
selection_sort(A[0..n-1])
---------------------------------
k = 0
while k < n {           (*)
    i = index j in {k..n-1} for which A[j] is minimal
    swap A[k] and A[i]
    k = k + 1
}
 
Let A' be the original array passed on to the function

Loop invariant:   A[0..k-1] contains the smallest k elements of A' in sorted order, 
                            and A is a permutation of A'

Initialization:  (k=0) A[0..-1] contains the smallest 0 elements of A' - trivially true,
                                  A is also a permutation of A' (because A = A')

Maintenance:  Assume invariant holds at point (*) in the program execution, show that it also holds after the
                      loop body is executed
             
                      After the inner loop is executed, i contains an index relating to a smallest element in A[k..n-1]
                      Swapping it with A[k] results in sorted array A[0..k] containing the smallest k+1 values of A',
                      because A[0..k-1] was sorted and A[k..n-1] contained values bigger or equal to A[k-1].
                      Also, A was a permutation of A'. So, when swapping two elements, it still is. k is then incremented
                      and the loop invariant holds once more

Termination: The algorithm stops after exactly n iterations (counting) with k = n. Pluging k=n into the loop
                      invariant shows A[0..n-1] contains the smallest elements of A' in sorted order                             Q.E.D. 


