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Abstract

In this paper, we propose a new algorithm for solving general
two-player turn-taking games that performs symbolic search
utilizing BDDs. It consists of two stages: First, it determines
all BFS layers using forward search and omitting duplicate
detection, next, the solving process itself operates in back-
ward direction only within these BFS layers. Thus, all BDDs
are partitioned according to the layers the states reside in.
We provide experimental results for selected games and com-
pare to a previous approach. This comparison shows that in
most cases the new algorithm outperforms the existing one
and thus we can solve games that could not be solved using a
general approach before.

Introduction
In recent years, general game playing has received an in-
creasing amount of attention. This might be due the annual
general game playing competition (Genesereth, Love, and
Pell 2005) that is held at AAAI or IJCAI since 2005. In gen-
eral game playing the agents are provided a description of a
game according to certain rules and need to play it. In case
of multi-player games, the agents often play against each
other, while in case of single-player games one agent tries
to find a way to reach a terminal state where it can achieve
the best reward possible. The authors of the agents do not
know, which games will be played, so no domain specific
knowledge can be inserted.

General single-player games match classical action plan-
ning problems (Fikes and Nilsson 1971) as for both the
player (or the planner) intends to find a sequence of moves
(or actions) that transforms the initial state to one of the ter-
minal states. While nowadays in planning action costs as
well as rewards for achieving soft goals can be combined,
in general game playing the players only get rewards for
achieving goals: for each possible terminal state the player
is awarded points ranging from 0 (worst) to 100 (best).

General game playing also allows to express multi-player
games. Problems from the non-deterministic planning ex-
tension of classical planning can be translated to a two-
player game (with the planner being the player and the en-
vironment that controls the non-determinism its opponent)
(Jensen, Veloso, and Bowling 2001; Bercher and Mattmüller
2008). General game playing supports any number of par-
ticipants, thus it still is a generalization of action planning.

In this paper, we are interested in two-player turn-taking
games, i. e., in games, where only one player may decide,
which move to take in each state. The other one can only
perform a noop, which does not change anything about the
current game state. We also can handle games that are not
strictly alternating, so that one player might be active in sev-
eral consecutive states.

Our goal is to strongly solve the games, i. e., we want to
find the outcome for each player in any reachable state in
case of optimal play. Using domain dependent solvers, this
has often been done in the past. One of the last prominent re-
sults was by Schaeffer et al. (2007), who were able to solve
American Checkers after more than ten years and proved
that the optimal outcome is a draw. Of course, without do-
main specific knowledge, we cannot expect to come up with
solutions for such complex games in general game playing.

In explicit representation, many general games are too
complex to fit into RAM or even on a hard disk. So, to solve
them we perform symbolic search that utilizes binary deci-
sion diagrams (BDDs) (Bryant 1986) as they decrease the
memory consumption, if a good variable ordering is found.

The paper is structured as follows. First, we give brief
introductions to general game playing and symbolic search.
Next, we propose our new algorithm to solve general two-
player turn-taking games. Then, we show some experimen-
tal results where we also compare to an existing algorithm,
and, finally, we present a short discussion, draw some con-
clusions and point out possible future research avenues.

General Game Playing
General game playing is concerned with playing games that
need to be finite, discrete, and deterministic and must con-
tain full information for all the players. It is possible to
model single- as well as multi-player games, which by de-
fault are games with simultaneous moves by all players.
They can be made turn-taking by adding a predicate that de-
notes whose turn it is to choose the next move and by allow-
ing the other players to perform only noops, i. e., moves that
do not change the game’s current state. To describe these
games, the logic-based game description language GDL
(Love, Hinrichs, and Genesereth 2006) is used.

A general game is a tuple G = 〈S, p,M, I, T ,R〉 with
S being the set of reachable states, p the number of players,
M ⊆ S × S the set of possible moves for each state, I ∈



(role xplayer) (role oplayer) ; names of the players

(init (cell 1 1 b)) ... (init (cell 3 3 b)) ; all cells empty
(init (control xplayer)) ; xplayer is active

(<= (next (cell ?m ?n x)) (<= (next (cell ?m ?n o)) ; effect of marking a cell
(does xplayer (mark ?m ?n))) (does oplayer (mark ?m ?n)))

(<= (next (cell ?m ?n ?w)) ; part of the frame (marked cells remain marked)
(true (cell ?m ?n ?w)) (distinct ?w b))

(<= (next (cell ?m ?n b)) ; part of the frame (untouched empty cells remain empty)
(does ?w (mark ?j ?k)) (true (cell ?m ?n b))
(or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control xplayer)) (<= (next (control oplayer)); change of the active player
(true (control oplayer))) (true (control xplayer)))

(<= (legal ?w (mark ?x ?y)) ; possible move (empty cell can be marked)
(true (cell ?x ?y b)) (true (control ?w)))

(<= (legal xplayer noop) (<= (legal oplayer noop) ; if opponent active, no move
(true (control oplayer))) (true (control xplayer)))

; axioms (utility functions) for reducing the complexity of the description
(<= (row ?m ?x)

(true (cell ?m 1 ?x)) (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x)

(true (cell 1 ?n ?x)) (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x)

(true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x)

(true (cell 1 3 ?x)) (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x)) (<= (line ?x) (column ?m ?x)) (<= (line ?x) (diagonal ?x))

(<= (goal xplayer 100) (line x)) ; rewards for xplayer (oplayer analogously )
(<= (goal xplayer 50) (not (line x)) (not (line o)))
(<= (goal xplayer 0) (line o))

; terminal states
(<= terminal (line x)) (<= terminal (line o)) (<= terminal (not (true(cell ?m ?n b))))

Figure 1: GDL description of the game Tic-Tac-Toe.

S the initial state, T ⊆ S the set of terminal states, and
R : T 7→ {0, . . . , 100}p the reward for each player in all
terminal states. General games are defined implicitly, i. e.,
only the initial state is provided and we can calculate the
set of reachable states S using the applicable moves. For
turn-taking games there are subsets Si ⊆ S of states where
player i ∈ {1, . . . , p} is active as well as subsetsMi ⊆ M
denoting those moves, where player i ∈ {1, . . . , p} is the
only one to choose a move other than a noop.

Figure 1 shows the description of the game Tic-Tac-Toe.
The players are denoted by the role keyword; the initial
state I by the init keyword, the terminal state T by the
terminal keyword and the rewards R by the goal key-
word. The movesM are splitted into two parts, the legal
formulas describing the preconditions necessary for a player
to perform the corresponding moves, and the next formu-
las, which determine the successor state.

Playing a general game always starts at its initial state.
All players choose one applicable move in the current state.
These moves are combined and using the rules for this com-
bined move, a successor state is generated. This goes on,
until a terminal state is reached, where the game ends and

the players receive their rewards according toR .
This paper does not address playing general games but

solving them strongly, i. e., we want to find the outcome of
each reachable state in case of optimal play of both play-
ers. With this information, we can design a perfect player,
or we can check played games for bad moves, which might
give insight to weaknesses of certain agents. For some
games we are not able to find a solution in reasonable time.
However, we might use what was calculated so far as an
endgame database for a player, e. g., one that utilizes UCT
search (Kocsis and Szepesvári 2006), which is used in many
successful players (e. g., in CADIAPLAYER (Finnsson and
Björnsson 2008), the world champion of 2007 and 2008, as
well as in Méhat’s ARY, the current world champion).

Unfortunately, except for our precursing work, we are not
aware of any other research in this area. Thus, in this pa-
per we will compare to the better of our previous approaches
(Edelkamp and Kissmann 2008b). Some general game play-
ers, e. g., Schiffel and Thielscher’s FLUXPLAYER (2007),
might also be able to solve simple games, but as they are
designed for playing, it would be unfair to compare to these
when solving is concerned.
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Figure 2: BDDs for the three utility functions of Tic-Tac-Toe used in the terminal states. Each node corresponds to a predicate
(denoted on the left); solid edges mean that predicate is true, dashed edges mean it is false. The bottom-most node represents
the 1-sink, i. e., all paths leading from the top-most node to this sink represent satisfied assignments. The 0-sink has been
omitted for better readability.

Symbolic Search
When we speak of symbolic search we mean state space
search using binary decision diagrams (BDDs) (Bryant
1986). With these, we can perform a set-based search, i. e.,
we do not expand single states but sets of states.

BDDs typically have a fixed variable ordering and are re-
duced using two rules so that only a minimal number of in-
ternal BDD nodes is needed to represent a given formula /
set of states. The resulting representation also is unique and
no duplicates are present in any BDD.

BDDs enable us to completely search some state spaces
that would not be possible in explicit search. E. g., in the
game Connect Four more than 4.5 × 1012 states are reach-
able. We use 85 bits to encode each state (two bits for each
cell and an additional one to denote the active player), so
that in case of explicit search we would need about 43.5 TB
to store all of them, while with BDDs 16 GB are sufficient.
If we store only the current breadth-first search (BFS) layer
and flush the previous one to a hard disk, the largest one even
fits into 12 GB.

For symbolic search, we need BDDs to represent the ini-
tial state I, the terminal states T , the formula describing
when the players get which reward R, as well as the moves
M. Unfortunately, most games contain variables, so that we
do not know the exact size of a state, but this information is
mandatory for BDDs. Thus, we instantiate the games (Kiss-
mann and Edelkamp 2009) and come up with a variable-free
format, similar to what most successful action planners in
recent years do before the actual planning starts (Helmert
2008). As all formulas are Boolean, generating BDDs of

these is straight-forward. Figure 2 shows BDDs for some
of the utility functions needed to evaluate the termination of
Tic-Tac-Toe.

To decrease the number of BDD variables, we try to
find groups of mutually exclusive predicates. For this we
perform a simulation-based approach similar to Kuhlmann,
Dresner, and Stone (2006) and Schiffel and Thielscher
(2007) who identify the input and output parameters of each
predicate. Often, input parameters denote the positions on
a game board while the output parameters specify its con-
tent. Predicates sharing the same name and the same input
but different output parameters can never be true at the same
time and thus are mutually exclusive. If we find a group of
n mutually exclusive predicates, we need only dlog ne BDD
variables to encode these.

After instantiation, we know the precise number of moves
of all the players and can also generate the possible combi-
nations of moves of all players, which results in M. Each
move m ∈M can be represented by a BDD transm, so that
the complete transition relation trans is the disjunction of
all these: trans :=

∨
m∈M transm.

To perform symbolic search, we need two sets of vari-
ables: one set, S, for the current states, the other one, S′, for
the successor states. To calculate the successors of a state
set from , in symbolic search we use the image operator:

image (from) := ∃S. (trans (S, S′) ∧ from (S)) .
As these successors are represented using only S′, we need
to swap them back to S.1 This way, if we start at the initial

1We omit the explicit mention of this in the pseudo-codes to en-



state, each call of the image results in an entire BFS layer.
So, BFS is simply the iteration of the image, until a fix-point
is reached.

As the transition relation trans is the disjunction of a
number of moves, it is equivalent to generate the successors
using one move after the other and afterwards calculate the
disjunction of all these states:

image (from) :=
∨

m∈M
∃S. (transm (S, S′) ∧ from (S)) .

This way, we do not need to calculate a monolithic transition
relation, which takes time and often results in a BDD too
large to fit into RAM.

The inverse operation of the image is also possible. The
pre-image results in a BDD representing all the states that
are predecessors of the given set of states from:

pre-image (from) := ∃S′. (trans (S, S′) ∧ from (S′)) .
With this, we can perform a BFS in backward direction as
well.

Solving General Two-Player Turn-Taking
Games

In this section we show an algorithm to solve general two-
player turn-taking games symbolically with only images and
pre-images, whereas in our existing approach (Edelkamp
and Kissmann 2008b) we also use strong pre-images.

The existing approach works by using a 101 × 101 ma-
trix M of BDDs. The BDD at M [i, j] represents the states
where player 1 can achieve a reward of i and player 2 a re-
ward of j, i, j ∈ {0, . . . , 100}. Initially, all terminal states
are inserted in the corresponding buckets. Starting at these,
the strong pre-image is used to calculate those preceding
states whose successors are all within the matrix and thus
already solved. These predecessors are then sorted into the
matrix by using the pre-image from each of the buckets in a
certain order.

The new algorithm works in two stages. First, we per-
form a symbolic BFS in forward direction (see Algorithm
1). Starting at the initial state, we calculate the successors
of the current BFS layer by using the image operator. In
contrast to the existing approach where a BFS was used to
calculate the set of reachable states, here we retain only the
BFS layers to partition the BDDs according to the layers the
states reside in, hoping that the BDDs will keep smaller.

For the game Tic-Tac-Toe we start with the empty board.
After one iteration through the loop, curr contains all states
with one x being placed on the board; after the next iteration
all states with one x and one o being placed and so on.

Unfortunately, for the second step to work correctly we
need to omit duplicate detection (except for the one that im-
plicitly comes with using BDDs). The search will terminate
nonetheless, as the games in general game playing are finite
by definition, but it might be possible to expand states more
than once, if they appear on different paths in different lay-
ers.
hance readability. Whenever we write of an image (or pre-image),
we assume such a swapping to be performed immediately after the
image (or pre-image) itself.

Algorithm 1: Calculate Reachable States (reach).
Input: General game description G.
Output: Maximal reached BFS-layer.
curr ← I;1
l← 0;2
while curr 6= ⊥ do3

store curr as layer l on disk;4
prev ← curr ∧ ¬T ;5
curr ← image (prev);6
l← l + 1;7

end while8
return l;9

A question that immediately arises is, when we will have
to deal with such duplicate states. To answer this, we need
to define a progress measure.
Definition 1 ((Incremental) Progress Measure). Let G be a
general two-player turn-taking game and ψ be a mapping
from states to numbers, i. e., ψ : S 7→ N.

If G is not necessarily alternating, ψ is a progress measure
if ψ (s) < ψ (s′) for all (s, s′) ∈ M. It is an incremental
progress measure, if ψ (s) = ψ (s′)− 1.

Otherwise, ψ also is a progress measure, if ψ (s) =
ψ (s′) < ψ (s′′) for all (s, s′) ∈ M1 and (s′, s′′) ∈ M2.
It is an incremental progress measure, if ψ (s) = ψ (s′) =
ψ (s′′)− 1.
Theorem 1 (Duplicate Avoidance). Whenever there is an
incremental progress measure ψ for a general game G, no
duplicate arises across the layers found by Algorithm 1.

Proof. We need to show this for the two cases:
If G is not necessarily alternating, we claim that all states

within one layer have the same progress measurement but a
different one from any state within another layer, which im-
plies the theorem. This can be shown by induction: The first
layer consists only of the initial state. Let succ (s) be the set
of successor states of s, i. e., succ (s) = {s′| (s, s′) ∈M}.
According to the induction hypothesis, all states in layer l
have the same progress measurement. For all states s in
layer l and successors s′ ∈ succ (s), ψ (s′) = ψ (s) + 1.
All successors s′ ∈ succ (s) are inserted into layer l + 1,
so that all states within layer l + 1 have the same progress
measurement. It is also greater than that of any of the states
in previous layers, as it always increases between layers, so
that it differs from the progress measurement of any state
within another layer.

Otherwise, the states within any succeeding layers dif-
fer, as the predicate denoting the active player has changed.
Thus, it remains to show that for all s, s′ ∈ S , s1 ∈ S1

and s2 ∈ S2, ψ (s) = ψ (s′) if s and s′ reside in the same
layer and ψ (s1) = ψ (s2) if s1 resides in layer l and s2
resides in layer l + 1. For all other cases, we claim that
the progress measurement of any two states does not match,
which proves the theorem. The proof is very similar: The
first layer consists only of the initial state. All successors of
this state reside in the next layer and their progress mea-
sure equals, according to the definition of ψ. Let l be a



Algorithm 2: Solving General Two-Player Games
Input: General game description G.
l← reach (G);1
while l ≥ 0 do2

curr ← load BFS layer l from disk;3
currTerms ← curr ∧ T ;4
curr ← curr ∧ ¬currTerms;5
for each i, j ∈ {0, . . . , 100} do6

terms l,i,j ← currTerms ∧Ri,j ;7
store terms l,i,j on disk;8
currTerms ← currTerms ∧ ¬terms l,i,j ;9

end for10
for each i, j ∈ {0, . . . , 100} do in specific order11

succ1 ← load terms l+1,i,j from disk;12
succ2 ← load rewards l+1,i,j from disk;13
succ ← succ1 ∨ succ2;14
rewards l,i,j ← curr ∧ pre-image (succ);15
store rewards l,i,j on disk;16
curr ← curr ∧ ¬rewards l,i,j ;17

end for18
l← l − 1;19

end while20

layer that contains only states from S1. According to the
induction hypothesis, all states in this layer have the same
progress measurement. For all states s in layer l and suc-
cessors s′ ∈ succ (s), ψ (s) = ψ (s′). All successors s′
are inserted into layer l + 1. For all states s′ in layer l + 1
and s′′ ∈ succ (s′), ψ (s′′) = ψ (s′) + 1. All successors
s′′ ∈ succ (s′) are inserted in layer l + 2, so that all states
within layer l + 2 have the same progress measurement. It
is also greater than that of any of the states in previous lay-
ers, as it never decreases, so that it differs from the progress
measurement of any state within different layers.

Note that in games that do not incorporate an incremental
progress measure we need to expand each state at most dmax

times, with dmax being the maximal distance from the initial
state to one of the terminal states. This is due the fact that in
such a case each state might reside in every layer.

Once all BFS layers are calculated we can start the second
stage, the actual solving process, for which we perform a
symbolic retrograde analysis (see Algorithm 2). We start at
the last generated BFS layer l and move upwards layer by
layer until we reach the initial state (l = 0).

For each layer we perform two solving steps. First, we
calculate all the terminal states that are contained in this
layer (line 4). For these we then determine the rewards
that the players get and store them in the corresponding files
(lines 6 to 10). As each player achieves exactly one reward
for each possible terminal state, no specific order is needed
in this step.

In the second step, we solve the non-terminal states. For
this, we need to proceed through all possible reward combi-
nations in a specific order (line 11). This order corresponds
to an opponent model. The two most reasonable assump-

· · ·

· · ·

···

···

10099980

100

2

1

0

own rewards

op
p
on

en
t’

s
re

w
ar

d
s

· · ·

· · ·

···

···

···

(a) Maximizing own reward.

· · ·

· · ·
···

···
10099980

100

2

1

0

own rewards

op
p
on

en
t’

s
re

w
ar

d
s

· · ·

· · ·

···

···

···

(b) Maximizing difference.

Figure 3: Order to traverse the reward combinations.

tions are that an agent either wants to maximize its own
reward or to maximize the difference to the opponent’s re-
ward. The order, in which these reward combinations are
processed, is indicated in Figure 3. For the experiments we
assumed both players to be interested in maximizing the dif-
ference to the opponent’s reward.

The solving of the non-terminal states is depicted in lines
11 to 18. We load the BDDs representing the states that are
terminal states or solved non-terminal states in the succes-
sor layer for which the players can surely achieve the corre-
sponding rewards. From the disjunction of these we calcu-
late their predecessors (using the pre-image). These states
achieve the same rewards (in case of optimal play according
to the opponent model) and thus can be stored on disk and
must be removed from the unsolved states to prevent them
from being assigned other rewards as well.

For the game Tic-Tac-Toe we start in layer 9, where all
cells are filled. All these states are terminal states, thus we
can solve them immediately by checking the rewards, so that
we partition this layer into two parts: Those states, where
xplayer gets 100 points and oplayer 0 (the last move
established a line of xs), and those with 50 points for each
player (no line for any player).

In the next iteration, we reach those states where four xs
and four os reside on the board and the xplayer has con-
trol. First, we remove the states containing a line for one
of the players (which can be only a line of os, as it was the
oplayer’s turn to perform the last move), as these are the
terminal states, and solve them according to their rewards
(for all these, the xplayer will get 0 points, while the
oplayer gets 100.

Next, we check how to solve the remaining states. For it
we start by loading the terminal states from layer 9 where the
xplayer achieved 100 points, calculate their predecessors
and verify, if any of these predecessors is present in the set
of the remaining states. If that is the case, we can remove
them and store them in a file that specifies that the xplayer
achieves 100 points and the oplayer 0 points for these
states as well. In the Tic-Tac-Toe example, these are all the
states where the placement of another x finishes a line. The
remaining states of this layer result in a draw.

Theorem 2 (Correctness). The presented algorithm is cor-
rect, i. e., it determines the game theoretical value wrt. the
chosen opponent model.



Proof. The correctness of the forward search comes imme-
diately from the use of a BFS. We generate all reachable
states, no matter if we remove duplicates or not. And as
the games are finite by definition, we will find only finitely
many layers.

For the second stage, we need to show that all states are
correctly solved according to the opponent model. We show
this using induction. We start at the states in the final layer,
which we immediately can solve according to their corre-
sponding rewards. When tracing back towards the initial
state, the terminal states again are immediately solvable by
their rewards. The most important observation is that due to
the construction, non-terminal states have successors only
within the next layer. All states within this layer are already
solved. If we check if a state has a successor achieving a cer-
tain reward and look at the rewards in the order according to
the opponent model, we can be certain that all states within
the current layer can be solved correctly as well.

Note that if we removed the duplicate states within differ-
ent layers, we would reach states whose successors are not
in the next layer but in some layer closer to the initial state
and thus not yet solved, so we could not correctly solve such
a state when reaching it for the first time.

Some games are not strictly alternating, i. e., a player
might perform two or more consecutive moves, so that both
players can be active in different states within the same BFS
layer. To handle this, we split the second step of Algorithm
2 (lines 11 to 18) in two and perform this step once for the
states where the first player was the active one and once for
the second player. Note that both players go through the
possible reward combinations in different orders, thus it is
not possible to combine these two steps. Instead, we have
to solve the states once for one player, store the result on
disk, solve the remaining states for the other player, load the
previous results, calculate the disjunction, and store the total
result on disk. The order in which the two players are han-
dled is irrelevant, as there is no state where both players are
active.

Experimental Results
We performed experiments using several games from the
website of the German general game playing server2, which
we instantiated automatically3. For Clobber (Albert et al.
2005) we specified rewards dependent on the number of
pieces left on the board, so that we came up with general
rewards, while the other games are all zero-sum games.

We implemented the presented algorithm in Java using
JavaBDD4, which provides a native interface to the CUDD
package5, a BDD library written in C++.

2http://euklid.inf.tu-dresden.de:8180/
ggpserver/public/show_games.jsp

3For Connect Four we adapted the existing GDL description, as
the instantiator’s output was too large for the solver. For Clobber
no GDL description exists, so that we created one from scratch.

4http://javabdd.sourceforge.net
5http://vlsi.colorado.edu/˜fabio/CUDD

Table 1: Results of Solving Two-Player Turn-Taking Games.
All times in m:ss or h:mm:ss.

Time optimal
Game (new) (existing) outcome

Catch a Mouse 0:24 1:44 100/0
Chomp 0:10 0:02 100/0

Clobber 3× 4 0:01 0:01 0/40
Clobber 4× 5 10:43 1:18:51 30/0

Connect 4 (5× 6) 31:37 2:14:52 50/50
Cubi Cup 5 8:21:09 o.o.m. 100/0

Nim 0:10 0:01 100/0
Number Tic-Tac-Toe 1:41 4:54 100/0

Sheep and Wolf 0:23 0:57 0/100
Sum 15 0:01 0:00 50/50

Tic-Tac-Toe 0:01 0:00 50/50

General Observations
Our system contains a CPU with 2.67 GHz and 12 GB RAM.
The runtime results for our new approach as well as the ex-
isting one are compared in Table 1. From this we can see
that for the small games such as Tic-Tac-Toe or Sum 15 the
new approach does not lose much, although all results are
stored on the hard disk. Omitting this in the cases where
all BDDs easily fit into RAM, however, would speed up the
search.

For two slightly larger games, namely Chomp and Nim,
the new approach is slower than the old one. This is due to
the fact that for these games there is no incremental progress
measure, so that we generate duplicate states in different lay-
ers and expand them several times. This results in more BFS
layers (56 layers with 162,591 states opposed to 8 layers
with 25,734 states for Chomp and 63 layers with 1,866,488
states opposed to 5 layers with 129,776 states for Nim),
which in turn results in more effort during the solving stage.

For the larger games the new algorithm clearly outper-
forms the existing one. In all these games, an incremen-
tal progress measure can be found explicitly (e. g., a step
counter in Catch a Mouse) or implicitly (e. g., the number of
stones removed from the board in Clobber). Sheep and Wolf
is the only game we solved, for which the second definition
of the incremental progress measure is needed: Whenever
the wolf moves, the progress does not increase, while the
sheep can only move forwards. Thus, the sum of the rows of
the sheep is a possible incremental progress measure. Due
to the partitioning according to the layers, the BDDs stay
smaller and the image thus can be calculated faster. We
also save time as we do not need to calculate the strong pre-
images.

As a result, we see that the new approach outperforms
the existing one for games that are not too small and that
incorporate an incremental progress measure.

Cubi Cup
In the game Cubi Cup6, cubes are stacked with a corner up
on top of each other on a three dimensional board. A new

6For a short description of the game by its authors see http:
//english.cubiteam.com.



cube may only be placed in positions where the three touch-
ing cubes on the bottom are already placed. If one player
creates a state where these three neighbours have the same
color, this is called a Cubi Cup. In this case, the next player
has to place the cube in this position and remains active for
another turn. The player to place the last cube wins – unless
the three touching cubes produce a Cubi Cup of the oppo-
nent’s color; in this case the game ends in a draw.

Due to the rule with one player needing to perform two
moves in a row, it is clear that in one BFS layer both players
might be active (in different states), so that we needed to use
the proposed extension of the algorithm.

We are able to solve an instance of Cubi Cup with an edge
length of 5 cubes.7 Using the existing approach we were not
able to solve this instance, as it needed too much memory:
After nearly four hours of computation less than 25% of all
states were solved but the program started swapping.

Connect Four
We also performed experiments for the game Connect Four.
This was originally (weakly) solved in 1988 independently
by James D. Allen and Victor Allis (Allis 1988) for a 7 × 6
board (7 columns and 6 rows). For this instance we were
able to perform the complete reachability analyis achieving
a total of 4,531,985,219,092 reachable states, but unfortu-
nately the BDDs get too large during the solving steps.

We noticed that the sizes for the BDDs representing the
terminal states as well as those representing the rewards are
very large. This is due to the fact that the two rules for the
players having achieved a line are largely independent.

In the terminal state description we have a disjunction
of the case that player 1 has achieved a line, player 2 has
achieved a line, or neither has and the board is filled. So to
find the terminal states of a layer, we first calculated the con-
junctions with each of the BDDs representing only one part
of the disjunction and afterwards calculated the disjunction
of these. Similarly we could partition the reward BDDs.

In both cases, the intermediate BDDs were a lot smaller
and the reachability calculation was sped up by a factor of
about 4. Thus, at least for Connect Four not only partitioning
the BDDs according to the BFS layers but also according
to parts of the terminal and reward descriptions kept them
smaller and thus calculation times lower. It remains yet to
be seen if it is possible to automatically find such partitions
of the BDDs for any given game.

With the machine described before, we were only able
to completely solve Connect Four up to a size of 5 × 6;
the 6 × 6 version needed a bit more than the available
12 GB of main memory. On a machine with 64 GB RAM
and a 2.6 GHz CPU we were able to solve this instance as
well. The new approach took 22:38:09 to completely solve
all 69,173,028,785 reachable states, while the existing ap-
proach was aborted after about four days. We also tried to

7Unfortunately, we had to stop the solving several times and
restart with the last not completely solved layer, as somehow the
implementation for loading BDDs using JavaBDD and CUDD
seems to contain a memory leak, which so far we could not lo-
cate. No such leak exists in the existing approach, as it does not
load or store any BDDs.

solve the original instance of 7× 6, but for that even 64 GB
of RAM were not sufficient.

Discussion
Unfortunately, BDDs are rather unpredictable. Their size
greatly depends on the encoding of the states. Given a good
variable ordering, they might save an exponential number
of variables. Also, it is hard to predict the efficiency of a
BDD. On the one hand, BDDs storing more states might be
smaller than those storing fewer states. On the other hand,
their efficiency is highly domain dependent: For some do-
mains, such as Sokoban, BDDs are great, while for others,
such as permutation games like the Sliding Tiles Puzzle they
do not help much, no matter what variable ordering was cho-
sen (Ball and Holte 2008; Edelkamp and Kissmann 2008a).

An interesting side-remark might be that this approach
can in principle also be used for any turn-taking game. All
we need is the way to pass through the p-dimensional ma-
trix of (possible) reward combinations, which gives us an
opponent model. Unfortunately, this is not found trivially.
Especially, in general game playing the agent gets no in-
formation as to which other agents it plays against, so that
learning such a model seems impossible so far. If we assume
that we can get an opponent model, we are able to solve
all turn-taking games under the assumption that the model
holds. The result is then similar to that of the Maxn algo-
rithm by Luckhardt and Irani (1986), and thus has the same
shortcomings – namely, if one of the players does not play
according to the model, the solution might be misleading.

Conclusions and Future Work
We presented a new algorithm for solving general two-
player turn-taking games making use of the information of
the forward BFS. This brings the advantage that we do not
have to use any strong pre-images, as all the successors of
a given layer are solved for sure once this layer is reached.
We have shown that this algorithm can greatly outperform
existing approaches.

One shortcoming is that the BFS is mandatory, while this
was not the case for the existing algorithms. Furthermore, it
does not perform any duplicate detection, so that in some
games more BFS layers are generated and states are ex-
panded multiple times.

One of the advantages is that we can stop the solving at
any time and restart with the last partially solved layer later
on. Also, we can use the information we find on the hard
disk as an endgame database, e. g., in combination with a
general game player that uses UCT (Kocsis and Szepesvári
2006) for finding good moves.

A future research avenue is to find a way to further par-
tition the BDDs in a way that improves the approach. So
far, we partitioned the BDDs only according to the BFS lay-
ers and in most cases this results in a great improvement.
For games incorporating a step counter, we partitioned the
BDDs according to the mutually exclusive variables repre-
senting it. Such an approach might also work for other mu-
tually exclusive variables, but the question is, how to find



the best ones automatically. Also, it is unclear, if such a par-
titioning generally helps to keep the BDDs smaller, so that
it is important to find a good partitioning that will decrease
the BDD sizes and speed up the pre-image calculations.
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