
ORTS Competition: Getting Started

Tapani Utriainen & Michael Buro

March 4, 2007

1 Introduction

The ORTS AI competition is going to be held prior to the AIIDE 2006 conference in June 2006. The
deadline for registering a submission is first of June, and the entries are to be submitted a few weeks
later. Anyone can attend. There are no fees involved and the authors do not have to be present at
the conference.

This document describes how the ORTS system works at a high level and gives an overview of
the three game categories played in the competition. For more detailed information please see the
competition documentation files, the game definition scripts, ORTS documentation, and the ORTS
source code.

2 Game Rules

In the games players control a number of objects, dividable into units (workers, marines and tanks)
and buildings (control centers, barracks and factories). Units are small, circular, and can move and
fight. Buildings are large, rectangular, and can produce units.

2.1 Simulation Cycle

Time in the games is measured in discrete frames of equal duration. In the competition a pace of 8
frames per second is used. Once per frame the game server sends individual game views to all clients
(the player software) which then can specify at most one action per game object under their control
and send this vector of actions back to the server. All received actions are then randomly shuffled and
executed in the server.

2.2 World Representation

Internally, the terrain is represented by a rectangular array of tiles. Each tile is defined by a corner
height value and a type type (“ground” or “cliff” in the competition, where ground tiles are traversable
but cliff tiles are not). Tiles can also be split into two triangles (|\| or |/|) in which case both triangles
can have different types. The height field defined by the tile corner heights is continuous, i.e. corners
shared by neighboring tiles have identical heights.

Objects in the world have a shape and a position on the terrain. The position and size of objects
are represented by integers using a scale of 16 points per tile (“tile points”). Shapes are circles or
axis-aligned rectangles. Circles are specified by their center and radius. Rectangles are defined by
their upper left and lower right coordinates.

1

A special form of objects are boundaries. These are line segments that objects cannot pass through
which are computed from the tile-based terrain representation by considering ground-cliff tile tran-
sitions. The server uses these boundary line segments for efficient collision detection. Both tile and
boundary information is maintained in the client.

2.3 Visibility

All objects controlled by a player have a visibility range, that is the distance how far they can see.
Visibility is defined in terms of tiles to speed up its computation. Tiles that have some part within
the range from the tile that contains the object center are visible to the player. The same goes for
objects. If any part of the object is in the visibility range, the object is visible.

All map objects are represented by a unique object id (an integer). Once an object goes out of
view, and comes back into view, it gets assigned a new object id (this applies to minerals as well!).

2.4 Objects and Movement

Objects can be divided into “buildings”, which are stationary axis-aligned rectangular objects, and
“units” — smaller, circular mobile objects (with the exception of minerals). All units have a maximum
speed with which they can move. This means that within each simulation frame, the valid moves for
an object are constrained to the integer coordinates that are within a distance of less or equal to the
speed of the object.

Every move is assumed to go in a straight line from the objects current position to its destination.
Objects move simultaneously and their current locations are rounded to tile points before being sent
to the clients which can lead to temporary and small object overlap on the client side. In case of
collisions with boundaries or other objects, the moving objects are stopped at the collision location
and no damage is inflicted. It is not possible to do several moves in one tick in order to avoid obstacles,
even if the total distance of the moves is less than the maximum speed of the unit.

It is not possible to move inside another object or building, however if somehow trapped inside
one, it is possible to move out. An example are neutral sheep that in the competition games can start
inside control centres and move out.

2.5 Combat

Units can engage in combat with other units and with buildings. Marines and tanks can attack from
a distance, while workers need to stand close to the attacked object. It suffices for any part of the
attacked object to be in range [CONFIRM?]. After attacking the weapons are subjected to a cooldown
period before they can attack again. The cooldown time is specified in simulation frames. Objects
have hitpoints (HPs) indicating how much damage they can take before being destroyed. Lost HPs
cannot be regained. Units and buildings can also have armor which decreases the individual damage
by subtracting a constant. Damage values are uniformly distributed over certain intervals (see object
stats tables below). Units only die after a simulation frame has been completed when their HPs have
dropped below 1. This ensures that the order of executing attack actions is irrelevant.

2.6 Resource Gathering

For simplicity, there is only one resource called minerals. Minerals are spread out on the map in
clusters. Every mineral patch is a circular object. A worker unit can gather minerals when being
close to a mineral patch. A maximum of four workers can simultaneously harvest one mineral patch.
Resources are to be delivered to any control center, and can be dropped off at once when being close

2

to one. A worker can carry a maximum of 10 minerals at any time. Each mineral patch contains a
finite amount of minerals and the amount is decreased by 1 every 4 simulation frames when mining.

2.7 Game Overviews

In the object value tables below, the vision range unit is tiles, build times and cooldown periods are
given in simulation frames, costs are in minerals, the speed unit is tile points per simulation frame,
and object sizes are given in tile points.

2.7.1 Game 1: “Cooperative Pathfinding”

A single player starts with 20 workers and one control center randomly positioned in a random terrain
that features small plateaus and several mineral patch clusters. The world is populated with neutral
and invincible sheep that move randomly. No objects can be built and all objects and terrain is visible.
The objective is to gather as much minerals as possible in single-player mode.

Object stats table:

Object Spd Size
Worker 4 r=3
Control - 62×62
Sheep 2 r=4

Unit actions: workers can move, mine minerals, and drop-off minerals at the control center.

2.7.2 Game 2: “Small-Scale Combat”

Two players start with 5 control centers each and 10 tanks located around each control center. Ter-
rain and base locations of one player are randomized. The bases of the other player are positioned
symmetrically. There is no fog of war: the entire playing field and all objects are visible. As in game
1, neutral sheep are roaming the map. The objective of the game is to destroy as many buildings as
possible.

Object stats table:

Object HP Spd Size Rng Armor Dmg Cool
Tank 150 3 r=7 112 1 26–34 20
Control 4000 - 62×62 - 2 - -
Sheep ∞ 2 r=4 - - - -

Unit actions: tanks can move and attack simultaneously.

2.7.3 Game 3: “A Real RTS Game”

This “real” RTS game features resource gathering, a small technology-tree, and fog of war. Two
players start with 6 workers, a control center, and 600 minerals each, and a nearby mineral patch
cluster on randomized terrain. Start locations are not symmetric and again, invincible sheep are
roaming the map randomly. The objective is to wipe-out all enemy buildings.

Object stats table:

3

Object Cost HP Spd Size Build Vis Rng Armor Dmg Cool
Worker 50 60 4 r=3 56 6 4 - 4–6 8
Marine 50 80 3 r=4 64 6 64 - 5–7 8
Tank 200 150 3 r=7 128 7 112 1 26–34 20
Control 600 1700 - 62×62 304 4 - 2 - -
Barracks 400 1150 - 62×46 200 4 - 2 - -
Factory 400 1400 - 62×46 200 4 - 2 - -
Sheep - ∞ 2 r=4 - - - - - -

Technology Tree:

• Workers can build barracks only if a control center exists

• Workers can build factories only if a control center and a barracks exist

Unit actions:

• Workers, marines, and tanks can move and attack simultaneously

• Workers can also build control centers, barracks, and factories. In addition, they can also mine
minerals and drop them off at control centers

3 Using the ORTS framework

This explanation assumes a GNU/Linux environment.
First, start off by compiling the ORTS project (read the toplevel README, and install all the packages

it requires). Many compile errors are avoided by upgrading your existing software (for instance, having
the wrong version of GNU make, appears like a compile error due to bad programming).

One way of creating a client is to use the existing ORTS framework, and the code that comes
with it. It is recommended to start with the sample AI found in apps/sampleai/src/ directory. The
sample AI is compiled by % make sampleai in the ORTS directory.

In order to make your own AI, you could create a directory for your AI, for instance apps/yourai/src.
The easiest is to copy the contents of the sampleai directory. The file containing the main function
must be named yourai main.C. This way, your code is compiled by % make yourai. Any additional
libraries used can be added by editing app.mk

Inside the compute actions() you can read all changes from the last tick (done inside the if
when minfo is true). Most of the vectors contain pointers to GameObj, and useful information can be
extracted as follows:

/* X and Y coordinates of objects center */
int GameObj_X(GameObj *gob) { return *gob->sod.x; }
int GameObj_Y(GameObj *gob) { return *gob->sod.y; }

/* Upper left and lower right corner of rectangular objects, start and end of boundaries */
int GameObj_X1(GameObj *gob) { return *gob->sod.x1; }
int GameObj_Y1(GameObj *gob) { return *gob->sod.y1; }
int GameObj_X2(GameObj *gob) { return *gob->sod.x2; }
int GameObj_Y2(GameObj *gob) { return *gob->sod.y2; }

/* Player id of owner (0,1 = players, 2 = neutral) */
int GameObj_Owner(GameObj *gob) { return *gob->sod.owner; }

4

/* Radius of circular objects */
int GameObj_R(GameObj *gob) { return *gob->sod.radius; }

/* What object is it (marine? mineral? ...) */
int GameObj_Type(GameObj *gob) { return gob->code(); }

/* Unique integer identifier */
int GameObj_Id(GameObj *gob) { return ScriptObj::get_obj_id(gob); }

/* Current action */
int GameObj_Action(GameObj *gob) { return gob->cur_action.id; }

/* Hit points */
int GameObj_HP(GameObj *gob) {

const sint4 *hp = gob->get_const_int_ptr("hp");
if (hp != NULL) return *hp;
else return -1;

}

For player state information the following has turned out to be useful:

/* Which player am I? (0 or 1) */
const Game &game = state.gsm->get_game();
my_id = game.get_client_player()

/* Number of players */
nof_players = game.get_player_num();

/* My current minerals */
minerals = game.get_player_info(game.get_client_player()).global_obj("player")->get_int("minerals");

[TODO how to send all possible actions]

4 Known issues

gcc-4.0.2 runs into an internal error while compiling ORTS. Both 3.4.5 and 4.1.0 works though.

5

