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Change Log

» [Nov 07] Added book triangulation book reference [12]
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[Al-Lec 7 L11] Advanced Path Planning Topics

» Path Planning in Abstractions

» Hierarchical Path Planning A* (HPA*)

» Path-Refinement A* (PRA*)

» Triangulation A* (TA*)

» Triangulation Reduction Path Planning (TRA*)

Goal:

Use abstractions to speed up A* search while still producing accurate
solutions on large maps

Recurring Idea:

Build smaller abstract representation of search graph which maintains
important propertiers of the original topology
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Hierarchical Pathfinding A* (HPA*, [2])

A. Pre-processing:

1. Superimpose sectors on top of tile grid

2. Build graph: one or more nodes per sector entrance (depending on
width), intra-sector edges, inter-sector edges

3. Compute intra-sector distances (inter-sector distances = 1)

B. Find path in abstract graph

C. Smooth path
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HPA* Preprocessing

Example: 2x2 sectors (most intra-sector connections omitted for clarity)
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HPA*

// input: start location s, goal location g
// output: approx. of shortest path from s to g
// or failure
// (assumes pre-processed map)
function HPAx-FindPath(s,qg):
locate sectors containing s and g
add intra-sector edges from s,g to entrances
compute distances from s and g to respective
entrances
find abstract path from s to g by stitching
intra-sectors paths together
if none exists return failure
smooth path
return path
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HPA* Performance

FAST without smoothing!
~ 10 times faster than A* on 512x512 maps
But smoothing slows HPA* down a lot

After smoothing, path length is within 3% of optimal on average on
game maps up to 512x512
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HPA* Improvements

The original HPA* implementation was improved in [3]:
» Using Dijkstra’s algorithm (or UCS) for intra-sector distances

» On demand intra-sector computations
(laziness pays off in dynamic environments!)

» Faster window-based smoothing
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HPA* Evaluation

Advantages:

» Suitable for dynamic worlds: local terrain changes only trigger dis-
tance computation within a small number of sectors

» Simple implementation
» Can build multiple levels of abstraction
Disadvantages:
» Connecting s and g to the abstract graph can be time consuming

» Without time consuming smoothing path quality isn’t great (often
20%+ longer than optimal)
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Path Refinement A* (PRA*, [4])

Build abstraction hierarchy
We used “clique abstraction” on octile base-level grids

Cligue = maximally connected subgraph

size 1 2 3 4
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Map Abstraction

To abstract a map, scan for cliques of size 4,3,2 (say left to right, top
down) and replace them by single nodes that are connected to their

abstract neighbours
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{a,b,g,h}
{c,d,1, 7}

{e,k}

{f} (orphan)
{1,m}

{n,o}

{p,a}

Connect abstract nodes X, Y, if there is a path from each original node
in X to an original node in Y. This conserves connectedness. Also, use
centroids of abstracted nodes as location of abstract nodes

lterate ...
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Map Abstraction (continued)

Result: a collection of pyramids describing connected components of
the original map

level L

How to find paths?
» Pick an abstraction level L (halfway level is empirically good)
> In there, find abstract nodes s’ and g’ corresponding to nodes s, g
» Perform A* search from s’ to g’ in this level
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Path Refinement

Path refinement steps:
1. if base level not reached:
2. project found path down one level (also consider neighbours)
3. find optimal path in this corridor using A*
4. goto 1

For planar path finding applications one can use Euclidean distance on
abstraction centroids (average coordinates of all abstracted nodes) as
heuristic
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Path Refinement lllustration
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PRA* Performance

PRA* is FAST!
~ 10 times faster than A* on 512x512 game maps
High-quality paths! 95% of the paths off by less than 3%

There is more:
» Interleaving path planning with path execution!

> After finding path at level |, just project the first k steps down
» Shorter corridor => faster
» But not much worse, because we know the global direction

» This is called PRA*(k)
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PRA* Performance (continued)

Total amount of work bigger, but initial path planning operation very fast

» minimizes latency induced by planning operation
» objects can start moving right away

> saves time when object gets different move order, which happens
often in video games
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[Al-Lec 8 L13] Path Planning in Triangulations

Issues with grid-based path planning:

» Potentially crude approximation
(what about circular object footprints or non-axis-aligned obsta-
cles?)

» Objects occupy a whole tile
(what about bigger objects?)

» Octile topology
(what about any-angle motion?)
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Geometry to the Rescue

Address these issues by considering free-space decompositions
(a.k.a. tesselations):

> quad-trees
> trapezoidal decomposition
> triangulations (a.k.a. navigation meshes)
Basic idea:
» decompose area around obstacles (free-space) into convex shapes
» for path planning first locate s and g, then hop from area to area

» smooth resulting path

CMPUT 350 F2023 M. Buro Advanced Games Programming (Al) Part 2: Advanced Path Planning Topics 19/60



Triangulations

» Starting with an area (like a
rectangle) and a collection of | o
points (including the rectan- °
gle corners) °

> Add edges between the °
points without such edges °
crossing l

» Continue until no more such
edges can be added

» The result is a triangle-based
decomposition of the convex
hull of the given points
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Triangulation Quality
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» For a given point set many & ®
triangulations exist
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o
» We would like to avoid sliver-
like triangles which decrease . @
locality and the quality of dis- ®
tance heuristics ®
o &
@ ®
@
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Delaunay Triangulations

» Triangulations which maximize
the sorted interior angle vector
(non-decreasing). l.e., the min-
imum angle is maximized g

tends to avoid thin, sliver-like
triangles

> Makes “nice” triangulation: l

» Can be done locally by “edge
flipping” diagonals across
quadrilaterals
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Delaunay Triangulation Characterization

A triangulation maximizes the minimal angle iff for each quadrangle the
circumcircle of each triangle does not contain the fourth point

legal
illegal - needs to be flipped

~=al

Details including a correctness proof of the determinant-based in-circle
test (seen in Lab 08) can be found in [12]
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Computing Delaunay Triangulations

1. Initialize triangulation T with a “big enough” helper bounding trian-
gle that contains all points of P

Randomly choose a point p, from P

Find the triangle A that py lies in

Subdivide A into smaller triangles that have p, as a vertex
Flip edges until all edges are legal

Repeat steps 2-5 until all points have been added to T

o a0

Randomized algorithm. Expected runtime ©(nlog n)

Can also be computed using Divide & Conquer
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Inductive Step

Pk

Pl Pk

Pj pj
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Point Localization in Triangulations

Triangles are given as a vector. They store point coordinates and
indexes of neighbouring triangles

Task: For a given point (x, y) find the triangle(s) it resides in

» Brute force [ ©(n) runtime for n triangles ]
[ How to check whether a point lies inside a triangle? (exercise) ]

» By maintaining a decision tree while contructing the triangulation
that identifies triangles based on x, y questions
[ expected runtime ©(log n), see [5] for details]

X < y? — Depth logarithmic in n
+/ \— (on average)
y > 27 y < 47 - Update subtrees when adding
+/ \ - +/ \— nodes to triangulation
Al A2 A3 A4 - Tricky to implement
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Straight Walk Algorithm

» Start with random triangle. Then walk towards goal location A by
crossing edges that intersect the line between A and the opposite
initial triangle point

» This is called a Straight Walk [11]. Its average case runtime is
©(v/n) in homogenous triangulations consisting of n triangles

» What is its worst-case runtime?
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Jump and Walk Algorithm

Idea: sample k triangles and pick the closest to goal point A as starting
point

S1

S3

s4

S2 walk

Expected runtime: time for sampling + expected time for walking

Minimal when both terms are asymptotically equal: sweetspot is ©(/n)
[10]. For n= 1,000,000, log, n ~ 20, whereas </n = 100. So, Jump
and Walk point localization is competitive with tree-based point
localization in practice, and much simpler to implement
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Sector-Based Jump and Walk Method

Even better: use sectors + Jump and Walk (approaching O(1), see [9])

Main steps:
> preprocessing: superimpose sectors (similar to HPA*)
» maintain starting triangle for each sector (could be void at first)

> to locate (x, y) compute sector and start walking at sector start
triangle

> if none exists, use original Jump and Walk method
» store found triangle in sector
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Constrained Triangulations

» Triangulations where cer-
tain (constrained) edges are
required to be in the triangu-
lation

» Then other (unconstrained)
edges are added as before

» Constrained Delaunay Tri-
angulations maximize the
minimum angle while keep-
ing constrained edges

» Above algorithm can be used
with modifications

CMPUT 350 F2023 M. Buro
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Dynamic Constrained Delaunay Triangulations (DCDT)

» Marcelo Kallmann’s DCDT software [6,7] can repair a triangulation
dynamically when constraints change

» Repairs can be made using local information allowing it to work in
a real-time setting

N

=
o\

[ Shown video ]
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Example: Add Constraint Segment
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Robustness of Geometric Computations

» Using fixed-length floating point arithmetic can
cause geometric algorithms

> to crash
> to hang
» to produce incorrect output

» Kallmann’s DCDT software suffers from this in
rare cases

» We developed a library for DCDT using exact
rational and interval arithmetic (soon to be on
GitHub, [9])
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[Al-Lec 9 L15] Triangulation-Based Path Planning [8]

» Using a constrained triangulation with
barriers represented as constraints

» Find which triangle the start (and goal)
point is in Search adjacent triangles
across unconstrained edges

» Finds a channel of triangles inside which
we can easily determine the shortest path
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Triangulation-Based Path Planning: Advantages

» Remedies grid-based
methods’ deficiency with
off-axis barriers

» Representing detailed ar-
eas better doesn’t compli-
cate “open” areas

» Triangulations have much
fewer cells and are more
accurate than grids

» Can deal with non-point
objects quite easily (below)
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Triangulation-Based Path Planning: Disadvantages

» Curved obstacles must be
approximated by straight seg-
ments

» We do not know what path
we will take through the trian-
gles until after we have found
the goal

» This can lead to either subop-
timal paths or multiple paths
to triangles
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Funnel Algorithm [8 p.52]

» To find the exact path through
a channel of triangles, we
use the funnel algorithm

» |t finds the shortest path in
the simple polygon in time lin-
ear in the number of triangles
in it

» Maintains a funnel which con-
tains the shortest path to the
channel endpoints so far

» Funnel is updated for each
new vertex in the channel by
finding the wedge in which
the new endpoint lies
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Modified Funnel Algorithm

» For circular objects with non-
zero radius

» Conceptually attaches cir-
cles of equal radius around
each vertex of the channel

» Considers segments tan-
gent to these circles and
arcs along them
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Naive Search in Triangulations

» Assume straight-segment
paths between edge mid-
points

» Run A* from start triangle
looking for the goal triangle

» g cost: sum of straight-
segment lengths on path

» h cost: Euclidean distance
between current point and
goal location (consistent)
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Naive Search: Pros and Cons

» Considers each triangle once
and has fairly good distance
measures

» So, finds paths quickly

» However, in cases like the
example on the right, it thinks
a path through the bottom
channel is shorter than one
through the top

» So it may result in suboptimal
paths
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How to Find Optimal Paths?

» (Under)estimate the distance travelled so far (e.g., take minimum
distance of reaching any point in current triangle)

> Allow multiple paths to any triangle

» When a channel is found to the goal, calculate the length of the
shortest path in this channel using the (modified) funnel algorithm

> [f it is the shortest path found so far, keep it;
otherwise, reject it (anytime algorithm)

» When the lower bound on the distance travelled so far for the paths
yet to be searched exceeds the length of the shortest path, the al-
gorithm ends and we have found an optimal path
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Triangulation A* (TA*)

» Search running on the base triangulation

> Uses a triangle for a search state and the adjacent triangles across
unconstrained edges as neighbours

» Using anytime algorithm and considering multiple paths to a trian-
gle as described earlier

» For a heuristic (h-value), take the Euclidean distance between the
goal and closest point on the triangle’s entry edge

» Calculate an underestimate for the distance-travelled-so-far (g-
value) (details: [8] p.67)

» Only consider triangles once until the first path is found

» Continue searching until time runs out or lower bound meets or
exceeds current shortest distance
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Triangulation Reduction

» Want to reduce the triangula-
tion without losing its topolog-
ical structure

» Determine triangles as being
decision points, on corridors,
or in dead ends

> Map a triangle to a degree-
n node when it has exactly
n triangles adjacent across
unconstrained edges

> After mapping, collapse
degree-2 corridors
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Topological View




Triangulation Reduction Process

a) Polygon World

b) Triangulated World

A 4

I
N Eh

c) Triangle Graph

d) Abstract Triangle Graph
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Reduction Example

» Path planning in tree com- o
ponents (degree-1, empty o B /
squares) and corridors - .
(degree-2, solid squares) A 3 W
is easy e

» The only real choice points

are degree-3 triangles (solid P J—
. “-’ - ' Jf 4 ‘ > y . .
circles) "o "~ @ a %
o W\ LN EY L
» After corridor compression Od 4 | _0:, o ® .,
the resulting search graph AP - [ R4 ‘00'
has size linear in the number | " =7 " /a = e
of islands! L ) o\
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Simple Special Cases — No Search Required
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Abstraction Information

» Adjacent structures

» Choke points (the narrowest
point between this triangle and
the adjacent structure)

» A lower bound on the distance
to each adjacent structure

» Triangle “width”

» Using this graph we can find
paths for differently sized ob-
jects
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Triangulation Reduction A* (TRA¥)

» TA* running on the abstraction we just described

> First check for a number of “special cases” in which no actual search
needs to be done

> Move from the start and goal to their adjacent degree-3 nodes

> Use degree-3 nodes as search states and generate their children
as the degree-3 nodes adjacent across corridors

> As with TA*, use an anytime algorithm, allowing multiple paths to a
node, and use the same g- and h-values
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Experimental Setup

> 116 maps scaled to 512 x 512 tiles:
» 75 Baldur's Gate maps (grid of tiles marked traversible or
untraversible)

> 41 WarCraft Il maps (grid of types of terrain and heights where
paths cannot cross height differences without ramps or boundaries
between different types of terrain)

> 8-connected grids

» 1280 paths in each, with A* length between 0 and 511 and catego-
rized into one of 128 buckets based on length

» Compared TA* and TRA* to A* and PRA* using the same maps
and paths
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Execution Times A* vs. PRA*

Halfway abstraction layer chosen for PRA*

300
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150 |
100
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0
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0

95%
75%
Median
25%
5%

100 200 300 400 500
A* path length

PRA* Execution Time

95%
75%
Median

25%
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100 200 300 400 500
A* path length
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Execution Times TA* vs. TRA*

First paths found (F = 1) by TA* and TRA* (not searching duplicates)

TA* Execution Time (F=1) TRA* Execution Time (F=1)

12

— 1.6 =

95% 95%
L4 - 750, y
1.2 + Median - 1

25%

Time (millisec)

0 100 200 300 400 500 0 100 200 300 400 500
A* path length A* path length
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Speedup and Nodes Expanded

time ratio
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TA* Path Length Ratios Compared To A*

Baseline (ratio 1) is TA* using F = 40

Bound is the ratio lower bound based on the restricted A* paths
(one can show: ||d||oct/||d]||2 < 1/ cos(22.5°) ~ 1.082)
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TRA* Path Length Ratios Compared To A*

TRA* Path Length Ratio (75. perc.) TRA* Path Length Ratio (95. perc.)
1.08 1.32 —
1.06 T 1.28 +
124 ¢
o 1.04 e
g 1027 1.16 | p—g —g¥- ]
£ 1 — o 1.12 -
2 098 . 1.08 | e
=096 [ it ] 1-0‘1‘ i ,:%ﬁgs%f*% i
0.94 | 1 0.96 | s
092 b — 0.92 T
0 100 200 300 400 500 -100 0 100200300400500
A* path length A* path length
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Conclusions

» Triangulations can accurately and efficiently represent polygonal
environments

» Triangulations offer unique possibilities for path planning for non-
point (especially circular) objects

» Triangulation-based path planning finds paths very quickly and can
also find optimal paths given a bit more time

» Our abstraction technique identifies useful structures in the envi-
ronment: dead-ends, corridors, and decision points

» This abstraction can be used to find paths even more quickly, only
depending on the number of obstacles

» TA* is used in StarCraft 2!
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Future Work

» Channels resulting from TA* or TRA* are useful in pathfinding in-
volving multiple object sizes because channel widths are known

» Terrain analysis is possible with the abstraction information (e.g.,
identifying choke points)

» More edge annotations can reduce the need for triangulation up-
dates (e.g., enemy presence in corridors)

> It may be useful to construct waypoint graphs from triangulations
that produce close to optimal paths running A* just once
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Future Work (continued)

Lots of interesting path planning problems left:

» Group and formation path planning, flocking

» Cooperative path planning (avoiding collisions, planning in space-
time!)

> Adversarial settings (pursuit/evasion)

Application areas: video games, robot (team) navigation
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