
CMPUT 350, F2020, M. Buro Contents 1

Part 4: Type Casts, Static, Operator Overloading

Contents [DOCUMENT NOT FINALIZED YET]

• Type Casts p.2

• Static Data and Functions p.9

• Operator Overloading p.13

• C++ Operator Table p.14

• Global Operators p.17

• Class Operators p.20

• Pre/Post ++ -- p.27

CMPUT 350, F2020, M. Buro Type Casts 2

Type Casts

Casting operations disable the compiler type check

Major cause for porting issues! Minimize their usage!

C++ uses long keywords to discourage using them and
to let you find them easily (e.g. with grep)

static cast

Used for standard (numerical) conversions

int i;

double d;

i = static_cast<int>(d);

// same as i = (int)d; (rounds towards 0)

Compile-time operator – no run-time check

Do not use for pointer up/down-casts
(see dynamic cast below)

CMPUT 350, F2020, M. Buro Type Casts 3

reinterpret cast

Conversion from one pointer type to any other pointer
type

Dangerous! Avoid! Can result in unportable code

But sometimes useful, to get byte-level access

Can also convert pointers to ints and vice versa (DON’T!)

Example 1:

int a[100];

// char *p = a; doesn’t work: type error

char *p = reinterpret_cast<char*>(a);

// get direct access to 400 bytes

Example 2: save integer to file in portable fashion (in-
dependent of the machine architecture) — assuming
sizeof(X) is identical

int x;

char *p = reinterpret_cast<char*>(&x);

// write low byte first

if (little_endian_machine) {

for (int i=0; i < sizeof(x); ++i) write_byte(p[i]);

} else {

for (int i=sizeof(X)-1; i >= 0; --i) write_byte(p[i]);

}

CMPUT 350, F2020, M. Buro Type Casts 4

const cast

toggles status: const ↔ non-const

Used for changing nonessential data members in const
functions (which can better be accomplished by adding
mutable keyword)

Suppose we want to keep track of how often a const
function is called:

class X

{

public:

int get_index() const

{

// increment counter,

// preserve constness

// ++get_n; doesn’t work because get_index is const

++const_cast<X*>(this)->getn;

...

}

private:

int get_n; // how often was get_index called?

};

Why does this work?

CMPUT 350, F2020, M. Buro Type Casts 5

In const functions this has type const X*

So, ++this->get n is not allowed

const cast<X*>(this) has type X*

(const stripped away)

Therefore, ++const cast<X*>(this)->get n

works

Weird concept ... better solution:

class X

{

public:

int get_index() const

{

// increment counter

// allowed because get_n is mutable

++get_n;

...

}

private:

mutable int get_n;

};

Because mutable variables can be changed in const
functions, they mustn’t be essential for the object state

CMPUT 350, F2020, M. Buro Type Casts 6

dynamic cast

Used for “walking up and down the type hierarchy”

struct X {

virtual void foo(); // makes X polymorphic

};

class Y : public X { };

...

X *px = new X;

Y *py = new Y;

// failed down-cast

// effect: pxy = nullptr, because Xs are no Ys

Y *pxy = dynamic_cast<Y*>(px);

// successful up-cast

// effect: pxy != nullptr pointing to X component

// because Ys are Xs

// At this point, the cast never fails

// because py points to a Y

X *pyx = dynamic_cast<X*>(py);

X *pyx = py; // this is equivalent

CMPUT 350, F2020, M. Buro Type Casts 7

Useful for down-casting pointers (trying to treat them
as derived class pointers)

Beginners often (mis-)use down-casts for implementing
type switches like this:

Shape *pShape = ...;

Circle *p = dynamic_cast<Circle*>(pShape);

if (p) {

// pShape points to a Circle, call non-virtual

// Circle function

p->draw();

}

Rectangle *q = dynamic_cast<Rectangle*>(pShape);

if (q) {

// pShape points to a Rectangle, call non-virtual

// Rectangle function

q->draw();

}

...

The presence of dynamic cast usually indicates a bro-
ken class design. Use virtual functions instead

CMPUT 350, F2020, M. Buro Type Casts 8

dynamic cast is a non-trivial run-time check, which
may slow down your program

For it to work, the source type must be polymorphic

Internally, dynamic cast<T*>(p) invokes a type graph
traversal (following VFTPs) to check whether T is a
base-class of the type p points to

Returns 0 if cast is illegal, and pointer to object if valid

CMPUT 350, F2020, M. Buro Static Data and Functions 9

Static Data and Functions

Using “static” outside class definitions:

In Foo.cpp:

static void foo() { }

// this defines a helper function local to Foo.cpp

// which is not accessible in other .cpp files

void bar()

{

static X x;

// Object x is a persistent *global* variable which is

// constructed when bar is executed for the first time.

// Such static construction is thread-safe (which means

// that multiple execution threads can call function bar

// simultaneously) and static objects are destroyed in

// reverse order of their construction.

}

CMPUT 350, F2020, M. Buro Static Data and Functions 10

Because the initialization order of global objects isn’t
well defined in C++, it is a good idea to wrap global
objects in access functions like so, to choose the time
of construction (the first use of the function):

struct X

{

X() { a = 0; }

int a;

};

X &get_x()

{

static X x; // x constructed during first call

return x; // reused thereafter

}

int main()

{

get_x().a = 0; // create static object, set a

cout << get_x().a << endl; // use object

}

CMPUT 350, F2020, M. Buro Static Data and Functions 11

static in Class Context

Sometimes it is useful if all objects of a class have access
to the same variable, e.g. a “global” class option or a
counter that keeps track of how many objects have been
created

This can also save space.
E.g. a shared pointer to an error-handling routine

Advantages:

• Information hiding can be enforced. Static members
can be private — global variables cannot

• Static members are not entered in global namespace,
limiting accidental name conflicts

Syntax: static qualifier in front of variable or function
declaration

CMPUT 350, F2020, M. Buro Static Data and Functions 12

Example

class X

{

public:

X() { ++count; ... }

~X() { --count; ... }

// static member function

static int get_count() { return count; }

private:

// number of X objects, shared by all X objects

static int count;

};

// must be defined in file X.cpp!

int X::count = 0;

int main()

{

X a, b;

cout << X::get_count() << endl;

// output 2; note that we don’t need an object

// to call get_count --- it’s a global function

// in class X

return 0;

}

CMPUT 350, F2020, M. Buro Operator Overloading 13

Operator Overloading

Goal: No difference between built-in types and class
types — we want to be able to define what operators
do when applied to our own classes

We would like to write:

Matrix a(N,N), b(N,N), c(N,N), d(N,N);

Vector v(M);

a = b + c * d;

cout << a;

cin >> b;

v[0] = 0; // v looks like an array - nifty!

C++ allows users to overload/redefine global operators
such as << and class operators such as []

Limits: arity (how many parameters), associativity (left
or right first?), and operator precedence (3+3*4 : *

evaluated first) are fixed!

The following table gives an almost complete overview
of C++ operators and almost all of the listed operators
can be customized

CMPUT 350, F2020, M. Buro C++ Operator Table 14

C++ Operator Table

:: ltr 17 (high)

post++ post-- () [] . -> ltr 16

! ~ pre++ pre-- + - * & (type) rtl 15

sizeof new new[] delete delete[]

.* ->* ltr 14

* / % ltr 13

+ - ltr 12

<< >> ltr 11

< <= > >= ltr 10

== != ltr 9

& ltr 8

^ ltr 7

| ltr 6

&& ltr 5

|| ltr 4

?: rtl 3

= += -= *= /= %= &= |= ^= <<= >>= rtl 2

, ltr 1 (low)

• post = postfix operator (e.g., i–)

• pre = prefix operator (e.g., ++i)

• rtl: right (to left) associative, ltr: left (to right) associative

• cyan boxes : arity 1 (unary operators), all others arity 2 (bi-
nary), except for ?:

• number: precedence level (e.g., == binds tighter than =)

CMPUT 350, F2020, M. Buro C++ Operator Table 15

Examples:

N::x.m means (N::x).m rather than N::(x.m)

*p++ means *(p++) rather than (*p)++

a + b * c means a + (b * c)

a = b = c means a = (b = c)

a + b + c means (a + b) + c

i & 3 == 0 means i & (3 == 0) Careful!

a || b && c means a || (b && c) Careful!

++++i means ++(++i);

If in doubt, you can always force the evaluation by in-
serting balanced pairs of parentheses, like so:

(a + b) * c or (*p)++

This works because expressions are evaluated inside-out
with respect to the parenthesis level. E.g. the atomic
steps to evaluate r = (a + b) * (c + d) are

x = a + b; y = c + d; r = x * y;

CMPUT 350, F2020, M. Buro C++ Operator Table 16

Complex Number Example

// defines class that represents complex numbers

// (essentially points in 2d defining the number

// field complex analysis is concerned with)

#include "Complex.h"

int main()

{

Complex a(1.0);

Complex b(0.0, 1.0);

Complex c;

// arithmetic using points rather than scalars

c = (a + b) * (a - b);

c += Complex(4, 3);

c = c + 3.0; // shorthand for + (3.0, 0.0)

++c; // means c = c + (1.0, 0)

std::cout << c << std::endl; // prints 8 3

};

CMPUT 350, F2020, M. Buro Global Operators 17

Global Operators

Example: C++ I/O streams

How to define global operators such as input/output
operators << >> ?

ostream &operator<< (ostream &os, const X &rhs);

istream &operator>> (istream &is, X &rhs);

Reference to streams is returned to allow chaining such
as

cout << x << y;

cin >> x >> y;

CMPUT 350, F2020, M. Buro Global Operators 18

Example:

class Complex // Complex number class

{

...

private:

float re, im; // real and imaginary component

};

// write complex number to output stream

ostream &operator<< (ostream &os, const Complex &rhs)

{

os << rhs.re << ’ ’ << rhs.im;

return os;

}

// read complex number from input stream

istream &operator>> (istream &is, Complex &rhs)

{

is >> rhs.re >> rhs.im;

return is;

}

// doesn’t work: re,im are private and can’t be accessed

// outside the class

CMPUT 350, F2020, M. Buro Global Operators 19

Solution: Friends or Getters/Setters

class Complex

{

public: ...

// gives functions access to private members

friend ostream &operator<<(ostream &os, const Complex &rhs);

friend istream &operator>>(istream &is, Complex &rhs);

private:

float re, im;

};

ostream &operator<< (ostream &os, const Complex &rhs)

{

os << rhs.re << ’ ’ << rhs.im;

// Alternative:

// os << rhs.get_re() << ’ ’ << rhs.get_im();

return os;

}

istream &operator>> (istream &is, Complex &rhs)

{

is >> rhs.re >> rhs.im;

// Alternative:

// float u; is >> u; rhs.set_re(u); is >> u; rhs.set_im(u);

return is;

}

// application

Complex a;

cin >> a; cout << a;

CMPUT 350, F2020, M. Buro Class Operators 20

Class Operators

Class operators can be considered methods that are
invoked when the lhs of a binary operation is an object
and the rhs is another object or POD, or when the
argument of a unary operator is an object

The compiler internally rewrites operators into member
function calls. E.g.

a + b -> a.operator+(b)

a += b -> a.operator+=(b)

v[2*i+1] -> v.operator[](2*i+1)

f(x, y) -> f.operator()(x, y)

// f is called a "functor",

// looks like a regular function call

++x -> x.operator++()

x++ -> x.operator++(0)

// 0 is a dummy parameter indicating

// post increment

CMPUT 350, F2020, M. Buro Class Operators 21

I.e.,

T operator++() {...} defines the prefix ++ opera-
tor, and T operator++(int) {...} defines the post-
fix ++ operator.

So, class operators are actually member functions

They can even be virtual!

[] supports exactly one (arbitrary) argument

() supports arbitrary number of arguments

This means that we can create objects that behave like
arrays or functions!

Type cast operators can also be customized:

class Rational

{

operator double() { return (double)num / double(den); }

};

Rational r;

cout << static_cast<double>(r) << endl;

// calls operator double()

CMPUT 350, F2020, M. Buro Class Operators 22

int-Vector Revisited

class V

{

public:

...

// returns reference so that elements can be changed

int &operator[](int i) {

check(i);

return p[i];

}

// const version

const int &operator[](int i) const

{

check(i);

return p[i];

}

...

private:

void check(int i) const { assert(i >= 0 && i < n); }

int *p;

int n;

};

in main():

V v(100);

v[3] = 0; cout << v[0]; // cool! vectors act like arrays

CMPUT 350, F2020, M. Buro Class Operators 23

Why Two Definitions of operator[] ?

class Foo

{

public:

V a;

...

int bar() const

{

return a[0];

// Only works if const definition is provided

// for V[]. Otherwise, the compiler complains

// that bar() may change members of a. In

// const contexts the const version is called

// and in non-const cases the first version

// is called.

}

};

CMPUT 350, F2020, M. Buro Class Operators 24

Complex Number Example Continued

class Complex // Complex Number class

{

public:

Complex(float r=0, float i=0) : re(r), im(i) {}

// use default destructor; default CC+AO also work

Complex operator+(const Complex &rhs) const;

Complex operator+(float rhs) const; // add float

...

Complex &operator+=(const Complex &rhs);

Complex &operator+=(float rhs); // add float

...

Complex &operator++(); // pre++ (++c)

Complex operator++(int); // post++ (c++)

Complex operator-() const; // unary operator

...

float real() const { return re; } // gives environment

float imag() const { return im; } // access to data

private:

float re, im; // real & imaginary part

};

CMPUT 350, F2020, M. Buro Class Operators 25

For class Complex to be fully functional, we also need
global operators such as

Complex operator+(double lhs, const Complex &rhs);

to deal with asymmetries such as

Complex a, b;

a = 2.0 + b;

which can’t be handled by class operators because the
lhs type is not a struct/class

CMPUT 350, F2020, M. Buro Class Operators 26

Complex Class Implementation

#include "Complex.h"

// case: a + b (a,b Complex)

Complex Complex::operator+(const Complex &rhs) const {

// computes new coordinates, copy-constructs a new

// object and returns it to the caller

return Complex(re + rhs.re, im + rhs.im);

}

// case: a + f (a Complex, f float)

Complex Complex::operator+(float rhs) const {

return Complex(re + rhs, im);

}

// executed for a += b (a,b Complex)

// Note: cascade also possible: a += b += c;

// (return reference to self; += is right associative)

Complex &Complex::operator+=(const Complex &rhs) {

re += rhs.re;

im += rhs.im;

return *this;

}

// case: -a

Complex Complex::operator-() const {

return Complex(-re, -im);

}

CMPUT 350, F2020, M. Buro Pre/Post ++ -- 27

Pre/Post ++ --

Distinguish ++i from i++

For number types, both increment i, but the VALUE
of both expressions is different:

• the value of ++i (pre++) is the REFERENCE to the
variable

• the value of i++ (post++) is the VALUE of the vari-
able BEFORE increment

Same for --

Example:

int i = 5, j = 5;

cout << (i++) ; // writes 5, i == 6 after

cout << (++j) ; // writes 6, j == 6 after

i++++; // illegal because result of i++ is not a

// variable (a.k.a. lvalue)

++++i; // OK, ++i returns a reference to i

CMPUT 350, F2020, M. Buro Pre/Post ++ -- 28

In general, post-increment/decrement operators are slo-
wer, because they need to store the value of the object
prior to incrementing/decrementing and return the copy

Example:

// pre++ : faster

Complex &operator++()

{

++re;

// return reference to current state

return *this;

}

// post++ : slower

Complex operator++(int)

{

// memorize previous state

Complex ret(*this);

++re;

// return copy of previous state

return ret;

}

CMPUT 350, F2020, M. Buro Pre/Post ++ -- 29

Operator Overloading Tips

• Similar operators shall perform similar actions
+= ++ + should all deal with “addition”
-= -- - should all deal with “subtraction”
etc.

• Use REFERENCE parameters whenever you can, but
return VALUES when you must

Example: T operator+(const T &rhs)

There is no way around returning by value:

– T* doesn’t work : a + b + c illegal

– T& : reference to local variable (doesn’t work) or
object on heap : slow, and who is cleaning up?

Plus: when evaluating a + b + c we don’t have
access to temporary variables, so we can’t clean up
even if we wanted

• Avoid complex expressions with side effects
The value of any expression involving more than one
operation with side effects is undefined because eval-
uation order depends on the compiler and may affect
the result

CMPUT 350, F2020, M. Buro Pre/Post ++ -- 30

If in doubt, break up expressions to enforce evalua-
tion order

Examples:

x = x / ++x; => y = x; x = y / ++x;

y = f() + g(); (if f and g access global

variables things can get tricky)

=> x = f(); y = x + g();

This works because ; marks a so-called sequence
point. At those points the C++ specification guar-
antees that all preceeding code has been executed
before execution continues after the sequence point

• Never overload

unary & && || ,

because this certainly will confuse readers of your
code including yourself! Recall that & takes the ad-
dress of a variable, && and || are Boolean short-cut
operators, and , is the sequence operator. Imag-
ine what happens when a “clever” team member
changes the meaning of those operators ...

