
CMPUT 350, F2020, M. Buro Contents 1

Part 3: Class Inheritance

Contents [DOCUMENT NOT FINALIZED YET]

• Class Inheritance p.2

• Inheritance Types p.8

• Sub-Class Memory Layout p.10

• Assignments Across Class Hierarchy p.11

• Reusing Base-Class Operators p.14

• Contructors/Destructors and Inheritance p.15

• Virtual Functions p.17

• Virtual Destructors p.27

• override and final p.29

• Inheritance Tips p.32

CMPUT 350, F2020, M. Buro Class Inheritance 2

Class Inheritance

Object Oriented Programming Paradigm

Derive new class from existing base-class(es)

Inherits data members and methods from base-class(es)

• Code/data reuse

• Code adaption

– either keep base-class implementation

– or override it with new functionality

Single inheritance: inherit from one base-class

Multiple inheritance: inherit from more than one base-
class

• C#/Java and many other modern programming lan-
guages only support restricted forms (interfaces)

CMPUT 350, F2020, M. Buro Class Inheritance 3

Inheritance Example

Sub-class/derived class specializes super-class/base-class

Usually models ”is-a” relationships. E.g.

• “a Rectangle is a Shape”

• “a Square is a Shape”

• “an Ellipse is a Shape”

• “a Circle is a Shape”

We say

“B is derived from A”, “B is a sub-class of A”, “A is
a super-class of B”

and write A← B

This type relation defines type hierarchies which can
have multiple levels. E.g.:

| |<---- Rectangle

| Shape |<---- Square

| |<---- Ellipse

|_______|<---- Circle

CMPUT 350, F2020, M. Buro Class Inheritance 4

We could be tempted to make Ellipse a super-class of
Circle, because mathematically, the set of circles is a
subset of ellipses

However, mathematical set inclusion doesn’t imply an
“is-a” relation in the software-engineering sense, whereby
base-class methods must be implemented by all derived
classes and objects keep their identity

For instance, consider method stretchX which stretches
an object in x direction. While certainly applicable to
ellipses, it could distort circles which as a result become
ellipses, i.e. lose their identity

This — in a nutshell — is the notorious “circle–ellipse”
problem, which is discussed in detail at

http://en.wikipedia.org/wiki/Circle-ellipse_problem

Have a look if you are interested to learn more about
that subject and ways to avoid problems similar to the
one mentioned above

CMPUT 350, F2020, M. Buro Class Inheritance 5

// base-class

class Shape

{

public:

// all shapes have a color

int color;

// and area function

// default implementation: return 0

float area() const { return 0; }

};

// first specialized shape: axis aligned rectangle

class Rectangle : public Shape

{

public:

// constructor: 4 values define a rectangle ...

Rectangle(int l_, int r_, int t_, int b_) { ... }

// overrides Shape::area()

float area() const { return (r-l)*(b-t); }

private:

// describes Rectangle (left,right,top,bottom)

// also inherits color

int l, r, t, b;

};

CMPUT 350, F2020, M. Buro Class Inheritance 6

Because Rectangle is derived from Shape, it inherits
Shape’s data:

A Rectangle has the following data members:

int color;

int l, r, t, b;

CMPUT 350, F2020, M. Buro Class Inheritance 7

// second specialized shape

class Circle : public Shape

{

public:

// constructor: circle defined by center and radius

Circle(int x_, int y_, int r_) { ... }

// overrides Shape::area()

float area() const { return r * r * M_PI; }

private:

// describes a Circle, also inherits color

int x, y, r;

};

Circles have the following data members:

int color;

int x, y, r;

CMPUT 350, F2020, M. Buro Inheritance Types 8

Inheritance Types

A derived class inherits all data members and methods
from base-class(es)

Access permissions depend on qualifiers

class Y : public X { ... };

• Y “is-an” X design pattern. Y can be treated as an
X

• Sub-class Y can access public and protected mem-
bers of X, but cannot access private members of X

•Most common usage

class Y : protected X { ... };

• Y “is-implemented-in-terms-of” X design pattern

• public members of X become protected in Y

• This means that users of Y will not have access to
any X components

• Rarely used

CMPUT 350, F2020, M. Buro Inheritance Types 9

class X

{

public:

int a; // visible to all: users of X,

void fa(); // X itself, and derived classes

protected:

int b; // visible to derived classes and X,

void fb(); // but not to users of class X!

private:

int c; // only visible to member functions

void fc(); // of X

};

// Y "is an" X

class Y : public X int main() {

{ X x;

void foo() { Y y;

a = 0; fa(); // OK x.a = 0; // OK

b = 0; fb(); // OK y.a = 0; // OK

c = 0; fc(); // NOT OK! x.b = 0; // NOT OK

} x.c = 0; // NOT OK

int d; }

};

CMPUT 350, F2020, M. Buro Sub-Class Memory Layout 10

Sub-Class Memory Layout

When using single inheritance (one base-class) data
members are added at the end of the base-class data

Example - using X,Y from the previous page:

X object layout: | int a (4 bytes)

| int b (4 bytes)

| int c (4 bytes)

Y object layout: | int a (4 bytes) \

| int b (4 bytes) X part

| int c (4 bytes) /

| int d (4 bytes) - Y part

As we will see in a moment, this layout scheme will
allow us to treat Y objects as X objects without code
changes because the X part in Y objects is stored at the
same addresse relative to the first byte of the object

Thus, code that works with a pointer/reference to an X
object also works with a pointer/reference to a Y object

CMPUT 350, F2020, M. Buro Assignments Across Class Hierarchy 11

Assignments Across Class Hierarchy

class Y : public X ...;

Y inherits data members and methods from X

Public inheritance: “is-a” relationship public and pro-
tected X members visible in Y

X a; Y b;

Assignments: a = b; or b = a; meaningful?

How to implement Y assignment operator and copy
constructor?

Similarly:

X *pa; Y *pb;

Assignments: pa = pb; or pb = pa; meaningful?

CMPUT 350, F2020, M. Buro Assignments Across Class Hierarchy 12

Object Assignment

class Y : public X {...};

X a;

Y b;

a = b; ?

OK, because Ys are Xs — but object is sliced:

• X AO is called with reference to b

• X part of b is copied to a, Y part is not

•We are losing information

b = a; ?

NOT OK !

Y can contain more data than X

How to fill the rest?

Example: you can’t create a circle from a shape object.
It’s underspecified

CMPUT 350, F2020, M. Buro Assignments Across Class Hierarchy 13

Pointer Assignment

class Y : public X {...};

X a, *pa;

Y b, *pb;

pa = &b; or pa = pb; OK?

YES

pa now points to b, or *pb respectively

Information about Y is not available when accessing
*pa because pa points to an X object

pb = &a; or pb = pa; OK?

NO

*pb is object of type Y

Again, where would the additional data come from?

CMPUT 350, F2020, M. Buro Reusing Base-Class Operators 14

Reusing Base-Class Operators

Base-class operators need to be called explicitely when
you provide your own implementation in the derived
class!

struct X

{

X() { x = 0; }

int x;

};

struct Y : public X

{

Y() { y = 0; }

Y(const Y &rhs)

: X(rhs), y(rhs.y) // copy-construct X part and Y part

{ // ^---- base-class name

}

Y &operator=(const Y &rhs)

{

if (&rhs == this) return *this; // guard against self-assignment

X::operator=(rhs); // call X AO, assigns X part

y = rhs.y; // assign Y-part

return *this;

}

int y;

};

X a, *pa;

Y b;

a = b; // a.x = b.x; b.y not copied (object slicing)

pa = &b; // OK, *pa is object of type X. Y part invisible

CMPUT 350, F2020, M. Buro Contructors/Destructors and Inheritance 15

Contructors/Destructors and Inheritance

class X

{

public:

X(int a_=0) { ... }

};

class Y : public X

{

public:

Y() { /* X() is called here */ ... }

Y(int b) : X(b) { ... } // explicit X(int) call

};

The derived class constructor calls the base-class con-
structor first to initialize base-class members

If a contructor is not defined, a default derived class
constructor will be provided which calls the base-class
constructor and constructs non-POD members of Y

Base-class constructors, copy constructors, and assign-
ment operators are called by the default derived class
operators

CMPUT 350, F2020, M. Buro Contructors/Destructors and Inheritance 16

Inheritance and Destructors

struct X

{

X() { p = new int[100]; }

~X() { delete [] p; }

int *p;

};

struct Y : public X

{

Y() { /*X() called here*/ q = new int[200]; }

~Y() { delete [] q; /* ~X() called here*/ }

int *q;

};

Destructors are called in reverse order of constructor
calls

Derived class destructor Y() calls base-class destructor

Y() only deals with resources allocated in Y!

X() is called at the end: takes care of the rest

CMPUT 350, F2020, M. Buro Virtual Functions 17

Virtual Functions

Inheritance at work: graphics example

Class Graphics contains a list of pointers to objects to
be drawn: Circles, Rectangles, ...

First solution: Objects contain an id to identify their
type

class Shape

{

public:

int type_id;

int color;

};

enum { CIRCLE, RECTANGLE, TRIANGLE, ... };

class Circle : public Shape

{

int x, y, r;

public:

Circle() { x = y = r = 0; type_id = CIRCLE; }

void draw(Screen *s) const { ... }

};

CMPUT 350, F2020, M. Buro Virtual Functions 18

class Graphics

{

public:

void draw() // draw all objects

{

for (int i=0; i < n_objs; ++i) {

Shape *p = objs[i];

switch(p->type_id) {

case CIRCLE:

static_cast<Circle*>(p)->draw(screen);

// ***********************

// cast: make the compiler believe that p actually

// points to a Circle. C-equivalent: (Circle*)p

// More about casts later. In this case p is actually

// pointing to a Circle, because the type_id matches.

// So the cast is safe.

break;

case RECTANGLE:

static_cast<Rectangle*>(p)->draw(screen);

break; ...

}

}

}

Shape *objs[]; // array of pointers to Shapes

int n_objs; // number of objects

Screen *screen; // where to draw shapes

};

Problems: slow, need to change code when adding new
shapes, hard to maintain

CMPUT 350, F2020, M. Buro Virtual Functions 19

Polymorphism via Virtual Functions

Goal: given a base-class pointer, execute member func-
tions in the current object context:

Shape *p = new Circle;

p->draw(); // call Circle::draw?

Shape *q = new Rectangle;

q->draw(); // call Rectangle::draw?

It would be nice if this calls Circle::draw and Rectan-
gle::draw, respectively, even though p and q point to
Shapes

Polymorphism: same function name, different action
dependent on object type

Requires that objects “know” their type, because the
only information the runtime system has is the object
data the base-class pointers point to

Solution: Virtual Functions

CMPUT 350, F2020, M. Buro Virtual Functions 20

Graphics 2

Second solution: use virtual functions

// abstract base-class

// (because it contains abstract functions)

class Shape

{

public:

int color;

// =0: marks abstract methods

// derived classes must implement them

virtual void draw(Screen *s) const = 0;

virtual float area() const = 0;

};

class Circle : public Shape

{

public:

...

void draw(Screen *s) const { ... }

// draws circle, implements virtual function

};

Keyword virtual indicates that the methods in sub-classes
is accessible via base-class pointers

This is a design choice you have in C++

In Java all methods are virtual

CMPUT 350, F2020, M. Buro Virtual Functions 21

class Graphics

{

public:

void draw() { // draw all objects

for (int i=0; i < n_objs; ++i) {

objs[i]->draw(screen);

}

}

Shape *objs[]; // array of pointers to Shapes

int n_objs; // number of objects

Screen *screen;

};

No type id, no switch. Faster and easy to maintain

If the type of *objs[i] is known at runtime, the correct
draw function can be called

HOW can this be implemented by the compiler writer?

CMPUT 350, F2020, M. Buro Virtual Functions 22

In the presence of virtual functions the compiler adds an
extra data member to the class: the so-called “virtual
function table pointer” (VFTP) which points to a block
of memory that contains information about the class
type including a table of virtual function addresses

Sample memory layout of an object with at least one
function declared virtual (by itself or an ancestor):

Object Virtual Function Table (VFT)

| vftp |----->| address of virtual function 0, say draw |

| obj data | | address of virtual function 1, say area |

| ... | | address of virtual function 2 ... |

| ... |

| other class type information |

There is one VFT for each class type in your program.
The runtime system initializes them before main() is
executed. VFTs give the runtime system access to
type information - such as virtual function addresses
and base-class types

(This is called RTTI — RunTime Type Information)

CMPUT 350, F2020, M. Buro Virtual Functions 23

Polymorphism in C++: invoking virtual functions

Did you know that you can store function addresses in
pointers in C?

void foo(int x) { }

void (*p)(int);

p = &foo;

(*p)(5); // calls foo(5)

If draw() is virtual and p is a Shape*, when calling

p->draw(screen);

the runtime system looks up the function to call from
the VFT accessible via p. This allows us to iterate
through the Shape* array and call the right draw func-
tion for each actual shape in turn

Suppose draw() is the first virtual function in Shape,
and p points to a Circle. Then

p->draw(screen);

does the following (equivalent C code) :

(*(p->vftp[0]))(p, screen);

**********: address of Circle::draw

CMPUT 350, F2020, M. Buro Virtual Functions 24

where (*pointer-to-function)(params) calls a function
given a pointer to it, and p is passed as “this” pointer
to give the function access to obj members

Likewise, if area() is the second virtual function

p->area()

is equivalent to the following C code:

(*(p->vftp[1]))(p);

CMPUT 350, F2020, M. Buro Virtual Functions 25

Circle and Rectangle Memory Layout:

Circle VFT Shape *p = new Circle; Shape *q = new Circle;

-------------- <----------------+------------ |

Circle::draw \ v \ v

-------------- \ -------------- \ --------------

Circle::area ---------- vftp --- vftp

-------------- -------------- --------------

... color color

-------------- -------------- --------------

x x

-------------- --------------

y y

-------------- --------------

r r

-------------- --------------

Rectangle VFT

-------------- <----------------------------- Shape *r = new Rectangle;

Rectangle:draw \ Shape *t = new Rectangle;\ |

-------------- \ -------------- \ --------------

Rectangle::area ---------- vftp --- vftp

-------------- -------------- --------------

... color color

-------------- -------------- --------------

l l

--------------- --------------

r r

-------------- --------------

... ...

-------------- --------------

CMPUT 350, F2020, M. Buro Virtual Functions 26

Virtual function overhead:

• space (one more pointer per object, and one VFT
per class)

• time (table access, indirect function call)

Because using virtual function creates runtime costs it
is an optional feature in C++. If you don’t use virtual
functions, you don’t pay anything

Advantages:

• simplifies code, extensible design

• code independent of number of classes in the system,
can be put in library

CMPUT 350, F2020, M. Buro Virtual Destructors 27

Virtual Destructors

class X

{

public:

X() { ... }

~X() { ... } // THIS IS WRONG! WHY?

virtual void foo() { ... }

};

class Y : public X

{

public:

Y() { ... }

~Y() { ... }

virtual void foo() { ... }

};

X *px = new Y; // calls Y() - which calls X() first - OK

px->foo(); // calls Y::foo() - OK - polymorphism at work

delete px; // calls ~X(), but not ~Y(). PROBLEM if Y has

// allocated resources - they won’t be released

Solution: make destructor virtual! Then delete px;

will call ~Y()

RULE: If a class contains virtual functions it must de-
clare its destructor virtual as well. g++ checks this

CMPUT 350, F2020, M. Buro Virtual Destructors 28

Complete Example

class Shape

{

public:

virtual void draw(Screen *s) = 0; // abstract

virtual ~Shape() { } // do nothing

};

class Circle : public Shape { ... };

class Rectangle : public Shape { ... };

class Square : public Shape { ... };

{

const int N = 3;

Shape *A[N];

// allocate shapes (constructor arguments omitted)

A[0] = new Circle; A[1] = new Rectangle; A[2] = new Square;

// draw all shapes using their respective draw functions

for (int i=0; i < N; ++i) {

A[i]->draw(screen);

}

// delete all shapes using their respective destructors

for (int i=0; i < N; ++i) {

delete A[i];

}

// Important: the destructor loop above is needed, because pointers

// are POD and when arrays go out of scope, element destructors are

// not called!

// When in doubt, simply ask yourself when typing new ... where the

// corresponding delete is

}

CMPUT 350, F2020, M. Buro override and final 29

override and final

When overriding methods from a base class, there are
several conditions that must be met:

• The base class function must be virtual

• The base and derived function names must be iden-
tical (except for destructors)

• The parameter types must be identical

• The constness must be identical

• The return types and exception specifications must
be compatible

If any of those conditions are not met, the method will
not be overriden, and most of the time the compiler
won’t even give you a warning about it. C++11 pro-
vides a solution: declaring the method as override:

class Base

{

public:

virtual void f1() const;

virtual void f1(int x);

virtual void f3();

void f4();

};

CMPUT 350, F2020, M. Buro override and final 30

class Derived : public Base

{

public:

void f1() override; // error: different constness

void f1(long x) override;// error: different parameter

// type

void f3() override; // OK

void f4() override; // error: base not virtual

}

Without using override the code would compile fine,
and maybe the compiler will provide some warnings.
Using override the code will fail to compile generat-
ing errors in the three cases

CMPUT 350, F2020, M. Buro override and final 31

Another new feature in C++11 is the final keyword:
it specifies that a virtual function cannot be overridden
in a derived class or that a class cannot be inherited
from

struct A

{

virtual void foo();

void bar() final; // error: non-virtual function

// cannot be final

};

struct B : A

{

void foo() override final; // OK: B::foo is final

};

struct C final : B // OK: C is final

{

void foo() override; // error: foo cannot be overridden

// as it’s final in B

};

struct D : C // error: C is final

{

};

CMPUT 350, F2020, M. Buro Inheritance Tips 32

Inheritance Tips

Use polymorphism, it’s powerful and makes your code
extensible and more readable. Its runtime overhead is
small, but a pointer is added to each such object you
create. So this may be problematic if you allocate many
small objects

Declare destructors virtual in the presence of other vir-
tual member functions. g++ will remind you

Base-class copy constructors are not automatically called
in derived class copy constructors you provide
(use initializer list: “: X(rhs)”)

In the derived class assignment operator call base-class
X operator explicitely: X::operator=(rhs);

CMPUT 350, F2020, M. Buro Inheritance Tips 33

Beware: virtual function calls in base-class construc-
tors call base-class functions! Derived class functions
can’t be called this way, because the derived class ob-
ject hasn’t been fully constructed yet

struct X

{

X() { foo(); }

// you might expect this to call derived

// class foo() because foo is virtual - NO!

virtual void foo() { ... }

};

struct Y : public X

{

Y() { foo(); }

// here, first X::foo() is called, then Y::foo(),

// although it is virtual!

// Even calling foo() here may be problematic, if

// at that time the construction of Y isn’t complete yet

void foo() { ... }

};

Lesson: don’t call virtual functions in constructors

