
CMPUT 350, F2020, M. Buro Contents 1

Part 2: C++ Classes

Contents [DOCUMENT NOT FINALIZED YET]

• Abstract Data Types: C vs. C++ p.2

• C-Structs vs. C++ Classes p.4

• C++ Classes p.5

• Class Definition p.6

• Access Restrictions p.7

•Methods p.9

• Separating Interface and Implementation p.13

• Constructors p.17

• Destructors p.21

• Copy Constructor p.24

• Assignment Operator p.30

•More on Customizing CCs and AOs p.41

•Making Methods Inaccessible p.48

CMPUT 350, F2020, M. Buro Abstract Data Types: C vs. C++ 2

Abstract Data Types: C vs. C++

C-structs are types consisting of a collection of data
items. E.g.

struct Point

{

int x, y;

};

struct Point p; // define point variable p

p.x = p.y = 0; // initialize its data members

In C, global functions act on structs; usually a pointer
to a struct object is passed as first argument

C Abstract Data Type = Struct + Global Functions

E.g.

// initialize struct

void Point_init (struct Point *p);

// write it to file

bool Point_write (struct Point *p, FILE *fp);

// read it from file

bool Point_read (struct Point *p, FILE *fp);

// free resources (memory, files, locks, ...)

void Point_cleanup(struct Point *p);

CMPUT 350, F2020, M. Buro Abstract Data Types: C vs. C++ 3

C function naming convention: struct name _ operation

Error-prone!

What if we forget to call struct_init or
struct_cleanup ?

Data will not be initialized properly or our program
may leak resources, such as memory and file descrip-
tors, eventually resulting in program termination

CMPUT 350, F2020, M. Buro C-Structs vs. C++ Classes 4

C-Structs vs. C++ Classes

Structures are special cases of classes

Structures don’t impose any runtime overhead

Structures are not initialized

Manual structure initialization and clean-up required

Java Class Objects vs. C++ Class Objects

Java suffers from the lack of so-called value types which
can reside on the stack or are part of other objects

Every class object in Java has to be allocated on the
heap, which is slow!

There is no solution to this problem

C/C++/C# have value types

In C/C++ all data can be placed on the stack (in local
variables) and can be part of structs/classes

CMPUT 350, F2020, M. Buro C++ Classes 5

C++ Classes

Classes provide additional functionality (some introduce
run-time overhead):

•Methods (also called member functions)

• Automatic initialization, cleanup

• Access restrictions

• Inheritance
(e.g. public inheritance modeling is-a relationships)

•Multiple inheritance

“Class = Data + Methods”

Class inheritance, which allows new types to be con-
structed by inheriting attributes from others types, is
a corner stone of object-oriented programming, which
helps maintaining large software projects

CMPUT 350, F2020, M. Buro Class Definition 6

Class Definition

// define class Pair

class Pair

{

// access qualifier, everything below is visible to

// users of Pair objects. I.e. users can change data

// members and call methods

public:

// data members

int x, y;

// function members - also called methods

// initialize coordinates

void init() { x = y = 0; }

// print coordinates to output stream os

void print(ostream &os) {

os << ’(’ << x << ’,’ << y << ’)’;

}

}; // ; is required

Pair p; // define class variable

p.init(); // call init method on p (effect p.x=p.y=0)

p.print(cout); // print pair p to stdout

Class bodies consist of data member and method defi-
nitions

Note that the redundant struct prefix is no longer needed

CMPUT 350, F2020, M. Buro Access Restrictions 7

Access Restrictions

public:

the data/method is accessible to all methods and the
owner of the class variable

private:

data/method is only accessible to methods but not to
the object owner

protected:

similar to private, used with class inheritance. Method
of derived class have access, but the object owner does
not (we will discuss this in more detail later)

The default access type is private

CMPUT 350, F2020, M. Buro Access Restrictions 8

Access Examples

class A

{

public:

int x;

void foo() { x++; y--; }

private:

int y;

void bar() { x--; y++; }

};

in main():

A a;

a.x = 0; // OK, public data member

a.foo(); // OK, public method

a.y = 0; // NOT OK, private data member

a.bar(); // NOT OK, private method

CMPUT 350, F2020, M. Buro Methods 9

Methods

Point p;

p.init(); // initialize coordinates in p

// (this C-way of initializing

// will be replaced by constructors soon)

p.print(cout); // write point p to cout

Methods act on class’s data members

Methods are usually defined in class body (or outside,
later)

Can be called from outside if public

CMPUT 350, F2020, M. Buro Methods 10

Method Examples

Class definition in header file String.h:

class String

{

public:

// method declarations

void set(const char *s);

int length() const; // const: method can’t change data

void print(std::ostream &os = std::cout) const;

bool palindrome() const;

void reverse();

private:

... // internal data members, no outside access

};

// in main() :

String str;

str.set("foo");

str.reverse(); // "oof"

str.print(); // prints string to stdout

int l = str.length();

Question: should palindrome really be a class method?

CMPUT 350, F2020, M. Buro Methods 11

It’s rarely used, and by the same logic one could add
hundreds of other string functions

Better alternative: define your own global string func-
tions that act on Strings outside the class definition,
like so:

bool palindrome(const String &s) { ... }

CMPUT 350, F2020, M. Buro Methods 12

struct in C++

To stay compatible with C-structs, in C++

struct X

{

...

};

is equivalent to

class X

{

public:

...

};

I.e., by default struct members are public

CMPUT 350, F2020, M. Buro Separating Interface and Implementation 13

Separating Interface and Implementation

A class user does not need to know its implementation
details - knowing the public members is sufficient for
using the class

Class Design Suggestions:

• Use one header file for each class.
Name it ClassName.h

• Put a comment on top of the class definition de-
scribing its purpose. Briefly comment each member.
The class users look at the header files to get concise
documentation

• Consider #include directives to incorporate private
declarations into the class definition or put them at
the end of the class definition. Users don’t need to
see them

• Small functions that are often called should be de-
fined in the class body. The compiler can then re-
place function calls by the function body (inline func-
tions) which executes faster

• Data members shouldn’t be public, unless the class

CMPUT 350, F2020, M. Buro Separating Interface and Implementation 14

is just a container without methods. This prevents
users from compromising object states by mistake

• Use methods to access data members (e.g. set x,

get x). It simplifies debugging and is more flexible
w.r.t. later implementation changes. Also, users of
your class can’t easily mess with the object state if
all data members are private

• Otherwise, refrain from implementations in the class
body like in Java which makes reading your code
harder. Implement longer functions in the corre-
sponding .cpp file

CMPUT 350, F2020, M. Buro Separating Interface and Implementation 15

Foo.h: Interface

#ifndef FOO_H // prevents double inclusion which

#define FOO_H // causes the compiler to complain

// Comment: What is Foo good for? ...

class Foo

{

public:

// access functions

int get_x() const { return x; }

void set_x(int xnew) { x = xnew; }

// print x to cout, implemented elsewhere

void print() const;

private:

// state of Foo

int x;

};

#endif

NB.: many compilers support the non-standard
#pragma once preprocessor directive, which also pre-
vents double inclusion

CMPUT 350, F2020, M. Buro Separating Interface and Implementation 16

Foo.cpp: Implementation

#include "Foo.h" // make class Foo known

// to the compiler

#include <iostream> // make streams known

// Define method print in class Foo

// Compiler needs to know context (Foo:: prefix)

void Foo::print() const

{

std::cout << x;

}

main.cpp: Main Application

#include "Foo.h"

int main()

{

Foo a; // define Foo variable a on stack

a.set_x(5); // set its x component to 5

a.print(); // print a to stdout

return 0;

}

To compile the entire project issue: g++ main.cpp

Foo.cpp

CMPUT 350, F2020, M. Buro Constructors 17

Constructors

It is good practice to initialize objects when they are
created and cleaning up when they are no longer needed
— automatically if possible. For this purpose, C++
features constructors and destructors

class Foo

{

public:

Foo() { x = 0; } // constructor 1

Foo(int x_) { x = x_; } // constructor 2

private:

int x;

};

In main() :

Foo a; // constructor 1 called

Foo b(); // NO! - declares function b returning a Foo!

// In C/C++, everything that looks like

// a function is treated like one

// Foo b(); doesn’t even work if the constructor

// has a default parameter value

Foo c(10); // constructor 2 called

Foo *p = new Foo(1); // constructor 2 called

Foo *q = new Foo; // constructor 1 called

Foo d[100]; // constructor 1 called 100 times

CMPUT 350, F2020, M. Buro Constructors 18

Whenever an object is created (as local variable on
stack, or as part of another object, or with operator
new on the heap), the class constructor is called

Class variables can be automatically initialized by con-
structors

NICE! No uninitialized struct variables anymore! This
is a major improvement over C

If not defined, the compiler creates the DEFAULT con-
structor for you. It does not initialize POD members,
but calls sub-object constructors recursively

CMPUT 350, F2020, M. Buro Constructors 19

Example

class Y

{

public:

// initialize b when Y is created

Y() { b = 0; }

int b;

};

class X

{

public:

int a;

Y y;

};

int main()

{

X x; // what happens here?

}

CMPUT 350, F2020, M. Buro Constructors 20

Default constructor of X is called, which the compiler
writes for you

In it, the Y constructor is called for object x.y, setting
x.y.b = 0

x.a is undefined (POD)

CMPUT 350, F2020, M. Buro Destructors 21

Destructors

A destructor is called whenever a class variable leaves
the scope or is deleted

NICE: automatic cleanup!

class Foo

{

public:

// automatically allocate array when a

// Foo is created

Foo() { p = new int[100]; }

// destructor: clean up when done

// name: ~Classname

~Foo() { delete [] p; }

private:

int *p;

};

CMPUT 350, F2020, M. Buro Destructors 22

Examples

Foo *p = new Foo;

// first allocates space for one Foo variable on

// heap and then calls Foo constructor on this

// variable, which allocates 100 ints

delete p;

// first calls destructor ~Foo() on variable p

// points to (which frees 100 ints) and then

// returns the memory occupied by that variable

// (sizeof(Foo) bytes) to the operating system

Foo *q = new Foo[200];

// first allocates space for 200 Foo variables on

// heap and then calls Foo constructor on each

// of these variables, allocating 100 ints each

delete [] q;

// first calls destructor ~Foo() on each of the

// 100 variables stored in array (freeing 100 ints

// each) and then returns the array memory

// (200 * sizeof(Foo) bytes) to the operating system

if (ok) {

Foo x; // creates Foo object call stack (not on heap!)

... // then calls the constructor on variable x

} // here, x leaves scope (unknown outside { }) =>

// destructor called on x, before releasing stack

// memory for x

CMPUT 350, F2020, M. Buro Destructors 23

if (ok) {

Foo *p = new Foo; // what happens here?

...

} // and here?

If we don’t define a destructor, the compiler creates a
default destructor for us, which only calls the destruc-
tors of all non-POD members

The destructor must be defined whenever the class ob-
ject allocates resources (memory, files, locks ...) that
need to be freed when the object is no longer needed

CMPUT 350, F2020, M. Buro Copy Constructor 24

Copy Constructor

Copy constructors (CCs) construct an object by copying
another object

Foo a; // Constructor is called

Foo b = a;

// Copy constructor is called when new object

// is initialized with existing object

Foo b(a); // equivalent syntax

Why do we need CCs ?

• It would be a waste of time if we first call the con-
structor and then overwrite the result with the state
of another object

• Also, simply copying data members bitwise may not
work. For instance, if we just copied pointers, both
pointers in a and b would point to the same object,
i.e. they share a resource. Often this is not accept-
able

CMPUT 350, F2020, M. Buro Copy Constructor 25

How to define a CC for class Foo?

class Foo

{

...

Foo(const Foo &rhs) // rhs = right-hand-side

{

...

}

...

};

You can think of the CC being a method of class Foo:
Foo b = a; and Foo b(a); both translate into call

b.CC(a)

where CC is Foo’s copy constructor defined above

So, a const reference to the rhs variable is passed as a
parameter to the CC which is called on the lhs object,
which in turn will be initialized

We use const because the copy operation X a = b; is
not supposed to change rhs object b

CMPUT 350, F2020, M. Buro Copy Constructor 26

Example

class Foo

{

public:

Foo() { x = y = 0; }

// this is what the default CC does:

// data members are copied one by one

// from the rhs object to the lhs object

// NB.: if class contains class variables

// their copy constructors are called

// recursively

Foo(const Foo &rhs)

{

x = rhs.x;

y = rhs.y;

}

private:

int x, y;

};

Foo a;

Foo b = a; // rhs=a; effect: b.x = a.x, b.y = a.y

CMPUT 350, F2020, M. Buro Copy Constructor 27

CCs are called whenever a new object is initialized with
the state of another existing object:

• Variable initialization:
Foo a = b;

Foo a(b); // equivalent

New variable a gets initialized with existing b

• Passing value parameters: g(a), with function

void g(Foo x) {...}
New local variable (parameter x) on the stack is
initialized with existing a

• Returning objects:

Foo g() {...}

Foo x = g();

This calls the copy constructor on x where the result
of the function call is the parameter
Clever compilers apply the so-called “return value
optimization”, which eliminates a copy operation by
passing on a reference to the variable the return
value is assigned to and constructing the result there
directly

CMPUT 350, F2020, M. Buro Copy Constructor 28

The default copy constructor, which is created when we
don’t provide one

• copies POD members bitwise,

• calls copy constructor for non-POD members

What about pointers?

•Watch out! Pointers are POD types, which are
copied bitwise

• After copying, pointee object is shared by the lhs
and rhs objects!

•Who then is responsible for deleting the shared ob-
ject?

• If sharing resources when copy constructing your ob-
jects isn’t what you want, then you need to define
your own copy constructor

CMPUT 350, F2020, M. Buro Copy Constructor 29

Example

// We want each X object to have its own

// int array

struct X

{

X() { p = new int[100]; }

~X() { delete [] p; }

int *p;

};

{

X u;

X v = u; // effect: v.p = u.p

// oops: both pointers identical

} // At this point the destructor is called on v

// and u. We try to delete the original u.p

// twice. If you are *lucky*, you’ll see the

// runtime system complain about this.

// OUCH. WE NEED TO IMPLEMENT THE CC

CMPUT 350, F2020, M. Buro Assignment Operator 30

Assignment Operator

Foo u, v; // calls constructor (twice)

Foo w = u; // calls CC

w = v; // this calls the class’s

// assignment operator (AO)

What is different?

• Here we overwrite an existing object (w) with an-
other one (v),

• Therefore, we may have to release resources in w
first!

CMPUT 350, F2020, M. Buro Assignment Operator 31

How to define the AO for class Foo?

a = b;

is transcribed by the compiler into

a.operator=(b)

object to act on: left-hand-side (lhs) a,

right-hand-side (rhs) b passed to method operator=

So, the AO can be considered a method!

For class Foo, it’s prototype is this:

Foo &operator=(const Foo &rhs) { ... } Huh?

----- --------------

| |

| reference to rhs, const because rhs is not supposed

| to be changed

|

the return value will be explained below

CMPUT 350, F2020, M. Buro Assignment Operator 32

Example

struct Foo

{

int u;

Foo() { u = 0; }

// assignment operator, pass on a reference to the rhs

// object

Foo &operator= (const Foo &rhs)

{

u = rhs.u; // for POD members, just copy bitwise

return *this; // returns a reference to the lhs object

} // itself. "this" points to the object

// itself and it is implicitly known in

// all methods

};

Note: this is a pointer to the object and *this refers
to the object itself. So, method

Foo f() { return *this; }

returns a copy of the object; but

Foo &f() { return *this; }

just returns a reference the object itself (much faster)

CMPUT 350, F2020, M. Buro Assignment Operator 33

The default AO, which is created if you don’t provide
one, does member-by-member copy

• bitwise copy for POD members and calling the as-
signment operators for all other data members

• this may not be what you want if the class has
pointer members! (see sharing issues discussed in
the CC section)

• you can provide your own AO for each class if the
default AO is insufficient

CMPUT 350, F2020, M. Buro Assignment Operator 34

A more complex example of what the default AO does:

struct X

{

int a, b;

};

struct Y

{

// this is what the default AO does

Y &operator= (const Y &rhs)

{

c = rhs.c; // bitwise copy of POD members

d = rhs.d; // c and d

x = rhs.x; // this calls X’s AO whose effect

// is this:

// x.a = rhs.x.a; x.b = rhs.x.b;

return *this;

}

int c, d;

X x;

};

CMPUT 350, F2020, M. Buro Assignment Operator 35

So why is the AO returning a reference to the object
itself?

This allows us to chain assignments like so:

a = b = c;

whose effect is to first copy c to b and then b to a. As
we will see later in the section about operator overload-
ing, this statement is equivalent to:

a.operator=(b.operator=(c));

So, even operators can be viewed as methods!

If operator= returns a reference to the object itself, its
result can serve as the parameter for the next call

Voila - with this, operators can be chained!

If you used

void operator=(const X &rhs) { ... }

to define your AO then a = b = c; will be flagged as
a type error

CMPUT 350, F2020, M. Buro Assignment Operator 36

Complete Example

#include <iostream>

using namespace std;

class X

{

public:

X() { cout << "CONSTR " << this << endl; }

X(const X &rhs) { cout << "COPY " << this << endl; }

X &operator=(const X &rhs)

{

cout << "ASSIGN " << this << endl;

return *this;

}

~X() { cout << "DESTR " << this << endl; }

};

void g(X x) { cout << "g" << endl; }

int main() what: address in memory:

{

X u; CONSTR 0x7fffa2874d2e

X v(u); COPY 0x7fffa2874d2d

X w = v; COPY 0x7fffa2874d2c

v = u; ASSIGN 0x7fffa2874d2d

g(v); COPY 0x7fffa2874d2f (creating x)

g

DESTR 0x7fffa2874d2f (x)

DESTR 0x7fffa2874d2c (w)

DESTR 0x7fffa2874d2d (v)

DESTR 0x7fffa2874d2e (u)

}

CMPUT 350, F2020, M. Buro Assignment Operator 37

Another more complex — and buggy — example:

// Vector class that requires ctor,cc,ao,dtor

#include <iostream>

class V

{

public:

// creates vector of n_ elements

V(int n_) { alloc(n_); }

V(const V &rhs) { copy(rhs); }

V &operator=(const V &rhs) { free(); copy(rhs); return *this; }

~V() { free(); }

int size() const { return n; } // return number of elements

private:

// implementation details

int n; // number of elements

int *p; // vector has its own array, thus shallow copy does not work

void alloc(int n_) { n = n_; p = new int[n]; } // allocates array

void free() { delete [] p; } // releases array

void copy(const V &rhs) { // copies array into newly

alloc(rhs.size()); // allocated array

for (int i=0; i < n; ++i) {

p[i] = rhs.p[i];

}

}

};

Above code is buggy: think about what can happen if
you try V v(10); v = v; How to fix this?

CMPUT 350, F2020, M. Buro Assignment Operator 38

v = v; in above implementation first releases memory
associated with v, and then uses it

Ouch! It may have changed in the interim

So, we need to guard against self assignment!

class X

{

public:

// general assignment operator code template

X &operator= (const X &rhs)

{

if (this == &rhs) { // self-assignment,

return *this; // nothing to do!

}

// release current resources and copy rhs

...

return *this;

}

};

CMPUT 350, F2020, M. Buro Assignment Operator 39

Summary

Difference between Copy and Assignment:

Copy: the space we copy to does not contain anything,
so we can just overwrite it

X a = b; // defining a, just copy b over

Assignment: the space we copy to is occupied. We may
have to release resources before copying

a = b; // if a contains a resource its assignment

// operator must first release it before

// copying members

CMPUT 350, F2020, M. Buro Assignment Operator 40

Shallow vs. Deep Copy

In the presence of pointer data members we have to
decide how to copy objects

If we allow to share resources, the default CC and AO
will work fine — as they copy bits in case of POD
members (shallow copy) and call the CC/AO for non-
POD types recursively

Otherwise we need to copy the data the pointer points
to recursively (deep copy)

In this case, we need to implement both CC and AO,
and most likely the destructor as well

Make sure that there are no resource leaks and no self-
assignments!

Rule of 3: if you decide you need to define your own
destructor, CC, or AO, you most likely also have to
define the other two

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 41

More on Customizing CCs and AOs

We have discussed what default constructors, destruc-
tors, CCs, and AOs do

Here we explain how to customize your CCs and AOs
in more complex settings

Suppose your class has data members of various types:

struct Foo

{

Foo() { p = new int; }

int x, y, z;

int *p; // non-shared memory resource:

// single integer

Bar a, b, c;

};

The presence of a pointer almost always calls for im-
plementing the destructor, CC, and AO

In the implementation of the CC and AO we want to
make use of Bar’s CC and AO. This is the concept of
encapsulation at work, whereby we shan’t be required
to change class Foo when class Bar is changed

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 42

Step 1: Destructor

~Foo() { delete p; } // release resource

This only works if after executing our code, the destruc-
tors for a,b,c are called, which is indeed the case

Note, that nothing has to be done for destroying x, y,
and z, as they are non-pointer POD members

So: Even when implementing the destructor, non-POD
members are destroyed automatically

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 43

Step 2: CC

What does the CC Foo(const Foo &rhs) have to
do?

• bitwise copy of rhs.x,rhs.y,rhs.z into x,y,z,
respectively (non-pointer POD)

• copy-construct a,b,c from rhs.a,rhs.b,rhs.c,
respectively

• if rhs.p = nullptr, set p = nullptr

• otherwise: allocate new integer and let p point to it

• finally, set *p to *rhs.p

How do we do that? With constructor initialization
lists:

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 44

Foo(const Foo &rhs)

: x(rhs.x), y(rhs.y), z(rhs.z),

a(rhs.a), b(rhs.b), c(rhs.c)

// - before any code below runs these copy constructions

// will be executed

// - all non-POD members not listed will be

// constructed using their respective constructors

// - all POD members not listed will be uninitialized

{

if (!rhs.p) {

p = nullptr;

return;

}

p = new int;

*p = *rhs.p;

}

So: to implement the CC you need to use a constructor
initialization for all data members, except for pointers
you handle separately. Any non-POD data member not
listed there will be constructed

Warning: If you add data members, you need to adjust
the CC code!

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 45

Step 3: AO

For implementing Foo’s AO we want to use Bar’s AO:

Foo &operator=(const Foo &rhs)

{

if (this == &rhs) {

return *this; // guard against self-assignment

}

// forget one of them, and data will become inconsistent

// assign POD

x = rhs.x;

y = rhs.y;

z = rhs.z;

// assign non-POD by invoking AOs explicitely

a = rhs.a;

b = rhs.b;

c = rhs.c;

// deal with p: consider cases of lhs.p/rhs.p == nullptr?

if (!rhs.p) {

delete p; // delete previous lhs data

p = nullptr; // (note: delete nullptr: nothing happens)

} else {

if (!p) { p = new int; }

*p = *rhs.p;

}

return *this;

}

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 46

So: when implementing your own AO, nothing is done
automatically. You need to assign each data member
individually, but you can make use of existing non-POD
AOs

Warning: If you add data members, you need to adjust
this code!

Download file material/CCAO-test.cpp to run some
experiments: see what happens when commenting out
the operator= lines

CMPUT 350, F2020, M. Buro More on Customizing CCs and AOs 47

More on Initialization Lists

They also can be used in constructors:

// With init. list: Without:

struct Foo struct Foo

{ {

Foo(Bar &x_, Bar &y_) Foo(Bar &x_, Bar &y_)

: x(x_), y(y_) {

{ x = x_; y = y_;

} }

Bar x, y; Bar x, y;

}; };

What is different?

In the constructor without initialization list, x,y are
first constructed (all non-POD variables are constructed
before the constructor code is executed), and then the
AOs are executed, which may first free the resources
that were allocated before, which is wasteful

With initialization list, x,y are copy-constructed, which
is usually FASTER

CMPUT 350, F2020, M. Buro Making Methods Inaccessible 48

Making Methods Inaccessible

In C++98, when you needed to prevent clients from us-
ing certain functions like ones automatically generated
by the compiler (e.g., copy constructors and assignment
operators), you would declare them private:

class A

{

...

private:

A(const A &); // can’t copy constr.

A &operator=(const A &); // can’t assign

In C++11, there’s a better way to achieve essentially
the same:

class A

{

public:

...

A(const A &) = delete;

A &operator=(const A &) = delete;

CMPUT 350, F2020, M. Buro Making Methods Inaccessible 49

The new approach is more powerful, as it allows you to
delete any function, not just class member methods

Suppose you have a function taking an int, and you
want only an int, not a double that will be rounded:

void someFunc(int n); // can be called with a double

// someFunc(3.5)

void someFunc(double) = delete; // can no longer be called

// with a double argument

