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Change Log

» [Oct-03] added proofs related to consistent heuristic claims
> [Sep-15] fixed typo in Dijkstra’s algorithm
> [Sep-04] created
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Course Logistics [Al-Lec 1 L1]

Instructor: Michael Buro (ATH 337, mburoQualberta.ca)
Course web page: skatgame.net/mburo/courses/350
Content id/password: ¢350 bar350z

Three face-to-face sessions per week:

Lectures CAB 273, TR 11:00-12:20
Labs CSC 153/159, T 14:00-16:50 (starting next week)

Consider taking notes — electronic material may be incomplete

[ going through course outline on web page first ... |
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mburo@ualberta.ca
skatgame.net/mburo/courses/350

Game Al Overview

In this course we concentrate on Al methods that can be applied to
abstract and modern video games

Main Al Objectives:

» Aiding human players by delegating cumbersome tasks to Al sys-
tem. E.g.,
> Move group of units from X to Y along shortest path
> Workers gather resources (commute between minerals and com-
mand center)
> Attack town with a large number of units from multiple angles

» Create challenging adversaries and collaborators
> Strategic Al (e.g., where to build what when?)
> Tactical Al (e.g., small-scale combat)
> Push the state-of-the-art of Al in general, challenge human experts
» Can help designers to balance game parameters and find bugs
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Reality Check (1)

State of video game Al? Big A - smalli ...
Video game Al systems are currently mostly scripted

l.e., programmer/designer thinks about strategy and tactical behaviour
and implements it in form of if-then-else rules, finite state machines,
hierarchical task networks, behaviour trees, etc.

E.g., “If | am attacked, then gather forces and launch counter attack”

Advantages:

» doesn’t require lots of CPU time ...
Important, because gfx still gets majority of cycles

» can mimic expert behaviour directly
Problems: predictable, can’t deal well with unforeseen events
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Reality Check (2)

We don’t have good Al solutions that require only a few CPU cycles, yet

But the games industry wants to create challenging games NOW, and
still invests most CPU/GPU cycles into graphics and physics simulations

Pragmatic "Solution™:

Let the Al cheat (e.g., faster movement, fewer resources required,
leak game state information (no fog of war), etc.)

Not satisfactory from an academic viewpoint
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How to Improve Game Al?

Organize video game Al competitions!
» Fair, no cheating

> Play games that people enjoy. This way we can benchmark pro-
grams by playing against human experts.

» Build strong tatical and strategic Al systems that play video games
well

» Apply lessons learned to real-world problems
In the coming game Al lectures we will focus on
» Map Representations
» Path Planning
» Search Space Abstractions
» Adversarial Search, Imperfect Information, MCTS, ...
and see how these techniques can be applied to video games
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Why C++7?

> A better C
» Much easier to write bug-free C++ code (e.g., constr./destructors)
> Easier maintenance of big projects (classes support data/method
encapsulation)
> Large libraries available (e.g., generic container classes and algo-
rithms)

» Fast program execution
(no interpreter or JIT compiler, like Python/Java)

> More memory efficient than Java (object data stored sequentially)
» 2-3x faster than Java in typical Al applications
> Typically 10+ faster than Python

» Language of choice for game engines
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Path Planning [Al-Lec 2 L2]

» Want to get some object from
one point to another, avoiding
obstacles

» Robotics: non-point object,
needs to avoid obstacles by
some margin

» Games: needs to be very fast
and use little memory
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Goal of Path Planning Algorithms

» Find (nearly) optimal path, where optimal usually means quickest

» Obey constraints (e.g., object size, fuel limit, exposure to enemy
fire, real-time)

» Terrain features and some interactions with the environment can
be expressed in terms of gaining or losing time

> Moving on highways vs. swamps

> Destructible obstacles along the way

> Tradeoff between search complexity and path quality
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Local Path Planning

» Path planning algorithms must be able to deal with dynamic obsta-
cles

» Adding / removing objects can be expensive in abstractions or
geometry-based systems

» Can use simple object avoidance methods that try to follow high-
level paths and resolve local conflicts

vkl o
\

FIGURE 2.1.18 A dynamic obstacle (the outlined
circle) along an edge in a waypoint graph.
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Map Representations

» Path planning algorithm is only half the picture

» Underlying map representation and data structures are just as im-
portant

» Important design questions:
> Are optimal paths required?

Is the world static or dynamic?

>

> Are worlds known ahead of time?
» Are there real-time constraints?
>

How much memory is available?
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State Space Generation

» Worlds can be huge

> Like to avoid cumbersome task of picking way points or room ab-
stractions manually

» Should be automatically generated from world geometry
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Planning Paths in Continuous Spaces

» Main approach: discretize continuous height field to create search
graph

» Objects move on 2d surface, so mapping height field to plane is
sufficient
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Regular Grids

| S|
1T

a.

FIGURE 2.1.3  Grid representations based on square and hexagonal cells.
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Grid-Based Methods: Advantages

» Conceptually simple repre-
sentation

» Local changes have only | |
local effects — well-suited
for dynamic environments

» Perfectly represents tile-
based environments

» Exact paths easy to deter-

mine for cell-sized objects m
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Grid-Based Methods: Disadvantages

> Imprecise representation of
arbitrary barriers

» Increased precision in one
area increases complexity
everywhere — potentially
large memory footprint

> Awkward for objects that

are not tile-sized and
shaped

> Need to post-process paths
if environment allows ar-
bitrary motion angles (or
tweak A*)
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Geometric Representations

» World is an initially empty
simple shape

» Represent obstacles as /
polygons, i.e., sequences K

of line segments (also S
called constraints) ii G
.
» Find path between two \.B
points that does not cross
constraints
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Geometric Methods

Advantages
> Arbitrary polygon obstacles
Arbitrary motion angles

>
> -
Memory eff.|C|ent _ » Point localization no longer
» Finding optimal paths for cir- takes constant time

cular objects isn’t hard

Disadvantages
» Complex code
» Robustness issues

» Topological abstractions
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Visibility Graphs

» Place nodes at corners of
obstacles

» Place edges between nodes
that can “see” each other oB
» Find path from Ato B:

> add these nodes to graph,
connect to visible nodes

> run pathfinding algorithm
on resulting graph

Path provably optimal

» But adding and changing
world can be expensive as
graph can be dense

v
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Visibility Graph Issues

» Memory requirements: every node can potentially “see” every
other, leading to quadratic space and time requirements

» Connecting the start/end nodes to the graph can already take lin-
ear time

> Also, corner-corner visibility test isn't cheap

Not practical ...

CMPUT 350 F2023 M. Buro  Advanced Games Programming (Al) Part 1: Introduction, Map Representations, Path Planning 22/72



Free-Space Decompositions

» Decompose empty areas into
simple convex shapes (e.qg.
triangles, trapezoids)

» Create way point graph by
placing nodes on uncon-
strained edges and in the face
interior, if needed

» Connect nodes according to
direct reachability

» Find path from A to B:

» Locate faces in which A, B re-
side

» Connect A, B to all face nodes

» Find path, smooth path
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Graphs

Maps in video games can be represented as graphs

Definition:

An (undirected) graph G = (V, E) is a discrete mathematical object
comprised of a set of vertices (or nodes) V and a set of edges (or arcs)
E. An undirected edge is a set of at most two vertices {u, v}. A directed
edge from u to v is an ordered pair (u, v).

Graphs describe binary relations between vertices: if edge {u, v} is in
E then we say u and v are related. Otherwise, they are unrelated.
Graphs can be easily visualized:
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Graph Example

1 2 3
o———0——-0 G = (V,E) v=4{12,3,4,5061}
| | | E = { {1,2}, {2,3}, (3,4},
0———0——-0 {4,5}, (5,6}, {6,1}, {2,5}
6 5 4 V] = 6 (6 vertices or nodes)

[E| = 7 (7 edges or arcs)

( Is]

number of elements in set S )
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Step 1: Reachability [Al-Lec 3 L3]

Task:

Given a graph G = (V, E) consisting of vertex set V and edge set E
and two vertices s (start), and g (goal), determine whether g is
reachable from s

Or more general: compute all nodes in V that are reachable from s

In games, this information is sometimes sufficient, if we don’t need to
know shortest paths

E.g., answering “Can | reach the base by land, or do | need to build a
transport ship?”

The simpler test usually runs much faster than computing the minimal
distance
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Graph Traversal

Discussed
» Graph types and representations in memory (“toolbox” document)

» How breadth-first search (BFS) and depth-first search (DFS) work
in principle
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Queues

A queue is an abstract data structure that provides the following
operations:

» isEmpty() : returns true iff (if-and-only-if) no element left in Q
> enqueue(v) : add element at the end
» dequeue() : remove front element and return it

| 1 | 2 | 3 | enqueue(d4) -> | 1 | 2| 3 | 4 |
. dequeue() > | 2

Queues can be implemented based on doubly linked lists, arrays,
vectors, circular buffers, etc.

C++ provides template type std: : queue (covered later)
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Breadth-First Search (BFS)

// input: graph G, start vertex s, goal vertex g
// output: whether we can reach g from s
function BFS (G, s,qg) {

if (s = g) { return true }
create queue Q // fringe of nodes yet to be expanded
create set R // set of reached nodes
enqueue s onto Q
add s to R
while (Q not empty) { // (%)
t 4 dequeue element from Q // (1)

for each { t, u } in E[G] {
if (u = g) { return true }
if (u not in R) {
add u to R /] (2)
enqueue u onto Q

}

return false

}
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BFS Example

Here is an example of BFS in action:

*) Q R
1. [0] {0}
2. [1,5] {0,1,5}
3 [5,2] {0,1,2,5}
4 [2,4] {0,1,2,4,5}
g reached (neighbour of 2) => return true
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Asymptotic Growth Rate Refresher (1)

f(n) € O(g(n)) means: (read: “f of nis (in) big-O of g of n")
there exists ¢ > 0, ny € N such that for all n > ng : |f(n)| < c|g(n)|

We then say g is an asymptotic upper bound for f

E.g., n€ O(n?),1 € O(n),n? ¢ O(n)

IMPORTANT: big-O may not describe the true asymptotic behaviour, it’s
just an upper bound. Also, big-O and its relatives © (“big-Theta”, true
growth rate) and Q (“big-Omega”, lower bound) are sets of functions

Therefore, notations like n = O(n?) which are used frequently in the
literature don’t make much sense!
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Asymptotic Growth Rate Refresher (2)

So, saying your algorithm runs in time O(log n) and mine in O(n), so
yours is asymptotically faster is NONSENSE. For this kind of argument
you need to use © or Q instead of O

E.g., if my algorithm runs in time O(log n) and yours in Q(n) or ©(v/n),
then mine is asymptotically faster

For a more in-depth treatment of the big-O notation read my “toolbox”
document, my related “CMPUT 204 Refresher” files, or Wikipedia
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BFS Runtime

BFS Runtime Complexity:

For G = (V, E) the runtime of BFS is ©(| V| + |E|) because in the worst
case every node is visited once in step (1) and all edges are visited
twice in step (2). BFS uses ©(]V|) space

This is good news. BFS’s runtime is asymptotically optimal, because
the least we have to do is accessing all input information

For a BFS correctness proof see [9]

CMPUT 350 F2023 M. Buro  Advanced Games Programming (Al) Part 1: Introduction, Map Representations, Path Planning 33/72



Step 2: Find Shortest Path to All Other Vertices

Task:

Given a weighted graph G = (V, E, w) and a start vertex s, determine
the shortest distance to all reachable nodes. Weight function w assigns
a weight (or distance) > 0 to each edge (and by extension to paths)

While this is a bit more than just finding a shortest path between two
given vertices, it is a good starting point for the A* algorithm we’ll look at
shortly

Dijkstra’s algorithm [3] solves the single-source shortest path problem.
In each iteration i/ it implicitly generates “reached set” S; and maintains
“minimal-distance” array d, such that

1. d[v] is the minimal distance from sto v, if v € S;, and

2. the minimum distance from sto v if v ¢ S; and all but the last node
along the paths are in S;
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Dijkstra’s Algorithm: lIdea and Correctness

Using array d, Dijkstra’s algorithm maintains current distances for every
node

In iteration /i it expands the set of visited nodes S; by the closest node u
that is reachable in one step (i.e., it picks u with minimal d[u] value)

It then updates distances of the neighbours of v into S;; 1, which may
have decreased when considering paths through u

Why is path (call it P) from s to u optimal?
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Dijkstra’s Algorithm: Idea and Correctness (continued)

Suppose there is another possible path P, from s to u that is shorter
than P; (the one that directly leads to u) and also shortest overall

Then P, would leave the set of vertices with established minimal
distance (S;) somewhere else — say using edge (x, y)

VLS
O e
=
Then: d
w(Po) < w(Py) = d[y] + w(rest of P, after y) < d[u]
= (all weights > 0) d[y] < d[u]

which contradicts the algorithm’s choice of u. Therefore,
w(P>) > w(Py), and thus P; is optimal
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[Al-Lec 4 L5] Dijkstra’s Algorithm: Pseudo Code

// input: weighted directed graph G and start vertex s (weights >= 0)

// output: minimal distances from s to all vertices (dI[]),
// parent indexes for constructing shortest path (p[])
function Dijkstra(G=(V,E,w), s) {
for each vertex v in V { // initializations
d[v] 4 oo // unknown distance from s to v
plv] < -1 // previous node on optimal path from s
}
dls] < 0 // distance from s to s
Q «— V // all nodes are unoptimized

while (Q is not empty) { // (*¥) main loop
u < vertex in Q with smallest distance in d
remove u from Q

if (d[u] = o0) { break; } // all remaining vertices inaccessible
for each (u,v) in E {
alt < dfu] + w((u,v)) // w maps edge to distance
if (alt < d[v]) {
div] + alt // found shorter path to v
plv] < u // memorize parent

b}
}
return (d, p)
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Dijkstra’s Algorithm: Example

1

s=0 o-2-0-7-0 2

(%)

5

| I
1 4 \Y%
| |
o-2-0-3-0 3
4
d
(0,00, 00,00,00,00)
extract 0 (dist 0)
(0,2,00,00,00,1)
extract 5 (dist 1)
(0,2,00,00,3,1)
extract 1 (dist 2)
(0,2,9,00,3,1)
extract 4 (dist 3)
(0,2,9,6,3,1)
extract 3 (dist 6)
(0,2,9,6,3,1)
extract 2
(0,2,9,6,3,1)

=1{0,1,2,3,4,5 }

P
(-1,-1,-1,-1,-1,-1)

(-1,0,-1,-1,-1,0)
(-1,0,-1,-1,5,0)
(-1,0,1,-1,5,0)
(-1,0,1,4,5,0)
(-1,0,1,4,5,0)

(-1,0,1,4,5,0)

Q S
{0,1,2,3,4,5}
{0}
{1,2,3,4,5}
{0,5}
{1,2,3,4}
{0,1,5}
{2,3,4}
{0,1,4,5}
{2,3}
{0,1,3,4,5}
{2}
{0,1,2,3,4,5}
{} done
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Shortest Path Tree

A shortest path tree can be constructed using the p array which stores
the predecessor for each vertex (-1 indicating the root of the tree (s)):

d= (01219161311) Pr= (_11011141510)

(01 [2]1 [9]
s= 0 o-2-0-7-0
| 1 2 [x] minimal distance to s
1
| 4 3
5 0-2-0-3-0
(1] [3] [e6]
Once a shortest path tree has been computed it can be used for instant

path planning for units on a map that are ordered to congregate at the
start location (assuming undirected edges)
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Dijkstra’s Algorithm: Runtime Complexity

If an array is used as data structure for Q, the worst-case runtime of the
algorithm is ©(|V|2), where | V| is the number of nodes in the graph. If
the graph is dense (i.e., |E| € ©(] V|?) then this is best possible

To speed up locating the vertex with minimum distance we can use a
priority queue data structure for which extracting the minimal element
and inserting a new element takes O(log n) time (e.g., STL
std::priority_queue) [discussed how heaps work in class]

In the implementation below, we even just keep on adding
(vertex,distance) pairs to avoid having to implement decrease-key for
priority queue Q for handling the case when discovering shorter paths.
This comes at the cost of memory: Q can now hold up to 2|E| elements

With this, the worst-case runtime becomes O(|E| log |E|). For sparse
graphs (i.e., |E| € O(]V])) this leads to runtime O(| V| log|V|), which is
much faster than the array-based implementation
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Dijkstra with Priority Queue

// input: weighted directed graph G and start vertex s (weights >= 0)
// output: minimal distances from s to all vertices (d[]),
// parent indexes for constructing shortest path (p[])
function DijkstraPQ(G=(V,E,w), s) {
for each vertex v in V { // initializations
d[v] + oo // unknown distance from s to v
plv] « -1 // previous node on optimal path from s
}
d[s] < 0; insert (s,0) into Q // distance from s to s = 0
while (Q is not empty) { // (x) main loop
pick and remove pair (u,x) from Q with smallest distance x to s
if (x = o) { break; } // nothing else reachable
if (x > d[ul]) { continue; } // (u,x) obsolete duplicate (>= wrong!)
for each (u,v) in E {
alt <« d[u] + w((u,v)) // w maps edge to distance
if (alt < d[v]) |
d[v] <« alt // found shorter path to v
plv] < u // memorize parent
insert (v,d[v]) into Q // consider v with updated distance
P}
return (d, p)
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[Al-Lec 5 L7] IS there a better way?

Dijkstra’s original algorithm initializes the queue with all nodes in the
beginning. This wouldn’t work if the search space is large (or even
infinite). There is another search algorithm called “Uniform Cost
Search” (UCS) which is essential mimicking Dijkstra’s computation
using a smaller queue, which is initialised with the starting node (like
our priority queue based algorithm). UCS is a special case of A* (using
h(n) = 0), which we will look at next

Dijkstra’s algorithm adds new nodes by referring to previously computed
shortest distances, i.e., it only looks back

Can we do better than Dijkstra’s algorithm by also looking ahead?

Perhaps we can save even more time if we are only interested in the
minimal distance between TWO locations ...
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Step 3: Finding Shortest Paths Between Two Vertices

Heuristic Search, also known as Single Agent Search, began in the
1960s with the A* algorithm [1], which can be thought of as a
generalization of Dijkstra’s algorithm that in addition to looking back,
also looks ahead

For node n which represents a partial solution (or search state as
opposed to problem state), we define:

f(n) = g(n) + h(n), where
g(n) is the cost of the path to node n so far
h(n) is a heuristic estimate of the cost of reaching the goal from node n

A* Search: Expand node on fringe (queue) with lowest f value
— This makes A* a best-first search algorithm

For path planning, g(n) is the distance traveled so far, and h(n) is often
the Euclidean distance between n and the goal location
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A* Example

h=4 h=3 h=2 h=1 h=0

start goal
| |
S —>A >B —>C —> G
2 |1 1 ~ 2
| |
fo———————— +
4
g h g h

1. Expand S (£f = 0 + 4 =4) —> A (f =2 + 3 =05)
2. Expand A —> B (f = 3 +2 =15), C (f=6+1=17)
3. Expand B —> C (f = 4 + 1 = 5 improvement, update C
4. Expand C —=> G (f = 6 + 0 = 6) \value in queue
5. Expand G - recognize it as goal
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A* Termination Condition

When should A* stop?
When reaching the goal OR when expanding it?

When reaching the goal for the first time there may still exist another
shorter path. So we need to wait until we EXPAND the goal state
(correctness proof below)

What if we revisit a state that was already expanded?
(e.g., node C in above example)

We might get a better solution and have to update then node’s f value
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A* Data Structures

State:
Object that describes the current problem state. E.g., location of agent
on a map for path planning, or orientation of cubies for Rubik’s Cube

Node:
Object that encodes a partial problem solution

Contains: state, f, g, parent pointer (and optionally an action)

OPEN:
Container of nodes at the search fringe that still need to be expanded

CLOSED:
Container of nodes that have been expanded

OPEN + CLOSED:
Nodes we have seen so far
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A* Algorithm Overview

Main Loop:

| 2

vVvyyvyy

remove lowest-f node n from OPEN
n goal? yes => stop

move n to CLOSED

expand n: consider its children

as far as we know, we are done with this node (but can be re-opened
later)

Consider a child:

>
>
| 4

check if state seen before (in OPEN or CLOSED):
if state has been seen with the same or smaller g value, reject

Otherwise, remove child state from OPEN and CLOSED and add
corresponding node to OPEN for consideration

The OPEN/CLOSED lists act as a cache of previously seen results

CMPUT 350 F2023 M. Buro  Advanced Games Programming (Al) Part 1: Introduction, Map Representations, Path Planning 47/72



A* Pseudo Code (1)

// input: start state, goal state

// return (success,path) if goal found, (failure,) otherwise
function Ax (State s, State goal)

{

node = new Node (state=s, g=0, h=DistEstimate (s, goal),
f=g+h, parent=null)
insert node into OPEN

while (OPEN not empty) { /7 (%)
n = minimal-f node in OPEN
remove n from OPEN /7 ()

add n to CLOSED

s = n.state

if (s == goal) {
construct path from s to goal using n
return (success, path)

}

for (i=0; i1 < NumChildren(s); ++1i) {
Consider(n, Child(s, 1), goal)

}

return (failure,)
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A* Pseudo Code (2)

Consider (Node from, State to, State goal)
{

newg = from.g + cost (from.state, to)

if (node n with n.state == to in CLOSED) {
if (n.g < newg) return // older is better
remove n from CLOSED // found better solution
}
if (node n with n.state == to in OPEN) ({
if (n.g < newg) return // older is better
remove n from OPEN // found better solution
}
node = new Node (state=to, g=newg,

h=DistEstimate(to, goal), f=g+h, parent=from)
add node to OPEN
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Admissible Heuristics
Let h*(n) denote the true minimal cost to the goal from node n

Definition:

A heuristic h is called admissible if and only if h(n) > 0 and
h(n) < h*(n) for all n

l.e., admissible heuristics never overestimate the minimal cost to the
goal, they are optimisitic

Examples:
» h(n) = 0 is an admissible heuristic
» h(n) =1 is not admissible, because h(g) must be 0 for goals g

» h(n) = Euclidean distance from n to goal state is admissible for
finding minimal Euclidean distance paths in the plane (with obsta-
cles or motion constraints)
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[Al-Lec 6 L9] A* Correctness (1)

[Refresher: correctness proofs using loop invariants in toolbox]
In what follows, we will show that A* is correct, i.e., it terminates on all
inputs and computes optimal paths when they exist

Theorem 1:

Applied to graphs with bounded node neighbourhoods and edge costs
> ¢ > 0, A* using an admissible heuristic h returns “success” and an
cost-minimal path, if one exists, or “failure” otherwise in case the graph
is finite

Proof Sketch:

We assume goal G is reachable from S (otherwise A* reports “failure”
which can be proved by showing that in this case A* visits all nodes
reachable from S —homework (induction on minimal number of steps
needed to reach a node))

Define C* = minimal cost from Sto G
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A* Correctness (2)

Lemma:
At line (x) in the A* computation there is always a node nin OPEN with
the following properties:

1. nis on an optimal path to G

2. A* has found an optimal path to n

3. f(n) < C*
lllustration:
n
S 0o——0—-—0—-—-0....0——0——0——0...0-——0 G
| -——— optimal —---—|

f(n) =g(n)+ h(n) < C*

We prove this by induction on the number of node expansions
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A* Correctness (3)

Base Case:
In the beginning, S is on an optimal (empty) path and is in OPEN, and
A* has found this path

Also, h(S) < h*(S), because h is admissible, and thus

Inductive Step:

» If the previous n is not expanded in the current step, the conditions
still hold — done: just pick n again (its g value hasn’t increased
and thus f(n) is still < C*)

» Otherwise, if nis the goal state we are done as well (nothing to
show because the loop is terminated)
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A* Correctness (4)

» Otherwise, all successors will be considered and at least one (say
m) will be on an optimal path because n lies on an optimal path

n m
S o——0——-0....0-——0——0——0...0——0 G

» We have found an optimal path to m, because otherwise there
would be a shorter path to the goal, contradicting that we have an
optimal path going through n

n m
S o——0——-0....0-——0——0——0...0——0 G
\ cee /<— shorter? => shorter path to G!

» f(m) < C* because
> f(m) = g(m) + h(m)
> g(m) = g*(m) (minimal path length to m) because m on optimal
path
> h(m) < h*(m) because h is admissible

Thus: f(m) = g(m) + h(m) < g*(m) + h*(m) = C* O
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A* Correctness (5)

Next we show that if A* terminates with “success” then it produced an
optimal path

Suppose we expanded goal state G at which we arrived via a
suboptimal path. l.e., g(G) > C*, which means

f(G) = 9(G) + h(G) = 9(G) > C* (%)

According to the Lemma there is a node nin OPEN with f(n) < C*, but
we expanded G before n. Therefore,

f(G) < f(n) < C*

which contradicts (x). So, G will not be expanded because there is
another node nin OPEN with smaller f value. As a consequence, A*
when using an admissible heuristic has constructed an optimal solution
when it is about to expand a goal node
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A* Correctness (6)

What'’s left to show is that A* terminates:

> Nodes A* generates always refer to acyclic paths (no cycles) be-
cause edge weights are > 0

» In each iteration only new acyclic paths are generated because
when a node is added the first time, a new path is created, and
when a node is promoted a new path to that node has been found,
because it is shorter than the one seen before

So, in the worst case, A* may consider every acyclic path in the search
graph

Note that this graph is finite, if every node has finitely many neighbours
and all edge costs are > ¢ > 0, because the maximal distance to

consider is C* which will be reached after at most [ C* /€] steps.
Therefore, the algorithm stops

This concludes the proof sketch of Theorem 1 O]
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Node Expansions

Theorem 2: Using an admissible heuristic,
> A* expands all nodes n with f(n) < C*
» A* might expand some of the nodes on the “goal contour” where
f(n)=C*
» A* does not expand any node n with f(n) > C*
Proof: (see [1])
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Consistent Heuristics (1)

Definition:
h is consistent (or monotone) iff
» h(G) = 0 for all goal states G and

» h(n) < cost(n, s)+h(s) for all n and their successors s (also known
as triangle inequality):

cost (n, s)

n | S
o———=>0
\ /
h(n) \ / h{(s)
o g

E.g., Euclidean distance in R? is consistent (because of the triangle
inequality)

CMPUT 350 F2023 M. Buro  Advanced Games Programming (Al) Part 1: Introduction, Map Representations, Path Planning 58/72



Consistent Heuristics (2)
Theorem 3:

If h(n) is consistent, then f(n) is non-decreasing along any path A*
considers

Proof:

Assume '’ is a successor node of n. Then

g(n') = g(n) + cost(n, n’)
= f(n') = g(n') + h(n') = g(n) + cost(n,n’) + h(n')

= [with cost(n, ') + h(n') > h(n)] f(n') > g(n) + h(n) = f(n)
L]
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Consistent Heuristics (3)

Theorem 4: h consistent = h admissible
Proof:

For some state S from which goal G is reachable assume

h(S) > h*(S). Consider an optimal path from S to G. Along that path, f
is monotone because h is consistent. l.e., for each node n along the
path we have f(n) > f(S), including goal G

f(G) = g7(G)+ h(G)
g (G) // h consistent

> f(S) /I f monotone because h consistent
= 0+h(S)
> h*(S) /I assumption

Therefore, g*(G) > h*(S), which is a contradiction. Consequently, our
assumption was wrong, i.e. h(S) < h*(S) must hold for all S, and h,
therefore, is admissible O

CMPUT 350 F2023 M. Buro  Advanced Games Programming (Al) Part 1: Introduction, Map Representations, Path Planning 60/72



Consistent Heuristics (4)

Corollary 1: A* with consistent h(n) expands nodes in non-decreasing
f(n) order

[ Proof idea: f values are non-decreasing with each node expansion by
Theorem 3, also see [8] ]
Corollary 2: A* using a consistent heuristic only expands nodes it has

found an optimal path to and it therefore never re-expands nodes

[ This immediately follows from Corollary 1]
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Consistent Heuristics (5)

Theorem 5 (#3 in [10]):

Any search algorithm based on a consistent heuristic h whose values
are provided upon expanding a node will expand all nodes that are
expanded by A*

In other words, A* using a consistent heuristic is an optimal search
algorithm
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[Al-Lec 7 L11] A* Data Structure Considerations (1)
Using linked lists or vectors for OPEN and CLOSED is certainly possible

However, the runtime of some of the queries (such as finding the
minimum f value node) and updates can be linear which is often
unacceptable

OPEN and CLOSED hold nodes (actually node pointers), but are
queried for states. This requires complex data structures if we want
those operations to run in O(log n) or even O(1) time

For example, for CLOSED we could use an efficient map data structure
that maps states to node pointers, thereby allowing us to quickly check
whether there is a node present for a given state

For OPEN, we could use a priority queue of node pointers based on f
values, in conjunction with a state-to-node-pointer map to also allow for
membership queries
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Data Structure Considerations (2)

If we use a consistent heuristic, A* can be simplified, because no better
paths to nodes will be found by subsequent search. l.e., once closed,
nodes will never be re-opened

CLOSED can be implemented as state-to-node-pointer map as before
(either based on binary search trees or hash tables), but OPEN can be
simplified by using a priority queue for node pointers based on f values
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Simplified A* for Consistent Heuristics

These observations allow us to simplify the A* code:

// use priority queue Q that stores nodes and uses
// f-cost as their priority

// added right after code line (+):
if (node n with state = n.state in CLOSED) then continue

// updated Consider function
Consider (Node from, State to, State goal)

{
if (node n with to = n.state in CLOSED) then return

n = new Node (state=to, g=from.g + cost (from.state, to),
h=DistEstimate(to, goal), f=g+h, parent=from)
add n to OPEN // allow duplicates in OPEN
}

Note: using h(n) = 0 (consistent!) this is the UCS algorithm
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A* Optimizations (1)

Here are some examples of how the runtime and space requirements of
A* can be optimized in practice:

» Breaking f value ties in favour of larger g values: using less heuris-
tic approximation is empirically better

> As we have seen, priority queues allow us to find the node with
minimal f value in time O(log n), where nis the number of queue
elements (e.g., C++ STL priority_queue<T,Compare>)

» We can use hash tables for OPEN/CLOSED membership to avoid
scanning lists, or if the entire graph fits in memory, we can asso-
ciate two flags with each search state: “in OPEN?” and “in CLOSED?
With this, membership test is really fast (constant time)
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A* Optimizations (2) [homeworK]

If A* is run multiple times on the same graph (think fixed terrain and
consecutive path planning operations), we can decrease the
initialization cost of clearing OPEN and CLOSED (i.e., setting all flags
to false) before each A* run by using the “generation counter” trick:

» each flag becomes an integer, initialized with 0 (meaning “false”)
» set the generation counter (gc) to 1

> setting flag = gc indicates true, flag != gc means false

>

before the next A* run, increment gc
(this implicitly sets all flags to false in constant time!)

> set all flags to 0 if gc exceeds big value and reset gc to 1

= virtually no initialization cost!

E.g., when using an unsigned 4 byte gc, then only after ~ 4 billion A*
calls all flags have to be reset. This is a nice example of trading space
for time. The idea is applicable whenever one needs a very fast
(constant time actually) membership test for large sets
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A* Complexity

General (implicit graph): (e.g., Rubic’s cube)
» Successor nodes are generated on the fly (graph defined implicitly)

» Exponential time complexity in worst case (measured in solution
length)

» A good heuristic will help a lot here

Runtime is O(bm - log(bm)) if the heuristic is perfect (branching
factor b, length m) (why?)

v

» Exponential space complexity in worst case

If all nodes fit in memory (explicit graph): (e.g., video game maps)
» Time complexity often O(nlog n)

» (n nodes, log n for priority queue operation, assuming number of
neighbours bounded by constant, and reopen operations are rare,
(e.g., when using consistent heuristics))
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A* in Computer Games (1)

A* can be used for path planning and single agent action planning in
computer games, but there are a few problems:

» Memory: not much available, often only a few bits per node if maps
are big

> Speed: need to find acceptable paths on huge maps in milli-seconds
» How about dynamic environments or opponents blocking paths?

A simple approach for dynamic environments is to assume the
world is static and to replan frequently

However, this doesn’t take into account mobile objects

What we really want is to avoid collisions in space-time, because
objects can be at the same location at different times

> ..
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A* in Computer Games (2)

However:

Finding good approximations is often sufficient and can be
much faster

Idea:

Abstracting the search graph to gain speed at the cost of
memory and path quality, which is next ...
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