
CMPUT 350, F2020, M. Buro Contents 1

CMPUT 350

Advanced Game Programming: C++

Instructor: Michael Buro

These are notes for the C++ part of CMPUT 350 as
it was taught at the University of Alberta in the Fall
term of 2020. The presented material has been drawn
in part from freely available sources, such as Wikipedia
and C/C++ tutorial webpages, and notes I collected
during years of C/C++ programming and teaching.

These notes go beyond the slide shows that are usually
presented in course lectures these days in an attempt
to replace costly text books.

I appreciate suggestions for improvements.

– Michael Buro, Edmonton, September 2020

CMPUT 350, F2020, M. Buro C++ Course Contents 2

C++ Course Contents

Part 1: From C to C++
Introduction, C vs. C++ overview, reference types,
const, default arguments, dynamic memory alloca-
tion (new/delete)

Part 2: C++ Classes
C structs vs. C++ classes, separating interface and
implementation, constructors, desctructors, copy con-
structor, assignment operator

Part 3: Object Oriented Programming in C++
Class inheritance, assignments across class hierar-
chy, reusing base class operators, constructors/de-
structors and inheritance, virtual functions

Part 4: More on C++ Classes
Type casts, static data and functions, operator over-
loading

Part 5: Generic Programming in C++
Template functions, class templates, template spe-
cialization, template applications

CMPUT 350, F2020, M. Buro C++ Course Contents 3

Part 6: Standard Template Library (STL)
Sequence containers, associative containers, STL al-
gorithms

Part 7: C++ Odds and Ends
Exceptions, RAII, Smart Pointers, major C++11 /
14 / 17 additions, Review

CMPUT 350, F2020, M. Buro C++ Course Contents 4

Part 1: From C to C++

Contents [DOCUMENT NOT FINALIZED YET]

• Introduction p.5

• C vs. C++ p.6

• Introduction to C++ Input/Output p.11

• Standard Error Stream p.12

• C/C++ Number Types p.13

• Reference Types p.14

• Default Arguments p.20

• Dynamic Memory Allocation p.21

• Operator new p.22

• Operator delete p.23

• Dynamic Arrays p.25

CMPUT 350, F2020, M. Buro Introduction 5

Introduction

Why C++? you may ask.

As the name suggests, C++ strives to be a better C.

C pros:

• Compilers are FAST; code is FAST; often only little
slower than hand-written assembly language code

• Lingua Franca of computing — C is ubiquitous

• Portable. C compilers are available on all systems

• Compilers/interpreters for new languages are often
written in C

Some C issues C++ rectifies:

• Struct initialization and freeing resources is error
prone
(must not forget calling functions)

• Weak support for generic programming
(essentially macros)

• Object oriented programming not well supported

CMPUT 350, F2020, M. Buro C vs. C++ 6

C vs. C++

We assume that you have basic knowledge of C
(remember CMPUT 201 or 274/5?)

Feeling rusty? Look at CMPUT 201 notes and CRe-
fresher.pdf (on webpage)

C can be considered a subset of C++, with only a few
exceptions. E.g.

void *ptr;

int *i = ptr; // valid C but not C++

// can’t assign generic pointers (void*)

// to other pointer variables

C++ additions:

• reference types, const correctness,

• default parameter values,

• classes, inheritance,

• operator overloading,

• templates, exceptions, name spaces,

• and more

[The latest standard (C++17) supports lambda expres-

CMPUT 350, F2020, M. Buro C vs. C++ 7

sions, auto, initializer lists, and much more]

These make it much easier to manage large projects

Code can be made safer and more readable without sac-
rificing speed. C++ implements the “zero-overhead”
principle: you don’t pay for features you don’t use

// this is a C program

#include <stdio.h>

int main()

{

printf("hello world\n");

return 0;

}

// this is a C++ program

#include <iostream>

int main()

{

std::cout << "hello world" << std::endl;

return 0;

}

CMPUT 350, F2020, M. Buro C vs. C++ 8

Basic Building Blocks

// this is a comment

#include <iostream> // preprocessor command: include file

// mostly used for functions, macros, class declarations

int foo(int x) // function definition: return type

// and parameters

{ // block

return x+1; // return expression value

}

int main() // this is where all C/C++ programs start

{

int i = 0; // variable declaration + init.

while (i < 10) { // loop

i = i+1; // expression + assignment

std::cout << foo(i) << " "; // operators + call

}

if (i >= 10) { // condition

i = 1;

} else {

i = 0;

}

return i; // return result, exit function

}

CMPUT 350, F2020, M. Buro C vs. C++ 9

It is important to comment your code – for others and
yourself!

/* this is an old-style

multi-

line

comment (C, also C++)

*/

// this is a single line comment (C++)

Multi-line comments cannot be nested; not allowed:
/* /* */ */

Where to put comments?

• mostly in header files where functions and structs/-
classes are defined (this is where the user looks, who
often is not interested in implementation)

• at the beginning of files describing their purpose

• on top of function definitions discussing parameters,
function effects, and return values

• on top of struct/class definitions describing their
purpose

• in front of non-trivial parts, meaning anything you

CMPUT 350, F2020, M. Buro C vs. C++ 10

wouldn’t instantly understand when looking at the
code a month later

There is no need to write novels or to comment each
program statement!

CMPUT 350, F2020, M. Buro Introduction to C++ Input/Output 11

Introduction to C++ Input/Output

#include <iostream> // imports definitions of

// input/output stream classes

using namespace std; // instructs compiler to look in

// namespace std, in which cout

// and endl are defined.

// Saves typing: E.g. cout rather

// than std::cout

int main()

{

int n;

cout << "n=?\n"; // output string

cin >> n; // input number

cout << "2*n=" << (2*n) << endl; // output string and

// expression result

return 0;

}

Input via input-stream cin (”standard input”)

cin >> var1 >> var2 >> ... >> varn;

Output via output-stream cout (”standard output”)

cout << exp1 << exp2 << ... << expn;

cin/cout defined in standard C++ header file
<iostream>

[similar to stdin/stdout in C (file descriptors 0,1)]

CMPUT 350, F2020, M. Buro Standard Error Stream 12

Standard Error Stream

Another predefined output stream: cerr

Used for error messages

Same output operator: <<

By default, output is also sent to the console, but it is
not redirected when using > or |

cerr << "division by zero" << endl; exit(10);

[similar to stderr in C, file descriptor 2]

Can be redirected, too. E.g.

command > coutfile 2> cerrfile

sends output to cout to coutfile and output to cerr to
cerrfile

command 2>&1 file

sends all output to cout and cerr to file

[see bash manual for more on redirection]

Visit http://www.cplusplus.com/ref/iostream to
get more information on iostreams

CMPUT 350, F2020, M. Buro C/C++ Number Types 13

C/C++ Number Types

C++ uses the same fundamental number types as C:
char, short, int, float, double

C++ adds type bool which contains values true, false

IMPORTANT: make sure variables have the right type
to avoid underflows and overflows

In C/C++, integer expressions are NOT checked for
overflows/underflows!

unsigned char foo = 255; // unsigned 8-bit value

unsigned char bar = foo+1;

// value of bar is 0 because of 2s-complement

// number representation:

// 255 (base 10) = 11111111 (base 2)

// +00000001

// =(1) 00000000 = 0 (base 10)

Floating-point overflows/underflows are indicated by spe-
cial values (+Inf, -Inf, NaN)

But program continues anyway (even after say c =
1.0/0.0)

CMPUT 350, F2020, M. Buro Reference Types 14

Reference Types

C passes parameters by value (except for arrays), C++
supports parameter references directly

C++ references are aliases. They can be emulated in
C by passing pointers to variables

Example 1: Using references

// & prefix indicates reference

int A[] = { 1, 2, 3, 4 };

int &x = A[2]; // x is a reference (or alias) of A[2]

++x; // operations on x now affect A[2] (now 4)

if (x > 10) ... // equivalent to if (A[2] > 10) ...

Example 2: Call-by-reference

void increment(int &x)

{

++x;

}

int y = 5;

increment(y); // that worked: y now 6

Here, a reference to variable y is passed to a function
(internally represented as a pointer to y). In this case
reference x is an alias for variable y

CMPUT 350, F2020, M. Buro Reference Types 15

Statements in the function body that act on the pa-
rameter change the variable whose reference has been
passed. So, by using references, a function can have
side effects (i.e., change the calling environment)

Compare this to

void nop(int x) // call by value

{

++x;

}

Here, local variable x is incremented, but then discarded
when the function is exited. Function nop doesn’t
change anything in the caller environment

Using reference parameters, we can return more than
one function value

CMPUT 350, F2020, M. Buro Reference Types 16

By convention, input parameters are listed first, fol-
lowed by output (reference) parameters

// function "returns" 3 values

int foo(int in1, int in2, int &out1, int &out2)

{

out1 = out2 = 3; // 2

return 4; // one more

}

Only variables can be passed on to reference parame-
ters, because an address is required

Example: Swap Function

void swap(int &x, int &y)

{

// triangle exchange

int temp = x; x = y; y = temp;

}

a = 1; b = 2; // before: a = 1, b = 2

swap(a, b); // after: a = 2, b = 1

swap(1, 2); // error

Equivalent C code:

CMPUT 350, F2020, M. Buro Reference Types 17

void swap(int *px, int *py)

{

// triangle exchange

int temp = *px; *px = *py; *py = temp;

}

a = 1; b = 2; // before: a = 1, b = 2

swap(&a, &b); // after: a = 2, b = 1

Sometimes it is useful to be able to pass constants or
results of function calls as arguments to functions with
reference parameters. E.g.

int foo();

void bar(int &x);

...

bar(2); bar(foo());

However, both forms are illegal in C++, because con-
stants and return values are nameless temporary objects
(so-called “right-hand-side” or rvalues). If function bar
has a side effect on parameter x, this effect wouldn’t be
visible when applied to temporary objects because they
are destroyed before the next expression is evaluated

Using void bar(const int &x) solves this problem

CMPUT 350, F2020, M. Buro Reference Types 18

Passing Large Read-Only Objects

void do_something(T big) { ... }

...

T x;

do_something(x); // slow! x is copied

Passing large read-only objects by value is wasteful:
they are copied into local variables and not changed
...

Use const reference instead:

void do_something(const T &big) { ... }

...

T x;

do_something(x); // equivalent but much faster!

Address is passed to function, no copy overhead

const ensures that the function body does not change
the object. If it does, the compiler will issue an error
message

CMPUT 350, F2020, M. Buro Reference Types 19

Call-by-Value vs. Call-by-Reference

Call-by-Value

+ Callee detached from caller, no direct side effects

− Data is copied to a local variable. Can be time con-
suming

Call-by-Reference

− Possible side effects, need to look at function decla-
ration to see whether call-by-reference is used
E.g. foo(x) doesn’t tell you whether foo’s parameter
is int or int&

+ Only reference is copied. Fast - internally it’s just a
pointer

Added bonus: const qualifier protects read-only param-
eters

CMPUT 350, F2020, M. Buro Default Arguments 20

Default Arguments

void print(int value, int base = 10);

print(31); print(31,10);

print(31,16); print(31,2);

-> 31 31 1f 11111

Arguments can have default values

All default arguments must be in the rightmost posi-
tions. Omitting arguments begins with the rightmost
one. E.g.

void foo(int a, int b=2, int c=3, int d=4) {...}

foo(); is illegal

foo(x); calls foo(x, 2, 3, 4);

foo(x, y); calls foo(x, y, 3, 4);

foo(x, y, z); calls foo(x, y, z, 4);

foo(4, 3, 2, 1); calls foo(4, 3, 2, 1);

// illegal:

void bar(int a=1, int b, int c=3, int d);

// why? bar(x,y,z) would be ambiguous - is c or

// a assigned a default value?

CMPUT 350, F2020, M. Buro Dynamic Memory Allocation 21

Dynamic Memory Allocation

Local variables, function parameters, and function call
return addresses are located on the runtime stack (last-
in first-out (LIFO) data structure)

Dynamic memory that is more permanent and can out-
last function calls is allocated from a different part of
memory called heap

Operator new dynamically allocates memory on the heap

Operator delete is used to release it when no longer
needed – can be done later, even in a different function

As always with C or C++, YOU are in control because
the compiler cannot know when memory is no longer
needed and can be deleted

C/C++ does not have a garbage collector (yet)

CMPUT 350, F2020, M. Buro Operator new 22

Operator new

int *p = new int; // allocates space

// for one int

// p now points to it

// if program gets here, allocation succeeded

*p = 0; // use allocated memory

There is no initialization for basic C — plain old data
(”POD”) – types, unlike Java or Python!

YOUR CODE NEEDS TO INITIALIZE POD EXPLI-
CITELY. OTHERWISE CONTENT IS UNDEFINED,
IN WHICH CASE YOU CAN EXPECT RANDOM PRO-
GRAM BEHAVIOUR!

Calling new with class type calls class constructor (later)

No need to check return value against 0 — if no memory
is available an exception is thrown (later)

Good practice: don’t use malloc and free in C++
programs. new/delete are as fast and easier to use!

CMPUT 350, F2020, M. Buro Operator delete 23

Operator delete

int *p = new int; // allocate one int on heap

// do something with integer p points to (*p)

...

// free memory when integer *p is no longer used

delete p;

delete frees the memory its parameter points to

If p == 0, delete p does nothing. So you don’t have
to check p before calling delete

Before returning the memory back to the operating sys-
tem, the class destructor for non-POD types is called
(later)

Good practice for debugging your code: set pointer to
nullptr after delete to prevent further access of this
address through this pointer

delete p;

p = nullptr; // using p later will cause

// segmentation fault

Also: make sure each heap object has exactly one owner

CMPUT 350, F2020, M. Buro Operator delete 24

(i.e., object with a pointer pointing to the object) that
is responsible for its deletion

In C and C++03, 0 (zero) is a special pointer value
that can be assigned to any pointer variable regardless
of type

0 is not the address of any process memory. It can
therefore indicate errors when used as function return
value, or special conditions such as “this linked list node
has no successor”

0 is also an integer constant, which sometimes leads to
ambiguities (is it a pointer or is it an integer?)

Since C++11, using C’s NULL or 0 as pointer value is
discouraged. Use nullptr instead

CMPUT 350, F2020, M. Buro Dynamic Arrays 25

Dynamic Arrays

const int N = 100; // C++ way of declaring constants

float *p = new float[N]; // allocate N consecutive

// floating point numbers

...

for (int i=0; i < N; ++i) {

p[i] = 0.0;

}

...

// free array when no longer used

delete [] p;

new[] allocates an array of elements of the given type
on the heap

POD variables are not initialized, but for non-POD vari-
ables (i.e., classes) the constructor is called for each
array element. We’ll look at constructors shortly

When no longer used, free arrays using delete[]

Before memory is released, delete calls destructor for
each array element if it is non-POD

CMPUT 350, F2020, M. Buro Dynamic Arrays 26

new/delete Match

new/delete come in pairs:

For every new there should be at least one delete in
your program to avoid memory leaks

More specifically:

- For every new at least one corresponding delete

- For every new[] at least one corresponding delete[]

If mixed, the computation result is undefined

Such bugs are hard to track. Tools like valgrind and
setting pointers to nullptr after delete can help

