
OpenGL and
Graphics Hardware

Overview of OpenGL
Pipeline Architecture
Alternatives

Overview of OpenGL
Pipeline Architecture
Alternatives

Administration

• Future classes in Wean 5409
• Web page off my home page:

http://www.cs.cmu.edu/~djames/15-462/Fall03

• Assignment #1 out next week (Tuesday)

How many of you have programmed in
OpenGL?

How extensively?

Question

What is OpenGL?

• A low-level graphics API for 2D and 3D
interactive graphics. OS independent.

• Descendent of GL (from SGI)
• Implementations: For the Linux PCs we

have Mesa, a freeware implementation.

GL: core graphics capability
GLU: utilities on top of GL
GLUT: input and windowing functions

What OpenGL isn’t:

• A windowing program or input driver,
since those couldn’t be OS independent.

• From the programmer’s point of view:
Specify geometric objects
Describe object properties
Define how they should be viewed
Move camera or objects around for animation

How does it work?

State machine with input and output:
• State variables: color, current viewing
position, line width, material properties, ...

• These variables (the state) then apply to
every subsequent drawing command

• Input is description of geometric object
• Output is pixels sent to the display

How does it work?

From the implementor’s perspective:
OpenGL pipeline

Rotate
Translate
Scale

Is it
visible? 3D to 2D Convert to

pixels

Primitives
+ material
properties

Let’s walk through the pipeline…

How does it work?

Display

• Put GL into draw-polygon state
glBegin(GL_POLYGON);

• Send it the points making up the polygon
glVertex2f(x0, y0);

glVertex2f(x1, y1);

glVertex2f(x2, y2) ...

• Tell it we’re finished
glEnd();

Build models in appropriate units (microns, meters, etc.).
Transform to screen coordinates (pixels) later.

Primitives: drawing a polygon

Code for all of today’s examples available from
http://www.xmission.com/~nate/tutors.html

����������

Specifying Primitives

Primitives: points, lines, polygons

• Why triangles, quads, and strips?

• Hardware may be more efficient for
triangles

• Strips require processing less data
–fewer glVertex calls

Primitives: points, lines, polygons

• glColor3f(r,g,b);

All subsequent primitives will be this color.
Colors are not attached to objects.
glColor3f(r,g,b) changes the system state.

Everyone who learns GL gets bitten by this!

Red, green & blue color model.
Components are from 0-1.

Primitives: Material Properties

Many other material properties available:
glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(MASK); /* 32x32 pattern of bits */

…

glDisable (GL_POLYGON_STIPPLE);

Primitives: Material Properties

• Ambient : same at every point on the surface
• Diffuse : scattered light independent of angle (rough)

• Specular : dependent on angle (shiny)

Primitives: Material Properties

lightmaterial.exe

lightpositions.exe

Light Sources

• Point light sources are common:

• Rotate
• Translate
• Scale
• glPushMatrix(); glPopMatrix();

transformations.exe

Transforms

Different views of an object in the world

Camera Views

Lines from each point on the image are drawn through
the center of the camera lens (the center of projection (COP)).

Camera Views

Many camera parameters…

For a physical camera:
• position (3)
• orientation (3)
• lens (field of view)

Camera Views

Camera Projections

• Orthographic projection
• long telephoto lens.

• Flat but preserving distances and shapes. All
the projectors are now parallel.

• glOrtho (left, right, bottom, top, near, far);

Camera Projections

• Perspective projection
• Example: pin hole camera
• Objects farther away are smaller in size

Camera Transformations

• Camera positioning just results in more
transformations on the objects:
–Transformations that position the object

relative to the camera

• Example:
void gluLookAt
(eyex, eyey, eyez,
centerx, centery, centerz,

upx, upy, upz)

up

COP
eye

Clipping

Not everything is visible on the screen

Rasterizer

• Transforms pixel values in world coordinates to
pixel values in screen coordinates

Special Tricks

• Gouraud Shading:
Change the color between setting each vertex,

and GL will smooth-shade between the
different vertex colors.

• Shadows on ground plane:
Render from the position of the light source and

create a shadow map

• Fog (fog.exe)

void DrawBox()
{

MakeWindow("Box", 400, 400);

glOrtho(-1, 1, -1, 1, -1, 1);

glClearColor(0.5, 0.5, 0.5, 1);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.0, 0.0);

glBegin(GL_POLYGON);
/* or GL_LINES or GL_POINTS... */

glVertex2f(-0.5, -0.5);
glVertex2f(0.5, -0.5);
glVertex2f(0.5, 0.5);
glVertex2f(-0.5, 0.5);

glEnd();
}

Drawing A Box

• The coordinate system
glOrtho(left, right, bottom, top, near, far);

e.g., glOrtho(0, 100, 0, 100, -1, 1);

For now, near & far should always be -1 & 1

• Clearing the screen
glClearColor(r, g, b, a);

a is the alpha channel; set this to 0.

glClear(GL_COLOR_BUFFER_BIT);
glClear can clear other buffers as well, but we’re

only using the color buffer...

Setting up the window

• Example Code
We will give you example code for each

assignment.
Modifying existing code is much easier than

writing “hello world” (unfortunately)

• Documentation:
Book
Html-ified OpenGL man pages are on the

course software page.

Getting Started

Future classes in Wean 5409

Graphics Hardware

Graphics Hardware

• First “graphics” processors just did display
management, not rendering per se.

• bitblit for block transfer of bits

Goal

• Very fast frame rate on scenes with lots of
interesting visual complexity

• Complexity from polygon count and/or
texture mapping

Pipeline Architecture

• Pioneered by Silicon Graphics, picked up by
graphics chips companies,

Nvidia, 3dfx, S3, ATI,...

• OpenGL library was designed for this
architecture (and vice versa)

• Good for opaque, textured polygons and lines

Higher throughput
But potentially long latency

… …

Parallel pipeline architecture
each stage can employ multiple specialized

processors, working in parallel, busses
between stages

#processors per stage, bus bandwidths carefully
tuned for typical graphics use

Why a Pipeline Architecture?

• transform
• light
• clip
• perspective divide
• rasterize (scan

convert)
• texture & fog
• z-buffer test
• alpha blend, dither

Immediate mode rendering
application generates stream of

geometric primitives (polygons, lines)
system draws each one into buffer
entire scene redrawn anew every frame

Pipeline Stages

• Some work well, but others are harder
• Z-buffer

computations are bounded, predictable

Implementing Algorithms in Hardware

Implementing Algorithms in Hardware

• Ray tracing
Poor memory locality
Computational cost difficult to predict (esp. if adaptive)
SIMD (single instruction, multiple data) parallel approach
Keep copy of entire scene on each processor

• Recent graphics hardware approaches (Purcell et al., 2002)

http://www.cs.unc.edu/~pxfl/

programmable processor per pixel
good for programmable shading, image processing
can be used for rasterization
Pixel-Planes 4: 512x512 processors with 72bits of memory
But most processors idle for most triangles
Pixel-Planes 5: divide screen into ~20 tiles each with a bank

of processors. Network is limit. 2Million tri/sec.

Pixel Planes and Pixel Flow (UNC)

Pixel-Flow: Image composition. Subdivide geometry
to processors and recombine by depth using special
hardware

Rendered on simulator and predicted to run
in real time on physical hardware

Pixel Planes and Pixel Flow (UNC)

http://research.microsoft.com/MSRSIGGRAPH/96/Talism an/

Observation: an image is usually much like the one
that preceded it in an animation.

Goal: a $200-300 board

image-based rendering
cache images of rendered geometry
re-use with affine image warping (sophisticated sprites)
re-render only when necessary to reduce bandwidth and

computational cost

Talisman (Microsoft)

• Interaction
• Geometry compression
• Progressive transmission
• Alternative modeling schemes (not polygon soup)

Parametric surfaces, implicit surfaces, subdivision
surfaces

Generalized texture mapping: displacement mapping,
light mapping

Programmable shaders

• Beyond just geometry:
dynamics, collision detection, AI, …

Current & Future Issues

Future classes in Wean 5409

