, and a building group. 

For each group, the properties of the individual units, such 
as health and weapon damage, are summarized and 
attributed to the group. This is the information sent to Soar. 
Information about individuals is sent only if there is a 
single individual in a group. 



An agent can decrease the amount of perceptual 
information by increasing the grouping radius, while 
conversely it can increase the level of detail by decreasing 
the grouping radius. Hence, perceptual information is 
never completely unavailable, it is only slower to obtain. 
Grouping also provides a mechanism for adjusting the 
level of reasoning. If an agent wants to micromanage, it 
can set the grouping radius to 0 and reason about 
individual units, whereas if it wants to assess the overall 
distribution of forces on the map, it can set a high grouping 
radius where certain patterns are easier to recognize than if 
the agent is perceiving individual units. Another benefit is 
that the agent can use the same rules to reason about 
situations that differ only in level of detail. For example, a 
set of rules that can recognize an opponent’s flanking 
maneuver can be applied at the level of single units or 
multiple armies simply by modifying the grouping radius.  

Attention. Even with grouping of objects, the amount of 
information can be excessive. Since meaningful tactical 
events in an RTS game tend to occur in restricted spatial 
areas, it is worthwhile to concentrate perception on a small 
area while limiting information about the rest of the scene.  

The human visual system provides some inspiration for 
this process. A “zoom lens” metaphor is often used to 
describe human visual attention [Erikson & St. James 
1986, Hill 1999] – some small area of the field of vision is 
attended to, providing detailed information, while 
surrounding areas present less information. The area of 
attention can shift in a guided manner – a human can easily 
jump to a single red object in a sea of black, for example. 
Feature Integration Theory (FIT) is a common model for 
describing this kind of “pop-out” effect [Anderson 2004]. 
The basic concept of FIT is that unattended objects are 
available only as features (like colors or shapes) but the 
features are not integrated together into individual objects. 
In the example of a red object in a field of black, there is 
information that something red exists, but the remaining 
features of the object (it is a rectangle, for example) can be 
integrated only when attention selects it. Attention can 
select the red object without search if it is the only red 
object, but if there are many red objects, any particular one 
must be found by searching all the red objects, focusing 
attention on each individually. 

To achieve a similar affect, we overlay a resizable 
rectangular viewfield on the game map, so that all visual 
information outside this field is ignored. The attentional 
“zoom lens” is implemented as a moveable point, or focus, 
in the viewfield, around which a fixed number of the 
closest groups are perceived in full detail. These are the 
attended groups. The viewfield is evenly divided into nine 
sectors in a grid layout. The features of unattended groups 
are then coalesced into a feature map within each of the 
grid sectors, so that there is a count of the number groups 
with each features in each sector. Example features include 
enemy units, worker units, or units with low health. The 
feature maps allow Soar to switch its focus quickly to an 
unattended group that has a specific feature of interest. 
This scheme, in addition to supporting fast searches, limits 
the size of the perceptual input, since unattended groups 
are only reflected in the feature counts. 

Figure 3 illustrates the attention system. The four groups 
closest to the focus point are attended and all information 
about them is presented to Soar. The feature information 
about groups in each of the sectors outside attention (in this 
case, their friendliness) is summarized. The agent can 
change the focus by selecting one of the unattended objects 
by a feature in a sector, for example, attending to the 
enemy group in the upper-left sector. 

There could be objects outside of these nine sectors, if the 
agent has restricted its viewfield to a region smaller than 
the entire world. Since the feature maps have a fixed 
number of sectors, restricting the field of vision serves to 
increase their resolution. A situation where this is useful is 
the identification of an enemy unit in an unusual place. If 
the entire map is always in the field of view, a small area 
of it being attended to at once, the data in the feature maps 
will be very low resolution. If the enemy is in many places, 
it is likely at least one enemy unit will be somewhere in 
each sector. If one of those sectors also contains a region 
the agent is trying to control, there is no way of quickly 
knowing if an enemy is inside or outside the region without 
attending to it. However, if the agent restricts its field of 
view to the region in question, an enemy present in the 
feature map will “pop out” and must be an invader.  

Figure 2. Grouping of objects by type and proximity. 

Figure 3. Filtering of objects through attention. 



Execution System 
ORTS is a minimalist RTS game engine. The built-in unit 
commands include moving in straight lines and executing 
behaviors such as mining or attacking, but not much else. 
For example, if a unit is ordered to attack a target that is 
out of its firing range, the unit will not automatically move 
within range of the target before executing the attack. 

Most commercial RTS games do not require human 
players to command units at such a low level. Instead, they 
provide higher-level commands such as attack-move and 
harvest looping. Units also typically have default behaviors 
such as attacking nearby targets or running away when 
unarmed and under attack. While humans are capable of 
commanding units to carry out each of these operations 
manually, requiring them to do so would be overwhelming. 
In order to provide Soar with a human-level interface, we 
created middleware to support default unit behaviors via 
finite state machines and global coordinators.  

Finite state machines. The execution system accepts 
commands for groups from Soar and translates them into 
atomic actions which are sent to the ORTS server. For non-
atomic Soar commands, the execution system assigns a 
finite state machine (FSM). The FSM provides the control 
for the detailed execution of the individual units that make 
up the group. FSMs persist until either the specified 
behaviors are completed or the command is cancelled. 
After each game frame, every active FSM is updated. 
FSMs are given access to all percepts and can be arbitrarily 
complex. However, in adhering to the policy of emulating 
commercial RTS games, we have implemented only 
common high-level commands and default behaviors such 
as attack-move, attack nearby targets, and harvest loop. 
FSMs are not tied to the Soar decision cycle in any way. 
Once an FSM has been assigned to a unit, the FSM does 
not wait for any other output from Soar. This allows units 
to act according to their instructions even when Soar is 
attending to other tasks. 

Global coordinators. In commercial RTS games, units not 
only exhibit a certain level of autonomy in executing their 
own commands, but often can cooperate in jointly carrying 
out a behavior assigned to a group. For example, when a 
group of marines are ordered to attack an enemy force in 
Starcraft, the computer will automatically distribute the 
rifle fire of the group evenly over the enemy units. This 
kind of behavior is not possible with FSMs unless each 
FSM knows about the presence and state of the other FSMs 
they are cooperating with. To achieve this kind of group 
behavior, we created global coordinators that direct what 
each FSM in a group should do, rather than having them 
negotiate a multi-agent policy without executive control.  

We have implemented two coordinators: one for managing 
resource mining and one for managing attacks. The mine 
manager attempts to optimize the assignment of worker 
units to resource patches in order to maximize the rate of 
resource income. Simple learning is used here—the 
manager keeps track of the actual performance of each 

worker, and reassigns workers from poorly performing 
routes to potentially better routes. The attack manager 
attempts to implement the strategy of focusing the entire 
group’s fire on one enemy unit at a time, in order of 
decreasing threat. The attack manager also handles the 
movement and positioning of units during the attack. 

We also extended the native ORTS pathfinder by adding 
heuristics for cooperative pathfinding. All commands 
involving movement use the pathfinder. With these 
capabilities, the middleware takes much more processing 
time than Soar. Activities such as pathfinding and attack 
coordination are computationally expensive, and the 
middleware must manage each individual unit.   

Multi-tasking 
RTS games are typified by having multiple, interacting 
tasks. These tasks are hierarchical in nature, such as a 
frontal attack decomposing into producing sufficient units 
and mounting the attack, tasks which can be further 
decomposed themselves. When a player must handle 
multiple tasks, it is useful to switch to other tasks when the 
current task is waiting on some event. There are also 
situations in which the player must respond to some 
unexpected event and interrupt the current task for another 
more urgent task, such as defending his home base. 

In SORTS, tasks are the actions that can be unified under a 
single goal. Tasks map well onto Soar’s subgoals:  
1. Soar’s subgoaling mechanism is hierarchical, so we can 

easily define a hierarchy of tasks. 
2. Since Soar can only select operators on the lowest 

subgoal, while the subgoal is present Soar can only 
send commands to ORTS concerning that subgoal. 

3. A subgoal is retracted if a more important subgoal’s 
conditions are met, allowing for task preemption. 
However, subgoals of equal importance will not 
interleave. 

4. Soar signals when there is no activity for a current task, 
making it easy to implement task switching to another 
task that is ready for execution. 

As an example, consider a Soar agent that has two tasks, 
building up its base and launching an enemy attack. The 
agent will first send its troops toward the enemy base, and 
will have to wait for them to get there. Since it has nothing 
to do for a while, the agent will switch to the building task 
and perhaps construct another building. However, as soon 
as its troops engage the enemy, the attack task will have 
higher priority than the building task and the agent will 
preempt the building task. The agent will not switch back 
to the building task until the attack task is finished.  

Note that this behavior is more comparable to human task-
switching behavior than existing AIs. Human players tend 
to stick to a single task until it is finished or there is a clear 
hiatus because task switching incurs a high overhead. 
However, most existing RTS AIs do not suffer from this 
overhead and thus interleave task execution as much as 
possible. This is one of the main artificial advantages 



existing AIs have over human players, and also one of the 
main complaints human players have concerning AIs. Our 
system is naturally constrained by Soar to not take unfair 
advantage of this discrepancy. 

Implemented Agents 
We developed agents for the RTS game AI competition at 
AIIDE 2006. This competition consisted of three separate 
categories of games: 1. a mining competition, 2. a tank 
battle, and 3. a complete (but limited) RTS game. We 
wrote three agents, one for each game, but kept the 
middleware (and Soar) constant over all three games. The 
complexities in creating agents for all games meant that 
there was limited time to test and debug all behaviors. 
Thus, for this first competition, software bugs played a 
significant role in the results.  

The process of writing all three agents took about two 
weeks, much of that time dedicated to fixing bugs in the 
middleware. There was minimal sharing of Soar code 
between the three agents, as the games presented very 
different tactical situations. Note that we are not making 
any claims about how natural it is to program RTS agents 
in Soar. Instead we found that some aspects of RTS AIs 
were better suited for production systems such as Soar, 
while other aspects were easier implemented in sequential 
programming languages. 

Game 1 
In this game, the task is to gather as many mineral 
resources as possible using multiple workers in a fixed 
amount of time. This is difficult because gathering 
resources involves many units moving in a small area. 
Planning paths for many units is difficult, and alternate 
control strategies must be used if the paths cannot be made 
collision-free. Even if a perfect cooperative pathfinding 
system were available, it is difficult to derive the optimal 
assignment of workers to resources – there are difficult 
tradeoffs between workers waiting for one another, sharing 
the same resource location, and sending them to alternate 
locations that may require more travel time. 

In SORTS, resource gathering is handled by a mining 
coordinator and FSMs in the middleware. Soar only 
assigns units to the task. Thus, this game mainly tested the 
middleware components. The pathfinder has simple 
heuristics to assist cooperative path planning, but does not 
guarantee collision-free paths. To remedy this, and to avoid 
dynamic obstacles in the game (sheep), the movement 
FSM incorporates reactive rules to avoid local collisions. 
Route assignment was well-handled by the simple learning 
mechanism in the mining coordinator. Overall, these 
systems worked well and we won the competition. The 
second and third place entries gathered 78% as much as 
our agent and the fourth place gathered 38%. 

 

Game 2 
In this game, each player starts with 5 bases and 50 tanks. 
The goal is to destroy the opponent bases while preserving 
one’s own bases. We used a variety of heuristic strategies 
that included gathering tanks together and attacking the 
enemy with a large group, attacking tanks that are firing at 
one’s own bases first, and retreating and regrouping when 
one’s forces become scattered. 

Even though Soar could have handled viewing all 
individual units at once, the ability to group tanks 
significantly simplified the reasoning processes, especially 
when evaluating force distributions. However, the inability 
to perform all but the simplest spatial reasoning made it 
difficult to implement sophisticated tactics. Unfortunately, 
a few bugs in perception processing resulted in our entry 
freezing in many cases, so we lost this competition. 

Game 3 
The “real RTS” in game 3 started each player with a 
control center building and a few worker units, requiring 
the player to build up an army by gathering resources and 
constructing buildings. Scoring is through a formula 
incorporating resource and unit production weighted with 
gains and losses in battle. A successful agent in this game 
must include many of the capabilities we have discussed – 
coordinating the behavior of many units both on a small 
scale and towards a common plan, while remaining 
responsive to outside factors. 

A Soar agent was programmed using task switching and 
subgoaling as discussed above. This game, while 
complicated, is still much smaller than the scale of game 
our system is designed for, which would include many 
types of units and multiple opponents. The agent we used 
did not reflect the full range of our system’s abilities. 

The agent followed a simple overall plan: build a barracks 
(which can produce marine units) with one worker, and 
mine minerals with the rest. Produce a few more workers, 
sending them to mine, in order to generate new resources 
as fast as possible. Spend the remaining resources on 
producing marines. Once ten marines are available, send a 
few out to locate the enemy. As soon as the enemy is 
sighted, send marines in groups of five to attack it.  

The agent did not rigidly follow its plan. If the base was 
attacked, the mining goal was overridden, and miners were 
diverted to defend the base, unless sufficient marines were 
available. If an exploring marine came across an enemy 
unit, it might be destroyed without discovering the enemy 
base, necessitating a repeat of the exploration process. 

A typical execution sequence might see the agent 
executing the exploration subtask, adjusting the grouping 
radius to see individuals, and sending out a marine to 
explore. Then, there being no more relevant operators in 
the exploration subtask, the task switching system might 
change the current task to miner assignment. Upon 
executing this task, the agent might adjust the grouping 



radius to see large groups, and look for a group of 
unoccupied workers. This entire group could then be 
quickly assigned to mine minerals, resulting in no more 
relevant operators in the miner assignment task, triggering 
another task switch, etc. 

For game 3, the only other entry was from University of 
Alberta. Our agent won 60% of 400 games. The Alberta 
agent focused on resource collection and defense. As this 
was the most comprehensive game in the first ORTS 
competition, bugs had a significant impact on both agents’ 
behavior. In code as complex as these agents, bugs do not 
always lead to crashes and they are not encountered on 
every run. Our bug was in our perceptual system (since 
fixed) and affected ~40% of the games. In ~50% of the 
games, one or both agents had buggy behavior. When our 
agent’s behavior was bug-free, we found the enemy and 
attacked. Either we would destroy them (if they 
encountered a bug) or there would be a battle (which we 
won 60%). If our agent encountered a bug, we would not 
find the enemy and the game became a production race, 
which we won about half of the time.  

Discussion 
As a Soar research environment, SORTS has shown itself 
to be very useful. Much of the work described in this paper 
addresses general problems for cognitive architectures, and 
is useful outside of the RTS domain. 

We are working on extensions to further investigate 
intelligent systems in domains like ORTS. First, we have 
experimented with using Soar’s reinforcement learning 
mechanism [Nason & Laird, 2004] with SORTS. While we 
successfully demonstrated learning of simple policies on 
restricted aspects of the game, our results suggest that it 
will be difficult to use reinforcement learning more 
generally for RTS games until a method is developed for 
extracting useful features to learn over. This is a general 
problem in applying reinforcement learning to complex 
problems and is not specific to Soar. 

The RTS domain is particularly suitable for spatial 
reasoning research, due to the large number of dynamic 
objects in the world, along with the diagrammatic view. In 
SORTS, we originally used simple problem specific 
methods in the middleware. These methods will not scale 
up to the capabilities required by complete RTS AI agents. 
In response, we have developed a comprehensive, general 
spatial reasoning system for Soar, which we will use in 
future versions of SORTS.  

Conclusions 
The design of the interface between Soar and ORTS has 
been driven by two forces: a commitment to humanlike 
game play and reasoning, and a need to resolve conflicting 
practical constraints presented by the two systems. 
Fortunately, these forces were not at odds. Humans face 
the same kinds of interface problems and the mechanisms 

they employ solve these problems well. Taking advantage 
of these human-inspired mechanisms has resulted in a 
system that is different from conventional approaches to 
RTS AI, but is still very competent at playing the game. 
This points the way for more human-like behavior in RTS 
AI, which has the potential of greatly enhancing the single-
player experience so that playing against the computer is 
more and more like playing against a human opponent.  

In conclusion, RTS games are a useful arena for AI 
research. We have encountered challenging research 
problems such as grouping, attention, hierarchical control, 
and spatial reasoning, while integrating them within a 
cognitive architecture. Future research includes integrating 
learning and spatial reasoning, in addition to developing 
knowledge-rich agents for complete games. 
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