
CMPUT 350, F2023, M. Buro Contents 1

Part 7: Odds and Ends

Contents [DOCUMENT NOT FINALIZED YET]

• Error Handling and Exceptions p.2

• Exceptions p.3

• try-catch Blocks p.7

• Resource Acquisition Is Initialization (RAII) p.14

• Smart Pointers p.18

• Explicit Constructors p.25

• What else is new in C++11/14? p.26

• Type Inference: auto, decltype p.30

• Braced Initialization p.32

• Alias Declarations p.35

• Scoped Enums p.37

• Const Expressions p.38

• Lambda Functions p.40

• Review: C++ Programming Tips p.43



CMPUT 350, F2023, M. Buro Error Handling and Exceptions 2

Error Handling and Exceptions

Historical method used in C:

Use function return codes to indicate error conditions

E.g. int fgetc(FILE *stream);

• Returns read character (value in 0..255)

• or -1 if read error occurred

Drawbacks

• What if function returns full range of values?

• Errors can be easily ignored

Modern solution: Exceptions



CMPUT 350, F2023, M. Buro Exceptions 3

Exceptions

Dealing with rare error conditions

Write code as if nothing can go wrong

Enclose it in try-block which will be exited if some op-
eration fails and throws an exception

Add a catch-block to handle exceptions



CMPUT 350, F2023, M. Buro Exceptions 4

Example:

void foo1() {

vector<int> v1;

int main() { foo2();

try { foo1(); } g(); // not reached

catch (MyException &e) { } // but v1 destroyed

// execution continues here

// exception obj. destroyed

} void foo2() {

} string s2;

foo3();

g(); // not reached

} // but s2 destroyed

void foo3() {

throw MyException(); // object created

g(); // not reached

}



CMPUT 350, F2023, M. Buro Exceptions 5

Catching Exceptions

Once an exception is thrown (can be any type!), pro-
gram execution is suspended

The runtime system then looks for the next catch state-
ment whose type is compatible (i.e., exact match or
inheritance ancestor) with the thrown value:

• If the exception was thrown in a try block, the fol-
lowing catch statements are checked

• If there is no match, the search for an exception
handler resumes in the caller (“stack unwinding”)
after all local objects have been destroyed

• If no matching catch statement is found, the pro-
gram is aborted by calling std::terminate()

When match is found, the execution resumes there and
at the end of the catch block, the thrown object is
destroyed



CMPUT 350, F2023, M. Buro Exceptions 6

Function Definitions and throw

void f() throw() { } [deprecated in C++11]

f is not allowed to throw anything

void f() throw(IOException, MyException){}
[deprecated in C++11]

If f throws an exception not on the list, function
std::unexpected() is called (program terminates)

void f() { }

f is allowed to throw anything

void f() noexcept { } [new in C++11]

f is not allowed to throw anything

Usual throw syntax:

throw MyException();

// creates object and starts the stack-unwinding

// process to find a matching catch clause;

// can use any type we want



CMPUT 350, F2023, M. Buro try-catch Blocks 7

try-catch Blocks

try {

// do stuff as if nothing can ever happen

}

catch (MyException &e) {

// handle MyException here, get access to

// exception data through variable e

}

There can be multiple catch blocks, including

catch (...) { } // catches all exceptions

After doing some work in the catch block, the exception
can be re-thrown to continue the search for the next
matching catch statement up the call stack:

... throw; ...



CMPUT 350, F2023, M. Buro try-catch Blocks 8

Catch block ordering matters!

Exact types are matching, but also ancestor types in
the inheritance hierarchy!

struct MyException : public std::exception { }

try {

...

throw MyException();

...

}

catch (std::exception &e)

{

// matches

...

}

catch (MyException &e)

{

// never reached because

// std::exception is an

// ancestor of MyException

...

}



CMPUT 350, F2023, M. Buro try-catch Blocks 9

How to Catch Exceptions?

• Catch-by-pointer ?
catch (T *p) ... delete or not delete?
E.g. We could do this

throw new MyException;

// or

MyException e; // global variable

...

throw &e;

...

catch (MyException *p) { ... }

At this point it is impossible to know whether to
delete or not.

• Catch-by-value ?
catch (T v) ...

One additional copy, possible slicing!



CMPUT 350, F2023, M. Buro try-catch Blocks 10

Consequently, the only option left for catching excep-
tions is by reference:

catch (T &v) ... !

Also, be aware that catching exceptions is expensive —
exceptions should be rare events, and not used in the
regular flow of your program



CMPUT 350, F2023, M. Buro try-catch Blocks 11

Operator new and Exceptions

new throws std::bad alloc in case memory is un-
available

Thus, checking the result of new (!=0) is a waste of
time — it’s always != 0

The C++ standard demands that memory is available
if new doesn’t throw

In practice, however, this is operating system dependent

I.e.: In some operating systems such as Linux memory
allocation almost always succeeds, and you’ll learn that
you don’t have enough memory later when you start
accessing memory — segfault ...



CMPUT 350, F2023, M. Buro try-catch Blocks 12

Other Exception Pitfalls

Prevent resource leaks in constructors

Destructors are only called for fully constructed ob-
jects

Prevent exceptions from leaving destructors

Exceptions within exceptions terminate program

Special case: exceptions call destructors ...



CMPUT 350, F2023, M. Buro try-catch Blocks 13

Exception Safety

A program is called exception safe if in the case excep-
tions are thrown no resources are leaked

Here is an example which is exception unsafe:

void bar()

{

throw MyException();

}

void foo()

{

int *p = new int[1000];

bar();

delete [] p; // not executed -> memory leak

}



CMPUT 350, F2023, M. Buro Resource Acquisition is Initialization (RAII) 14

Resource Acquisition is Initialization (RAII)

Such resource leaks can be eliminated by following the
Resource Acquisition is Initialization (RAII) program-
ming paradigm:

Acquire resources only in constructors and release them
only in destructors

Everytime (even when exceptions are thrown) when ob-
jects go out of scope, their destructor is called. This,
when applying the RAII paradigm, will then release re-
sources like memory, file handles, or mutex locks

However, exceptions thrown in constructors MUST be
handled right away to free resources (and maybe re-
thrown), because destructors are not called on partially
constructed objects

Also: Exceptions must not leave destructors

• If an exception occurs in a destructor while unwind-
ing the stack, the program terminates

• A partially completed destructor has not done its job



CMPUT 350, F2023, M. Buro Resource Acquisition is Initialization (RAII) 15

RAII Examples

Say “good-bye” to using local pointers for memory al-
location

• T *p = new T; ... delete p;

• delete p may not be executed if an exception is
thrown in ... !

• Solution: smart pointers (coming up)

Open output file stream (ofstream) with constructor
call

• ofstream os("output.txt");

• When os goes out of scope, the file is closed auto-
matically



CMPUT 350, F2023, M. Buro Resource Acquisition is Initialization (RAII) 16

Another RAII Application: Locking

To prevent data corruption by concurrent write accesses
to shared data, locking critical regions in concurrent
programs is crucial

#include <thread>

#include <mutex>

#include <iostream>

#include <unistd.h>

using namespace std;

mutex my_mutex;

int shared = 0;

struct Count {

int id;

Count(int id) : id(id) { }

void operator()() {

for (int i = 0; i < 10; ++i) {

{ // critical region, make sure only one thread prints to cout

// and changes shared data by using a lock:

// - constructor of lock locks mutex

// - if mutex is locked, no other thread can enter region

lock_guard<mutex> lock(my_mutex);

cout << id << ": " << shared++ << endl;

// when leaving scope, mutex gets unlocked; if not done in

// destructor program could get dead-locked when exception

// is thrown, meaning that all other threads wait, but the

// mutex never gets released

}

sleep(1);

}

}

};



CMPUT 350, F2023, M. Buro Resource Acquisition is Initialization (RAII) 17

int main(int argc, char *argv[])

{

// create thread, running Count(1)()

thread t1(Count(1));

// create thread, running Count(2)()

thread t2(Count(2));

// wait for both threads to finish

t1.join();

t2.join();

return 0;

}

// g++ thread.c -lpthread



CMPUT 350, F2023, M. Buro Smart Pointers 18

Smart Pointers

Objects that look, act, and feel like regular pointers

Used for resource management. E.g.

• Reference counting

• Solving the pointers and exceptions problem

Gain control over:

• Construction and destruction

• Copying and assignment

• Dereferencing



CMPUT 350, F2023, M. Buro Smart Pointers 19

Smart Pointers (since C++11)

Boost’s shared ptr made it into the C++11 stan-
dard. Its scoped ptr and scoped array functional-
ity is supported by the new unique ptr smart pointer
class

unique ptr<T>, unique ptr<T[]>

• Simple sole ownership of single object or array, resp.

• Will free memory correctly when going out of scope
(calls delete or delete[] resp.)

• Cannot be copied (safeguard)
So, storing them in STL containers is problematic if
elements get copied

shared ptr<T>, shared ptr<T[]> (since C++17)

• Shared, reference counted ownership of single object

• Causes no problems when stored in STL containers

• Cannot handle cyclic data structures



CMPUT 350, F2023, M. Buro Smart Pointers 20

unique ptr Examples

#include <memory>

using namespace std;

void foo()

{

// unique_ptr owns new Foo object

auto p = make_unique<Foo>();

// old way (obsolete):

// unique_ptr<Foo> p(new Foo);

unique_ptr<Foo> q = p; // illegal, safeguard!

p->bar(); ... // use like regular pointer

// also works for arrays

auto pa = make_unique<Foo[]>(100);

// old way (obsolete):

// unique_ptr<Foo[]> pa(new Foo[100]);

unique_ptr<Foo[]> qa = pa; // illegal

pa[10].bar(); // use like regular array

pa->bar(); // illegal

// p destroyed here => destroys Foo object

// pa destroyed here => destroys Foo array

}



CMPUT 350, F2023, M. Buro Smart Pointers 21

shared ptr Examples

#include <memory>

using namespace std;

void foo(shared_ptr<Foo> &q)

{

// allocate new Foo and initialize shared

// pointer with address

auto p = make_shared<Foo>(); // ref. count 1

// old way (obsolete):

// shared_ptr<Foo> p(new Foo);

q = p; // pointer copy => reference count 2

// p destroyed here => reference count 1

// Foo object not destroyed yet!

}

void main()

{

shared_ptr<Foo> q;

foo(q); ...

// q destroyed here

// => reference count 0 => object destroyed

}



CMPUT 350, F2023, M. Buro Smart Pointers 22

Using smart pointers helps making functions exception-
safe:

void foo()

{

// old: int *p = new int[100];

auto p = make_unique<int[]>(100);

bar();

// p goes out of scope: release array

// even if bar() throws an exception

// old: delete [] p;

}

If bar() throws an exception then p is destroyed in the
stack unwinding process ; no memory leak

When using old-style memory allocation code (red) the
delete statement is not reached when bar() throws
an exception ; memory leak

In addition, we don’t have to worry about matching
new/delete brackets anymore!



CMPUT 350, F2023, M. Buro Smart Pointers 23

unique ptr Implementation Sketch

template <class T>

class unique_ptr

{

private:

T *px; // wrapping a plain old pointer

// non-copyable

unique_ptr(const unique_ptr &) = delete;

unique_ptr &operator=(const unique_ptr &)

= delete;

public:

// explicit: need to pass on value of exact

// type T*; no implicit conversions performed

// to create match (see below)

explicit unique_ptr(T *p=nullptr): px(p) { }

~unique_ptr() { delete px; }

T &operator*() const { return *px; }

// member data access, e.g. p->a = 0

T *operator->() const { return px; }

};



CMPUT 350, F2023, M. Buro Smart Pointers 24

unique ptr also supports “move semantics”, i.e. mov-
ing ownership around without having to copy and delete
temporary objects. unique ptrs can be stored in STL
containers as long as no copy operations are performed

Examples

#include <memory>

auto pA = make_unique<int[]>(10); // array, def. constr.

auto p1 = make_unique<int>(5); // single value

unique_ptr<int> p2 = p1; // error: copy not allowed

unique_ptr<int> p3 = move(p1); // transfers ownership:

// p3 owns the obj. and p1 is rendered invalid

p3.reset(); // frees memory

p1.reset(); // does nothing

using V = vector<unique_ptr<int>>;

V v1; // fine

V v2(begin(v1), end(v1)); // error (copy)

sort(begin(v1), end(v1)); // fine, because sort

// can move things around instead of copying



CMPUT 350, F2023, M. Buro Explicit Constructors 25

Explicit Constructors

struct A

{

A(int x) { }

};

// this is legal C++ code:

A a = 37;

// really?

// compiler is looking for conversion int -> A

// and finds "converting constructor" A(int)

To disallow this confusing syntax, use explicit:

struct A

{

explicit A(int x) { }

};

This disables the implicit conversion:

A a = 37; // now illegal

We have to use

A a(37);

instead



CMPUT 350, F2023, M. Buro What else is in C++11/14? 26

What else is in C++11/14?

After 8 years in the making a new C++ standard was
passed in 2011

It introduced a multitude of new features. Some of
them are beyond this introduction. Others we have
seen already

Here is a brief description of some of the new features.
To learn more about C++11/14, please visit Wikipedia
en.wikipedia.org/wiki/C%2B%2B11 or read some
newer books on the subject, such as

• B. Stroustrup: The C++ Programming Language
(4th Edition)

• S. Meyers: Effective Modern C++

• S. Meyers: Overview of the New C++ (C++11/14)

• N.M. Josuttis: The C++ Standard Library - A Tu-
torial and Reference, 2nd Edition



CMPUT 350, F2023, M. Buro What else is in C++11/14? 27

New C++11/14 Features: Overview

Core language usability enhancements:

• Initializer lists vector<int> x{3,4,5}
• Uniform initialization X x{0,1};
• auto type inference auto it = begin(cont);

• decltype type inference (1)

• Range-based for loop : for (auto &x : cont)

• Lambda functions (see below)

• Null pointer constant nullptr

• Strongly typed enumerations (see below)

• Alias templates (2)

• Constant expressions (3)

decltype(l) x; // (1) has same type as l

template <class T, unsigned I, unsigned J> // (2)

using array2 = std::array<std::array<T, J>, I>;

array2<int, 3, 4> a34;

constexpr int square(int x) { return x*x; } //(3)

// can be evaluated at compile time - square(10)



CMPUT 350, F2023, M. Buro What else is in C++11/14? 28

Core language functionality improvements

• Move semantics (1)

• Variadic templates (2)

• User-defined literals (3)

• Explicitly defaulted and deleted special member func-
tions (4)

• Type long long int (5)

• Static assertions (6)

vector<int> w..., v(std::move(w)); // (1) moves w into v

// w empty afterwards

template<typename... Values> class tuple; // (2)

Length l = 3.5_cm; // (3)

struct X {

X(const X &) = default; // (4) default CC

};

long long int x; // (5) >= 64 bit integer

// (6) compile time check

static_assert(sizeof(x) == 8, "wrong size")



CMPUT 350, F2023, M. Buro What else is in C++11/14? 29

C++ standard library additions

• Upgrades to standard library components

• Threading facilities

• Tuple types (1)

• Hash tables (2)

• Regular expressions (3)

• General-purpose smart pointers (4)

• Extensible random number facility (5)

• Type traits for meta-programming

std::tuple<int,char,double> my_tuple; // (1) 3 values

std::unordered_set<int> hash_table; // (2)

std::regex rx("hello"); // (3)

regex_match(begin(str), end(str), rx);

std::unique_ptr<int> p(new int); // (4)

std::uniform_int_distribution<int> distr(0, 99); // (5)

std::mt19937 engine; // Mersenne twister MT19937

int random = distr(engine); // generate random number



CMPUT 350, F2023, M. Buro Type Inference: auto, decltype 30

Type Inference: auto, decltype

auto can be used to infer rhs types automatically:

Examples

auto x = 27; // int

const auto cx = x; // const int

const auto &rx = x; // const int&

for (const auto &p : m) // iterate through elems.

{ // of m via const references

...

}

C++14 added the ability to deduce function return
types and lambda parameters (see p.40)

auto func() // C++14: return type int is deduced

{

return 1;

}

auto variables must be initialized, are generally immune
to type mismatches that can lead to portability or ef-
ficiency problems, can ease the process of refactoring,
and typically require less typing than variables with ex-
plicitly specified types



CMPUT 350, F2023, M. Buro Type Inference: auto, decltype 31

decltype infers types of expressions and function re-
turn values and can be used in declarations like so:

double x;

decltype(x) y; // y has x’s type (double)

decltype(foo()) z; // z has foo’s return type

std::vector<decltype(foo())> v{foo()}; // cannot use auto

auto foo() -> int; // declares function foo returning int

// using functional trailing return

// type notation

template <typename T, typename U>

auto sum(T t, U u) -> decltype(t+u)

// return type is the type of t+u



CMPUT 350, F2023, M. Buro Braced Initialization 32

Braced Initialization

There are three ways of initializing a variable:

int x(0); // initializer in parenthesis

int y = 0; // initializer follows "="

int z{0}; // initializer is in braces

int z = {0} ; // equivalent to braces

Initialization using = is not an assignment:

Widget w1; // calls default constructor

Widget w2 = w1; // not an assignment! calls copy ctor

w1 = w2; // assignment, calls operator=

The new “Braced Initialization” (or Uniform Initializa-
tion) allows for previously inexpressible initializations.
Using braces, specifying the initial contents of a con-
tainer is easy:

std::vector<int> v{1}; // v’s initial content is 1

std::vector<int> u(1); // u created with size one,

// but the content is 0



CMPUT 350, F2023, M. Buro Braced Initialization 33

Braces can also be used to specify default initialization
values for non-static data members

class Widget

{

...

private:

int x{0}; // fine, x’s default value is 0

int y = 0; // also fine

int z(0); // error!

};

Uncopyable objects (like std::atomic) may be initialized
using braces or parenthesis, but not equals:

std::atomic<int> ai1{0}; // fine

std::atomic<int> ai2(0); // fine

std::atomic<int> ai3 = 0; // error!

This is why braced initialization is called uniform ini-
tialization, it can be used everywhere



CMPUT 350, F2023, M. Buro Braced Initialization 34

Braced initialization forbids narrowing conversions among
built-in types (for safety), and it can be used explicitly
without parameters

double x, y, z;

...

int sum{x + y + z}; // error! sum of doubles may not

// be expressible as an int

int sum(x + y + z); // OK, value truncated to an int

Widget w1(10); // calls ctor with argument 10

Widget w2(); // declares function w2 that

// returns a Widget - oops!

Widget w3{}; // calls Widget default constructor

Classes can support brace initializations like so:

#include <initializer_list>

struct S {

std::vector<int> v;

S(std::initializer_list<int> list) {

for (const auto &x : list) { v.push_back(x); }

}

};

int main()

{

S s{1, 2, 3, 4, 5}; // copy list-initialization

}



CMPUT 350, F2023, M. Buro Alias Declarations 35

Alias Declarations

C++11 introduced an alternative to typedef: alias
declarations:

typedef std::unordered_map<std::string, std::string> MapSS;

using MapSS = std::unordered_map<std::string, std::string>;

// FP is a synonym for a pointer to a function taking an

// int and a const std::string & and returning nothing

typedef void (*FP)(int, const std::string &);

using FP = void (*)(int, const std::string &);

In some cases, like the function pointer above, it can
make the code slightly more readable. However, the
most compelling reason to use them is alias templates:

template<typename T>

using MyAllocList = std::list<T, MyAlloc<T>>;

MyAllocList<Widget> lw;

Compare this to the equivalent typedef code:

template<typename T>

struct MyAllocList {

typedef std::list<T, MyAlloc<T>> type;

};

MyAllocList<Widget>::type lw;



CMPUT 350, F2023, M. Buro Alias Declarations 36

And if you want to use the typedef inside a template
to specify the type of a data member, you need to add
typename to the declaration:

template<typename T>

class Widget {

typename MyAllocList<Widget>::type list;

};

While with the alias template you can use it directly:

template<typename T>

using MyAllocList = std::list<T, MyAlloc<T>>; // as before

template<typename T>

class Widget {

MyAllocList<Widget> list;

};



CMPUT 350, F2023, M. Buro Scoped Enums 37

Scoped Enums

C++98 style enums can pollute the namespace:

enum Color { black, white, red }; // black, white, red are

// in same scope as Color

auto white = false; // error! white already

// declared

C++11 scoped enums don’t leak names into the scope
containing their enum definition:

enum class Color {black, white, red};// black, white, red

// are scoped to Color

auto white = false; // fine, no other

// "white" in scope

Color c = white; // error!

Color c = Color::white; // OK

auto c = Color::white; // OK

Scoped enums don’t implicitly convert to integral types.
For this, static cast is necessary:

enum Coord {X, Y};

std::cout << "X= " << static_cast<int>(Coord::X)

<< ", Y= " << static_cast<int>(Coord::Y);



CMPUT 350, F2023, M. Buro Const Expressions 38

Const Expressions

The constexpr specifier declares that it is possible to
evaluate the value of the function or variable at com-
pile time. Such variables and functions can then be
used where only compile time constant expressions are
allowed (provided that appropriate function arguments
are given)

Let’s start with constexpr variables: they are const
variables with values know at compile time:

int i; // non-constexpr variable

constexpr auto j = i; // error, i value not know

// at compilation time

std::array<int, i> a1; // error, same problem

constexpr auto k = 10 // OK

std::array<int, k> a1; // OK

constexpr functions can also be used wherever a com-
pile-time value is needed. In C++11 these functions
are very restricted, they can basically contain just a sin-
gle return statement (which can include the conditional
“?:” operator):



CMPUT 350, F2023, M. Buro Const Expressions 39

constexpr int pow(int base, int exp)

{

return (exp == 0 ? 1 : base * pow(base, exp - 1));

}

C++14 relaxed the conditions a bit, by allowing local
variables, conditionals and loops:

constexpr int pow(int base, int exp)

{

auto result = 1;

for (int i = 0; i < exp; ++i) {

result *= base;

}

return result;

}

This function can only be used where a constexpr

expression is needed if the arguments passed to it are
constexpr

In C++17/20/23 the scope of constexpr has been greatly
expanded



CMPUT 350, F2023, M. Buro Lambda Functions 40

Lambda Functions

A lambda function creates a closure, an unnamed func-
tion object capable of capturing variables in scope. Its
main use is to simplify the use of STL’s generic algo-
rithms. Previously, you had to create a named function
object:

struct Bigger {

bool operator()(int i) {return i > 3;}

};

std::vector<int> v{1, 2, 3, 4, 5};

int n= std::count_if(begin(v), end(v), Bigger());

With lambda functions, you can do it on the spot:

std::vector<int> v{1, 2, 3, 4, 5};

int n = std::count_if(begin(v), end(v),

[](int i) { return i > 3; });

The lambda function can capture local variables and
the this pointer in the scope where it is defined. The
capture list is a comma-separated list of zero or more
captures, optionally beginning with the capture-default.
The only capture defaults are & (implicitly catch local
variables and this by reference) and = (implicitly catch
local variables and this by value)



CMPUT 350, F2023, M. Buro Lambda Functions 41

Examples

struct S2 { void f(int i); };

void S2::f(int i)

{

[&, i] {}; // ok: capture all by reference

// and i by value

[&, &i] {}; // error: i preceded by &

// when & is the default

[=, this]{}; // error: this when = is the default

[i, i] {}; // error: i repeated

}

Closures can also be referred to by variable names and
copied:

int x{2}; // a local variable

auto c1 = [x](int y){ return x*y; }; // c1 is a copy of the

// closure produced

// by the lambda

auto c2 = c1;

int z = c2(3); // z = 6;



CMPUT 350, F2023, M. Buro Lambda Functions 42

As a final example, the following code replaces all el-
ements in a vector smaller than 5 with 55, and then
prints all its elements:

std::vector<int> v{1, 2, 3, 4, 5, 6, 7};

int x = 5;

std::replace_if(begin(v), end(v),

[x](int i) { return i < x; },

55);

std::for_each(begin(v), end(v),

[](int i) { std::cout << i << ’ ’; });

// output: 55 55 55 55 5 6 7



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 43

Review: C++ Programming Tips

“Wisdom and beauty form a very rare combination”
(Petronius Arbiter, Satyricon XCIV)

“With great power comes great responsibility”
(Spiderman’s Uncle)

Why C ?

• Code is FAST; compiler is FAST; often only little
slower than hand-written assembly language code

• Lingua Franca of computing

• Portable. C compilers are available on all systems

• Compilers/interpreters for new languages are often
written in C

Why C++ ?

• C + classes + templates: FAST code + coding
CONVENIENCE + SAFETY

• You are still in total control, unlike Java or C#



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 44

From C to C++

Use const and inline instead of #define

• Macros are not type-safe

• Macros may have unwanted side effects. Use tem-
plates instead.

Prefer C++ library I/O over C library I/O

• C’s fprintf and friends are unsafe and not exten-
sible.
Like the syntax "%6.2f"? Use boost::format

• C++ iostream class safe and extensible

• iostream speed has caught up, so speed is hardly
a reason anymore for choosing C-library I/O

Prefer C++ style casts — easy to find with grep

Distinguish between pointers and references

References always point to existing objects, no arith-
metic, safer



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 45

Memory Management

Use the same form in corresponding calls to new and
delete

int *p = new Foo; ... delete p;

int *p = new Foo[100]; ... delete [] p;

For each new there must be at least one corresponding
delete

Delete pointer members in destructors

Otherwise you are creating memory leaks

No need for checking the return value of new

It throws an exception if no memory available (in an
ideal world)

delete p with p = nullptr is OK
(ignored, no != nullptr check required)



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 46

Beware of double deletes ; undefined behaviour

• Make sure all objects have sole owners

• For debugging consider adding p = nullptr after
delete p or use template function:

template <typename T>

void destroy(T* &p)

{

delete p;

#ifndef NDEBUG

p = nullptr; // code created in debug mode

#endif

}

int *p = new int;

...

destroy(p);

*p = 0; // error caught in debug mode

Better yet: say good-bye to raw pointers, new and
delete, and use C++11 smart pointers and make *

functions instead!



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 47

The “Big-4”

When designing new classes decide which operators you
have to define: constructor, destructor, CC, AO

Things to consider: Do I want to risk undefined vari-
ables for gaining a little bit of speed for not initializing
all components? Do I allocate resources like memory
or file descriptors?

Define the CC and AO operators when resources are
dynamically allocated

Default component-wise copy is often insufficient in
this case

Make destructors virtual in base classes

Otherwise base class pointers can’t call the right de-
structor



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 48

Have the AO return reference to *this

For iterated assignments a = b = c ...

Assign to all data members in the AO

Check for self-assignment in the AO

if (this == &rhs) { return *this; }

Operators for which you know that the default imple-
mentation the compiler provides is wrong and you don’t
want to implement need to be made inaccessible by us-
ing = delete (or by making them private)

C++11 added move-semantics (see p4u.cpp in Lec-
ture 18). If for your class X moving is faster than copy-
ing, implement the move-constructor X(X &&) and move-
assignment X &X::operator=(X &&) which bind to
rvalue references. For more details, refer to the books
listed at the end or
https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 49

Operators

Never overload & && || ,

Distinguish between prefix and postfix forms of ++ --

They (should) return different types:

++i : returns reference to i

i++ : returns value of temporary object (can be
slower!)

Be consistent

E.g., + += prefix++ postfix++ should have re-
lated semantics



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 50

Class/Function Design (1)

Guard header files against multiple inclusion

#ifndef ClassName H ... or #pragma once

Strive for complete and minimal public interfaces

• complete: users can do anything they need to do

• minimal: as few functions as possible, no overlaps

Minimize compilation dependencies between files

Consider forward declaration in conjunction with point-
ers/references to minimize file dependencies:

class Address;

class Person { ... Address *address; ... }

No need to #include "Address.h" in Person.h.
Why?

Never use using namespace X; in header files

it forces users of your class to use the same names-
pace, even if they don’t want to



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 51

Class/Function Design (2)

Avoid data members in public/protected interfaces

Use get/set functions – more flexible and safer

Use const/constexpr whenever possible

Pass and return objects by reference if you can

But don’t return references to vanishing objects such
as local variables!

Avoid returning writable “handles” to internal data from
const member functions

Otherwise constant objects can be altered from the
outside



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 52

Inheritance

Make sure public inheritance models “is a”

Never redefine an inherited non-virtual function

Different results for pBase->f() and pDeriv->f()

Never redefine an inherited default parameter value

Virtual functions are dynamically bound

Default parameters are statically bound

Avoid casting down the inheritance hierarchy
(base to derived class)

Use virtual functions instead



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 53

Exceptions

Prefer exceptions over C-style error codes

Use destructors to prevent resource leaks

Say “good-bye” to pointers that manipulate local
resources – use smart pointers instead

Prevent resource leaks in constructors

Destructors are only called for fully constructed ob-
jects

Prevent exceptions from leaving destructors

Exceptions within exceptions terminate program and
unwinding exceptions calls destructors ...

Catch exceptions by reference

All alternatives create problems



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 54

Efficiency

Choose suitable data structures and efficient algorithms

Consider the empirical “80-20” rule:

• 80% of the resources are used by 20% of the code

• Focus your optimization efforts by using profilers
(e.g. gprof)

Avoid frequent heap memory allocation, prefer stack
variables

Know how to save space

bits, bytes, unions, home-brewed memory allocators

If necessary, optimize memory access patterns and data
alignment to benefit from fast cache memory architec-
tures

Understand costs of virtual functions, multiple inheri-
tance, exception handling

Consider alternative libraries (e.g., iostream vs. stdio)



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 55

STL Tips (1)

Choose your containers wisely

• sequence vs. associative?

• tree-based vs. hash-based?

• speed vs. memory consumption?

Prefer C++ arrays over C-arrays. C++ arrays can
check for index violations and know their size

If speed matters, use C++ arrays, vectors, or hashed
associative containers

Be careful when storing pointers in containers

• if the container owns the objects they have to be
destroyed before the container is destroyed

• possible dangling pointers to vanished objects

Make sure comparison functors implement strict weak
orderings



CMPUT 350, F2023, M. Buro Review: C++ Programming Tips 56

STL Tips (2)

Make sure destination ranges are big enough

Note which algorithms expect sorted ranges

Have realistic expectations about thread safety of STL
containers: YOU need to lock containers

Call empty() instead of checking size() against 0.
It may be faster.

Make element copies cheap and correct

STL copies elements often

More tips in Scott Meyers’

• Effective Modern C++ (C++11/14)

• Effective C++ (C++98/03 — but still relevant)

• More Effective C++

• Effective STL

C++ FIN


