
Real-Time Planning for Video-Games:
A Purpose for PDDL

Olivier Bartheye and Éric Jacopin
MACCLIA

CREC Saint-Cyr
Écoles de Coëtquidan
F-56381 GUER Cedex

{olivier.bartheye,eric.jacopin}@st-cyr.terre-net.defense.gouv.fr

Abstract

We intend this paper as a position paper on the missing fea-
tures of PDDL as a domain definition language for real-
time planning in the video-gaming area. After a very brief
overview of PDDL, we discuss its quality, its adaptation to
real-time issues and to the needs of the video-games domain.
We present a few further issues from our experience develop-
ing real-time pddl-based planning for fast pace video-games.

Introduction
Could a newly developed planner today not accept some
subset of the Planning Domain Description Language
(PDDL)? The answer certainly is an obvious “No” if this
planner aims at the International Planning Competition for
which PDDL is mandatory since 1998 (AIPS 98 Planning
Competition Committee 1998); and if not, why would this
planner take the time to be PDDL-compliant? Because
reusing PDDL, its features and semantics (Gerevini, Long,
and Haslum 2009) and its planners, could just save you time
and money.

Then what would you use PDDL for? Well, as the
Planning Domain Description Language, you would expect
PDDL to provide key features in the process of solving a
planning problem. But what about video-games and, more-
over, fast pace arcade games? Well, if you would love to
have a planner for your next game, then PDDL might just be
the choice for you. This position paper enumerates several
features not available in PDDL which we believe are nev-
ertheless useful for your Real-Time AI Planning needs for
video-gaming.

If Planning is about plan construction, then there are fea-
tures PDDL does not provide. In PDDL there little place for
Hierarchical Task Networks, no way to declare procedural
attachments to actions, no mean to express heuristics on the
selection on goals or preconditions and the solution space is
invisible: how many solutions do you want for your prob-
lem? The first one you find? Five? Would it be useful to
keep on searching after one solution has been found?

However, Planning for fast pace video-games is not just
about plan construction. For instance, Planning also has to
do with plan execution, handling execution exceptions and
failures of various kinds: plan construction failure (no plan
exists for the problem, a plan exists but shall be available too

late for execution, a plan is found but only part of it is valid
for execution, . . . ), action execution failures (preconditions
totally or partially unfulfilled, impossibility to detect action
execution success, no replacement action is available, . . .)
and plan execution recovery (once an action failure has been
successfully handled, how would you get back to the original
plan). Planning for video-gaming also has to do with plan-
ning domain maintenance (various development versions for
debugging and performance tuning) incremental loading of
domain data (bonus or power-up actions should be avail-
able only when the corresponding game actions are avail-
able) and patches (new characters, new behaviours and new
levels certainly imply new PDDL domains files).

We obviously admit that some parts of the previous enu-
merations might not be of direct concern for a Planning Do-
main Description Language; however, we strongly believe
that PDDL should include well-defined features toeasilyex-
tend the language to various domains and in particular to
video-games.

The rest of this position paper is organized as follows.
After a brief overview of the language, we discuss the eval-
uation of PDDL through McCluskey’s criteria. We then give
details on the meanings of real-time and report some of the
needs of the game developers community through (Nareyek
2005). We further enumerate several features we believe are
useful to apply PDDL to an industrial domain.

PDDL
We here give a very brief overview of PDDL while taking
the time to point some limitations of PDDL. We thus invite
the non-familiar-with-PDDL reader to refer to the official
PDDL literature (AIPS 98 Planning Competition Committee
1998; Gerevini and Long 2005; Gerevini, Long, and Haslum
2009) which served as our PDDL reference for the details
of this paper; we suggest as well the familiar-with-PDDL
reader to skip the next subsection to the second subsection
where presents a framework (McCluskey 2003) to evaluate
various purposes of PDDL.

Overview
The Planning Domain Description Language (PDDL) is a
planning problem specification language which has been
widely available since the first International Planning Com-
petition (AIPS 98 Planning Competition Committee 1998).



A planning problem is made of a set of actions, an initial
state and a final state. The plan construction activity looks
for organizing actions so that the initial state is transformed
into the final state. As actions manipulate states, both ac-
tions and states are made of the same basic element: logical
formulas which describe (interesting) properties of your do-
main.

For instance, in PDDL you could write

(coordinates oz-wizard 12-i 10-j)

to describe that the bidimensionalcoordinates of the
oz-wizard are12-i and10-j. Numbers can only ap-
pear as parameters of the four usual operations (+, *, / and
-) and of the usual binary comparison operators (>,<, =, >=
and<=); for instance, in PDDL you could write

(>= (size oz-wizard-team) 4)

to describe that, for some reason, there must be at least4
members of theoz-wizard-team. More complex pro-
perties can be expressed with quantifiers:

(forall (?w wizard)
(and (member ?w oz-wizard-team)

(>= (size oz-wizard-team) 4)
(coordinates front-door 12-i 10-j)
(coordinates ?w 12-i 10-j)))

could describe that at least4 members of the
oz-wizard-team must be at thefront-door of
some building for some reason; note that a variable is
prefixed with a? and can be typed to restrict the interpre-
tation of the formula: for instance, the above (universally
quantified) formula states onlywizards must be at the
front-door.

As PDDL descends from the LISP programming lan-
guage (Winston and Horn 1989), it makes heavy use of
parentheses; although it is expected that video-game devel-
opers will hardly be familiar with LISP, we argue that PDDL
is not a programming language but a description language
and that its LISP roots can safely be forgotten while keep-
ing in mind that parentheses go by pairs: for each opening(
there must be a closing).

A state is a set of logical formulas and actions are made
of two states: the first denotes the preconditions which must
be achieved when the action is executed and the second, the
effects, denotes the properties of your domain which are re-
alized once the execution of the action is terminated. As an
example, here is a PDDL action which trivially describes the
bidimensionalmovement of a character in a game;
(:action move

:parameters
(?c - character
?x1 - coord-i ?y1 - coord-j
?x2 - coord-i ?y2 - coord-j)

:precondition
(and (coordinates ?c ?x1 ?y1))

:effect
(and (coordinates ?c ?x2 ?y2)
(not (coordinates ?c ?x1 ?y1))))

where keywords prefixed with a: (e.g. :effect) intro-
duce a specific section of an action. Consequently,

(move oz-wizard 1-i 1-j 12-i 10-j)

describes the action of moving theoz-wizard
from one location to another; this expression, called
<action-term> in the very first version of PDDL (AIPS
98 Planning Competition Committee 1998), has neither
been modified nor enriched in the subsequent versions of
PDDL.

PDDL evolved to version 3 (Gerevini and Long 2005),
with new notable expressive power at each step such as du-
rative actions. As it is not our objective to detail the expres-
siveness of PDDL, we refer the reader to the literature for the
complete story (Gerevini, Long, and Haslum 2009) while
noting that the semantics of PDDL, i.e. how a language fea-
ture must be interpreted, are not always trivial (e.g. the use
of Büchi automata to express the semantics of state trajec-
tory constraints (Gerevini, Long, and Haslum 2009, pages
13–16)).

Quality
One of the key feature of PDDL is to provide a family of
languages; (Gerevini and Long 2005, page 7) enumerates 16
distinct values for the keyword:requirements. Each
requirement defines a subset of PDDL with various fea-
tures; for instance, the:strips requirement is the default
requirement when no requirement is specified while some
requirements, such as:quantified-preconditions
or :adl implies others. These subsets allows for separate
tracks in the International Planning Competitions in orderto
compare planners with similar features because not all plan-
ners are expected to support all the features of PDDL. But
although PDDL started with the purpose of comparing AI
Planners and still serves this purpose, its languages-within-
a-language feature rapidly pushed PDDL to the area of mod-
elling languages.

As argued by McCluskey (McCluskey 2003) a language is
not only a matter of features but also a matter of quality, spe-
cially when the evolution of the language blurred its initial
purpose. Thus, (McCluskey 2003) presents several criteria
to evaluate the quality of PDDL version 1.2 (AIPS 98 Plan-
ning Competition Committee 1998) for various purposes:
1. Simple, clear, precise syntax and well-researched seman-

tics,

2. Adequate expressiveness,

3. Clear mechanisms for reasoning,

4. Maintenance (also referred to as hidden dependencies or
locality of changes),

5. Closeness of mapping/customisation,

6. Error-proneness,

7. Reusability,

8. Guidelines and tool support,

9. Structure,

10. Support for operational aspect.

Let us give a short explanation for the following four cri-
teria: Closeness questions the ease of customization of
language so that “it can fit well in applications”;Error-
proneness relates to the language design decisions in or-
der to discourage errors, could for instance lead PDDL to
first support several build configurations of game projects



and consequently debugging features (West 2005) (e.g. spy-
ing of variables, formulas and actions just as in Prolog);
Structure questions the “mechanisms that allow complex
actions, complex states and complex objects to be broken
down into manageable and maintainable units”;Support
for operational aspect questions the predictability of the
PDDL model of the domain: can it be translated efficiently?
What kind of planner should be used with the model?

Criteria (1) to (3) are classically related to a computer
science programming language and (Gerevini, Long, and
Haslum 2009) addresses criteria (1) and (2) for today’s ver-
sion 3 of PDDL.

Criteria (4) to (10) are related to software engineering and
thus are of concern to the video-game industry as a software
industry. (AIPS 98 Planning Competition Committee 1998,
page 14) admits that “it is often convenient to break the defi-
nition [of a domain] into pieces” and introduces theadden-
dum construct and the:extends keyword to allow to add
data to an existing domain thus addressing criteria (4), (7)
and (9). These constructs, however, do not seem to survive
the subsequent versions of PDDL, leaving the users with the
development and maintenance of large planning domain files
which simply take both time and memory to load. Really
worse in our experience, is a large set of actions which must
be loaded in one time as part of a planning problem defi-
nition file: if some of these actions reveal themselves to be
unnecessary for a given phase of the game, they unnecessar-
ily increase the search space and consequently increase the
planning runtimes.

Real-Time
Performance is an issue for Real-Time software and so it is
for the fast pace games of today, from arcade games to First
Person Shooters. Let us first explain what we mean by real-
time (Douglass 1999) in the video-games domain:

1. Real-time does not mean real fast but means the speed
of the game: AI Planning does not lower the quality of
entertainment/playability of the game,

2. Real-time means hard deadlines: late data is at best worth-
less data and at worst bad/wrong data. Missing a hard
deadline constitutes a system failure of some kind: for
instance, the death of a non-playable character or even
worse, the death of the player’s character,

3. Real-time means soft deadlines: late data, e.g. a plan of
actions, may still be good data if execution coupled to
exception handling can handle it,

4. Real-time means embedded: AI Planning exists inside a
larger system, i.e. the game engine. The computation
resources are shared among many important modules,

5. Real-time means interaction with sensors and actuators:
it is the mean to acting in the game, to assess game situa-
tions for planning problem generation, to represent game
level objectives for game trust.

Taken literally, none of these real-time issues are handled
by PDDL which represents time in actions and then con-
sequently in plans, but neither in the search space nor in
the solution space: heuristics which could prune the search

space (Botea, Müller, and Schaeffer 2003) are ignored and
there is no way to express constraints on the number of so-
lutions.

Embedded-ness and real-time interaction may not be of
any concern to PDDL, but as AI Planning only is a module
into a larger system, interfacing with this system or other
modules is an essential feature; (Orkin 2006), for instance,
uses procedural attachment to actions in order to connect to
the Finite State Machines of the game.

Video-Games
Taken from (Nareyek 2005), here are some of the AI Plan-
ning requirements from the working group on Goal-Oriented
Action Planning from the International Game Developers
Association:

1. HTN/Hierarchical planning functionality is consideredas
very useful,

2. About the basic ingredients of what constitutes a planning
problem and a planning domain: more complex data type
than simpleTRUE/FALSE for state variables should be
possible, like numbers and object/links,

3. We also need the power of temporal qualifier for states.
For now, temporal intervals seem to be the best choice for
this,

4. We certainly have to pay more attention to the potential
integration with scripting, the need to have a very first ac-
tion determined as quickly as possible, and graded quality
results for plan optimization.

These four requirements all directly relate to PDDL which
uses various formulas (e.g. predicates, universal and ex-
istential) to describe states and actions. As Hierarchical
Task Networks (HTN) are networks of actions, their use in a
PDDL-based game entails a description syntax and seman-
tic in PDDL. The reader is referred to (Armano, Cherchi,
and Vargiu 2003; Botea, Müller, and Schaeffer 2003) for
propositions on extending PDDL to hierarchical planning.
As, previously mentioned (cf. the previous PDDL overview)
numbers in PDDL can appear as function parameters and
not as constant parameters for predicates; instead, string-
like constants are used (see the very first PDDL sentence
above). But complex data structures, for instance regarding
durations and various temporal qualifiers for states, certainly
are provided by PDDL.

However, PDDL does not provide a direct interface to
“the outside” through links of any kinds (this includes the
impossibility for procedural attachment) and, consequently,
scripting. It might not be obvious that scripting for video-
games is related to PDDL, but if Scheme (Abelson, Suss-
man, and Sussman 1997) was as popular as LUA in the
video-game community (see (Millington and Funge 2009,
Section 5.10) about Scheme-based AI scripting in games),
both scripting and procedural attachment would be imme-
diate in PDDL. As both compilation of Scheme and inter-
facing Scheme with procedural languages (such as C) are
well-mastered topics (Queinnec 1997), various steps could
be taken from Scheme to LUA (or Scheme to various virtual
machines).



Further issues
We mentioned build configurations and debugging, but here
are several other issues PDDL does not address:

1. Documentation, version control,

2. Patches (new objects, new levels, new behaviours, . . . ),

3. Failure recovery (what must be done when no plan is
found? When an action cannot be executed? When one
cannot recognize whether an action has successfully been
executed, . . . ),

4. Exceptions (responsiveness to unexpected events).

C++ has header files for class declaration and source files
for operation definitions and accordingly defines two file ex-
tensions: “.h” for header files and “.cpp” for source files.
In PDDL, there are files for domains (types, predicates,
functions, actions, . . . ), for problems (constants and their
possible types,:init ial and goal states, . . . ), and for solu-
tions; but PDDL does not define any (specific) file exten-
sion, leaving their management to version control systems.
This indeed is a superficial requirement for PDDL; however,
could you imagine an application with no file extension to-
day? In the same superficial spirit, do you know of any
language which does not include a syntax for comments?
Well, although LISP comments are probably the most ap-
propriate (in LISP, a comment begins with two “;”), PDDL
does not even propose a syntactic form for comments. In
the same spirit, no specific textual documentation is sug-
gested although debugging and release configurations def-
initely concern modelling languages as well as program-
ming languages; although clearly rudimentary, LISP pro-
vides documentation of LISP functions with a simple string
and the:documentation and :verbosekeywords to record
and print this string (Steele 1990).

Patches with new game objects, levels, characters and be-
haviours might appear as only concerning game content, but
does in fact concern PDDL: for instance, new behaviours
means new actions, new game objects and new levels mean
new formulas to describe them. The incremental loading of
PDDL files would greatly ease the gathering of such domain
descriptions; however, as noted earlier, both theaddendum
construct and the:extends keyword are longer PDDL mem-
bers.

According to (AIPS 98 Planning Competition Committee
1998) PDDL only seems to be interested in solutions: fail-
ure is not an option for PDDL. But as we discuss with hard
real-time deadlines, late data may just be wrong data: the
returned solution simply is no longer a solution. Or some
characters may just die waiting for a solution from the AI
Planner. Consequently, and this is related to heuristics, we
believe new kinds of solution files should be introduced:
such files would contains plans but would just come from
a library of plans and could be executed prior to AI Plan-
ning (taking cover is not only relevant for human soldiers),
during search or after search when it fails or when execution
fails. That is, if the game takes actions to keep a character
alive, why not put these actions in a PDDL file? Then, we
need to distinguish such files from solution files created by
the search.

Priorities
If we could pull the strings for PDDL, we would certainly
begin with the introduction of heuristics: ordering of the pre-
conditions of actions and ordering of actions during search.

Secondly, we would allow for Scheme-based procedural
attachment and would favour the development of a Scheme
to LUA compiler.

Third, despite HTNs are interesting complex plan struc-
tures, we would rather look at introducing execution
:pragmas in PDDL solutions files to describe interruptions
and execution alternatives: if the AI planner spent some ef-
fort to propose a plan of actions, it might worth considering
adding information to this plan to back up the failure of ac-
tions. An exception-like PDDL construct is what actually
would suit us the most. Accordingly, we would find debug-
ging directives to print information in a console during plan
execution very useful.

Finally, as superficial as it may look, we would be very
happy with file extensions. We currently have megabytes
of PDDL files all with the same “.pddl” extension although
these files have clearly not the same semantic (a domain file
has nothing to do with a solution file).

Conclusion
The reader might reach this point with the belief that we
are pessimistic about PDDL and its use in video-games.
On the contrary, we believe that the AI Planning commu-
nity is lucky to possess PDDL and we would have been
unable to produce such an enumeration if PDDL had not
helped us succeed in connecting an AI Planner to vari-
ous video-games (Bartheye and Jacopin 2007; 2008; 2009a;
2009b): PDDL actually can be used for video-games. That’s
not the question. The question is how can we make it popu-
lar?

In a recent survey of the readers of the Game Developer
Magazine and of attendees of the Game Developers Con-
ference, game developers “cited ease of development as the
top criteria than any other consideration” (Remo 2009) to
pursue the development on a given platform. We conse-
quently believe it is important toeaseeach step in the mas-
tering of PDDL, not by providing new AI Planning features,
but by first reinforcing the software engineering features of
PDDL and second by introducing plan execution features
into PDDL.

We intended this paper as a position paper, thought
provocative, and we hope that at least, it shall provoke dis-
cussions and debates.

Acknowledgements
We wish to thank our anonymous reviewers for their helpful
remarks and Michael Buro and Carlos Linarès for giving us
the opportunity to improve this position paper.

References
Abelson, H.; Sussman, G. J.; and Sussman, J. 1997.Struc-
ture and Interpretation of Computer Programs. MIT Press.
AIPS 98 Planning Competition Committee. 1998. PDDL
– the Planning Domain Definition Language (version 1.2).



Technical Report Tech Report CVC TR 98-003/DCS TR-
1165, Yale Center for Computational Vision and Control.
Armano, G.; Cherchi, G.; and Vargiu, E. 2003. An exten-
sion to pddl for hierarchical planning. InProceedings of
the International Workshop on PDDL, 1–6.

Bartheye, O., and Jacopin,É. 2007. Planning as a software
component : A report from the trenches.26th Workshop
of the UK Planning and Scheduling Special Interest Group,
Prague, CZ, Dec. 17-18.

Bartheye, O., and Jacopin,É. 2008. Connecting pddl-based
off the shelf planners to an arcade game. ECAI Workshop
on AI in Games, Patras, GR, Jul. 21.
Bartheye, O., and Jacopin,É. 2009a. A planning plug-in
for virtual battle space 2: A report from the trenches. In
Proceedings of the Spring Simulation MultiConference, 4.
ACM Press.
Bartheye, O., and Jacopin,É. 2009b. A real-time ppdl-
based planning component for video games. InProceed-
ings of the5th AIIDE, 130–136. AAAI Press.
Botea, A.; Müller, M.; and Schaeffer, J. 2003. Extend-
ing PDDL for hierarchical planning and topological ab-
straction. InProceedings of the International Workshop
on PDDL, 25–32.
Douglass, B. 1999.Doing Hard Time. Addison-Wesley.
Gerevini, A., and Long, D. 2005. BNF description of
PDDL 3.0.
Gerevini, A.; Long, D.; and Haslum, P. 2009. Determinis-
tic planning in the fifth international planning competition:
PDDL 3 and experimental evaluation of the planners.Arti-
ficial Intelligence173 619–668.
McCluskey, L. 2003. PDDL: A language with a purpose?
In Proceedings of the International Workshop on PDDL,
82–86.
Millington, I., and Funge, J. 2009.Artificial Intelligence
for Games. Morgan Kaufmann.
Nareyek, A. 2005. (Group Coordinator), The 2005 AI
Interface Standards Committee report – working group on
Goal-Oriented Action Planning. International Game De-
velopers Association.
Orkin, J. 2006. Three States and a Plan: The A.I. of
F.E.A.R. In Proceedings of the Game Developper Con-
ference, 17 pages.
Queinnec, C. 1997.Lisp In Small Pieces. Cambridge
University Press.
Remo, C. 2009. State of development 2009.Game Devel-
oper17(2) 20–21.
Steele, G. 1990.Common LISP – The Language (2nd
Edition). Prentice Hall.
West, M. 2005. Debug and release.Game Developer12(9)
34–36.
Winston, P., and Horn, B. 1989.Lisp 3rd Edition. Addison-
Wesley.


