
Advanced Games Programming (AI)
Part 6: Sampling-Based Search

Michael Buro

December 23, 2024

[Under Construction]

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 1 / 35

Change Log

▶ [Oct 31] Created

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 2 / 35

Outline

1. Sampling-Based Methods
2. Monte Carlo Tree Search
3. UCB
4. UCT

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 3 / 35

[AI-Lec 16 L26] Sampling-Based Methods

What do you do when you have imperfect information, huge state
spaces, or no idea how to evaluate positions heuristically?

▶ Poker [1], Contract Bridge [2], Skat [8]:
we don’t know the opponent’s cards

▶ Scrabble [3,4]: we don’t know the opponent’s tiles

▶ 19x19 Go [7,11,14]: many moves, complex state evaluation

▶ RTS games [10,13]: huge state and action spaces, Fog of War,
realtime

Regular search often does not work well because of combinatorial
explosion

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 4 / 35

Choices?

Alpha-Beta?

*-Minimax (Alpha-Beta applied to game trees with chance nodes)?

▶ We don’t know what moves the opponent might have

▶ Could have a large branching factor, meaning little search depth

How do you get meaningful results when there can be stochastic events
and hidden information?

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 5 / 35

Traditional Search

o
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ /\ \ stop earlier if outcome becomes clear

/_____/ ____________\
/xxxxxxxxxxxxxxxxxxxxxx/ artificial search horizon
| / \ /\ /
|/\ / \ /\/ \/ explore tactical lines more deeply

\/ \/

All nodes at a fixed search depth (modulo search extensions/reductions)

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 6 / 35

Alternative?

Sample from the space of possibilities

If you get “enough” samples, then you may have a good approximation
of the true move values

_ _ o _ _ __
/ / /|\ \ \ \
/ / / | | | | |\

/ / / / | | | | x
/ / / / / /| | |
/ / / / / x | | |\

/ / / / /\ | | | \
/ / / / / x | | | x

x / x / x | x |
x x x x

Some nodes are deep in the tree

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 7 / 35

Sampling-Based Decision Making

1. For each move choice at the root node

▶ Gather samples

▶ Compute performance metric (e.g., average score achieved)

Repeat until resources are exhausted (usually time)

2. Choose move with the best statistical outcome

▶ Poker: betting choice leading to best average winnings

▶ Scrabble: move that leads to best average number of points

▶ Contract Bridge: move that leads to the most tricks won on average

▶ Skat: move that leads to the highest score average

In general: maximize expected payoff

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 8 / 35

How Many Samples?

▶ Iterate until time runs out

▶ Iterate until statistically confident
(i.e., until one move choice is significantly better than the alterna-
tives)

Smart sampling can be used to help reduce the number of samples
needed to converge to a useful result [4]

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 9 / 35

Selective Sampling

We don’t want uniform random sequences

(like in simple Monte Carlo sampling for numerical integration
where an area is approximated by counting how many samples
fall inside and outside)

All scenarios are not equal; use all available information to bias the
sampling towards likely scenarios

E.g., in trick-based card games generate card distributions that are
consistent with move history and likely — given the move history

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 10 / 35

Advantages of Sampling-Based Search

Conceptionally a simple search algorithm

Can realize complex behaviors with no explicit knowledge

; lessens dependence on expert knowledge

Prefers robust positions with many winning continuations

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 11 / 35

Disadvantages of Sampling-Based Search

Problems in tactical situations

▶ Narrow lines of play are hard to find by randomized search

▶ May not converge to a winning move at all – if one exists

▶ Or may not converge to a clear ’winner’

Doesn’t approximate mixed strategies out of the box (i.e., compute
move probabilities), but see [12]

To get useful results may need to include opponent modeling

▶ Observe opponents to determine their likely move choices

▶ Opponent modeling is a hard problem!

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 12 / 35

Results?

▶ World-championship calibre play in Scrabble

▶ Strong card play in Contract Bridge and Skat

▶ Near perfection in Backgammon (using millions of rollouts)

▶ Recent considerable improvement in computer Go and Chess!

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 13 / 35

The Rise of Monte Carlo Tree Search (MCTS)

Sampling-based approaches even work in deterministic perfect
information games!

Started computer Go revolution in 2006 culminating in AlphaGo [11]
which defeated Lee Sedol (one of the strongest 9-dan professional
players) 4-1 in March 2016

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 14 / 35

Monte Carlo Tree Search

MCTS is an iterative search framework based on Monte Carlo sampling

It maintains a tree of visited game states and result statistics that
determine the next move sequence to consider

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 15 / 35

Monte Carlo Tree Search (continued)

Each iteration has 4 phases:
▶ Selection: start from root R and select successive child nodes

down to a leaf (or leaf predecessor) node L, choosing nodes that
lets the game tree expand towards most promising regions

▶ Expansion: unless L ends the game with a win/loss for either
player, either create one or more child nodes and choose from
them node C

▶ Sampling: starting in C finish the game (semi)-randomly (“rollout”)
▶ Backpropagation: use the rollout result to update information in

the nodes on the path from C to R

When the search time expires, report the best move at the root
Most commonly the move with the best average value is chosen
Sometimes, the most visited root move is chosen because its evaluation
is more stable

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 16 / 35

UCT: The First MCTS Algorithm

UCT = “Upper-Confidence Bound for Trees”

Sampling-based method for game tree search

UCT [6] is based on the UCB [5] ("Upper Confident Bound") algorithm
for solving multi-armed bandit problems

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 17 / 35

UCB Algorithm (Auer et al. 2002, [5])

“Upper Confidence Bound Heuristic” for the multi-armed bandit problem:

Given n slot machines with random rewards Xi ∈ [0, 1], find
the machine with the highest expected value, while mimizing
the regret, by pulling arms

Regret: how much we lose while experimenting compared to playing
the best move right from the start

E.g., for T trials:
▶ Psychic policy guesses the best slot machine: expected regret = 0
▶ Random policy that pulls arms randomly: expected regret = Θ(T)

[unless all payout distributions have the same mean]
Any suboptimal pull will incur expected regret > 0

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 18 / 35

UCB (continued)

UCB solves the so-called exploration-exploitation problem for the
bandit problem:

“I know something about the machines already. Should I continue
exploiting this knowledge or should I look for something better?”

Define:

▶ X̂i = average reward for the i-th arm thus far

▶ Ti = the number of trials for arm i

▶ T =
∑

i Ti = total number of trials

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 19 / 35

UCB (continued)

Assuming statistically independent random variables Xi with values in
[0, 1], iterate until time runs out:

1. If an arm has not been pulled yet, pull it and observe reward

2. Otherwise, pull an arm that maximizes X̂i + C
√

logT
Ti

and observe
reward

C > 0 is the so-called exploration constant. The higher it is, the more
UCB will explore less frequently visited choices

UCB is optimistic: it selects the arm which it currently thinks can have
the highest *potential* reward

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 20 / 35

UCB Motivation: Central Limit Theorem

For random variable X with mean value µ and standard deviation σ < ∞

X̂ (N) := (X1 + X2 + ... + Xn)/N

is approximately normally distributed with mean µ and variance σ2/N

X̂ (N) ∼ Normal(µ, σ2/N)

(∼ = distributed like)

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 21 / 35

UCB (continued)
Thus, the more we sample, the better X̂ (N) approximates µ, because
σ2/N → 0 for N → ∞

The estimator’s standard deviation (=
√

Variance = σ/
√

N) measures
the estimation uncertainty

Fact: For the normal distribution with mean µ and standard deviation σ
approximately 68% of the probability mass is contained in the interval
[µ − σ, µ + σ]. In general, mass p > 0 is contained in [µ − Cσ, µ + Cσ]
for some C > 0 that only depends on p

This allows us to control the level of optimism when selecting an action
to explore next. The move value

X̂ (N) + Cσ/
√

N

represents an optimistic estimate for µ which we might achieve or
exceed with a probability depending only on C > 0. C = 1, for example,
leads to a 16% confidence that we will reach this value or exceed it

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 22 / 35

UCB Rule Illustration

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Normal(m=0,sd=2)
Normal(m=-2,sd=4)

m1m2

m1

^

m2

^

true

distr.

true

distribution

m2 + 3*sd2

m1 + 3*sd1^

^

m2 < m1, but
optimistic players prefer
move 2 over move 1
for C=3

^ ^

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 23 / 35

UCB (continued)
In the case of UCB all random variable ranges are assumed to be [0, 1]

This allows us to simplify the move value formula a bit so that we do not
need to estimate σi (the standard deviation of payoff Xi)

Claim: The variance of any random variable X ∈ [0, 1] is ≤ 1/4

Proof: Let EX denote the expected value of X and VX its variance

Because X ∈ [0, 1], X 2 ≤ X and EX 2 ≤ EX =: µ ∈ [0, 1]

Therefore, VX def .
= EX 2 − µ2 ≤ µ − µ2 = µ(1 − µ) ≤ 1/4

For arm i in UCB we have: N = Ti , µ = EXi , σ2 ≤ 1/4,. Therefore,

X̂i + C/
√

Ti

represents an optimistic value arm i might achieve with a probability
(roughly) depending on C

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 24 / 35

UCB (continued)

Auer [5] shows:

▶ The additional
√
logT factor used in step 2 of the UCB rule en-

sures that UCB never stops pulling any particular arm

[if it stops, C
√

log T
Ti

will eventually exceed the values of the pulled
arms, which is a contradiction]

▶ In the limit, UCB “finds” an arm with highest expected reward in the
sense that it chooses the best arms exponentially more often than
others with smaller reward

▶ UCB’s expected regret in the worst case is Θ(logT), which can be
proven to be optimal and much better than the worst case Θ(T)
“achieved” by the random arm selection procedure

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 25 / 35

UCT Search

Applying UCB to game tree search: UCT = UCB on trees

UCT [6] is a MCTS method which regards the game tree as collection of
bandit problems — one for each interior node

It builds a tree close to root node and finishes games in a semi-random
fashion

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 26 / 35

UCT Search (continued)

▶ Selection and Expansion: In in-tree nodes, use UCB to select
the next child. When reaching a node in which not all children have
been visited, create the next child and append it to tree

▶ Sampling: Finish game using a (semi-)random rollout policy

▶ Backpropagation: Update value statistics for all visited tree moves

Using this algorithm node values converge to the minimax value [6]

When time runs out, we pick a move with the highest average score (or
the move vistited most often for improved robustness)

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 27 / 35

UCT Example

U
1/2/ \0/1 w/t: wins/trials

/ \
V \

1/1/ \0/1 W
/ \ +
X Y | ^ tree section
+ + | v rollout section
| | |

. . .
1 0 0 +: path not stored

1. Choose move according to UCB starting at U (assume C = 1)

V: (1/2 +
√
(log3)/2 = 1.24 or W: (0/1 +

√
(log3)/1 = 1.05 ? ⇒ go to V

X: (1/1 +
√

(log2)/1 = 1.83 or Y: (0/1 +
√
(log2)/1 = 0.83 ? ⇒ go to X

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 28 / 35

UCT Example (continued)

2. pick (random) move at X, add node, finish game randomly: result 0

U
1/2/ \0/1 w/t: wins/trials

/ \
V \

1/1/ \0/1 W
/ \ +
X Y |
+\ + |
| N | |
| | | |

. . .
1 0 0 0

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 29 / 35

UCT Example (continued)

3. update values on path to root

U
3. -> 1/3/ \0/1 w/t: wins/trials

/ \
V \

2. -> 1/2/ \0/1 W
/ \ +

X Y |
1. -> +\0/1 + |

| N | |
| | | |

. . .
1 0 0 0

repeat ...

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 30 / 35

UCT Improvements

In recent years the original UCT search framework has been improved
in various ways by using game-specific heuristics such as

▶ RAVE (Rapid Action Value Estimation)

In games with transpositions it is often the case that values of moves
played now or a bit later are highly correlated. UCT can take ad-
vantage of this by maintaining statistics for unseen moves based
on their performance in subtrees

▶ Prior Knowledge

The original UCB rule requires us to pull each arm at least once.
This can be wasteful in games, especially if the chance of visiting
a node again is low. Instead, modern MCTS game programs use
policy networks to evaluate all possible moves — pretending they
have run a simulation for each child — and then pick the best child
for running an actual simulation

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 31 / 35

Results

▶ The development of UCT in 2006 sparked a new area in heuristic
search

▶ MCTS-based programs dominate computer Go and blew away
Alpha-Beta search based Go programs. (e.g., 2007-2014 MoGo
[7,9], Fuego, Crazy Stone, 2015-17 AlphaGo [11,14])

▶ AlphaZero-Go and AlphaZero-Chess [14] are now much stronger
than any human player. The latest versions don’t even use simula-
tions anymore: leaf values are evaluated by a deep neural network

▶ MCTS has also been successfully applied to other abstract games
(Chess, Shogi, Hex, Havannah, Amazons, Poker [12] ...), to single-
agent domains, and even to video games [13]

MCTS is the new heuristic search hammer, and we are looking for nails
...

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 32 / 35

References

[1] D. Billings et al, Using Probabilistic Knowledge and Simulation to
Play Poker , AAAI, pp. 697-703, 1999

[2] M. Ginsberg, GIB: Steps Toward an Expert-Level Bridge-Playing
Program. In Proceedings of IJCAI, pp.584-593, 1999

[3] B. Sheppard, "Towards Perfect Play at Scrabble", Ph.D. thesis, 2002

[4] B. Sheppard, Brian Sheppard, World-championship-caliber
Scrabble, Artificial Intelligence 134, pp. 241-275, 2002

[5] Auer et al., Finite-time Analysis of the Multiarmed Bandit Problem,
Machine Learning, 47, pp. 235-256, 2002

[6] L. Kocsis, C. Szepesvari, "Bandit based Monte-Carlo Planning",
ECML 2006, https://www.researchgate.net/publication/
221112399_Bandit_Based_Monte-Carlo_Planning

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 33 / 35

https://www.researchgate.net/publication/221112399_Bandit_Based_Monte-Carlo_Planning
https://www.researchgate.net/publication/221112399_Bandit_Based_Monte-Carlo_Planning

References (continued)

[7] S. Gelly, Y. Wang, “Exploration Exploitation in Go: UCT for
Monte-Carlo Go”, https://www.researchgate.net/
publication/228699422_Exploration_exploitation_in_
Go_UCT_for_Monte-Carlo_Go
[8] M. Buro, J.R. Long, T. Furtak, and N. Sturtevant, Improving State
Evaluation, Inference, and Search in Trick-Based Card Games, IJCAI,
Pasadena USA, pp. 1407-1413, 2009

[9] S. Gelly and D. Silver, Combining online and offline knowledge in
UCT. In Z. Ghahramani editor, ICML volume 227 of ACM International
Conference Proceedings Series, pp 273-280, 2007

[11] D. Silver et al.: Mastering the game of Go with deep neural
networks and tree search, Nature, VOL 529, pp. 484-501, 2016

[12] J. Heinrich and D. Silver, Smooth UCT Search in Computer Poker,
AAAI 2015

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 34 / 35

https://www.researchgate.net/publication/228699422_Exploration_exploitation_in_Go_UCT_for_Monte-Carlo_Go
https://www.researchgate.net/publication/228699422_Exploration_exploitation_in_Go_UCT_for_Monte-Carlo_Go
https://www.researchgate.net/publication/228699422_Exploration_exploitation_in_Go_UCT_for_Monte-Carlo_Go

References (continued)

[13] D. Churchill and M. Buro, Portfolio Greedy Search and Simulation
for Large-Scale Combat in Starcraft, CIG, Niagara Falls, Canada, 2013

[14] D. Silver et al., Mastering the game of Go without human
knowledge, Nature, Vol. 550, pp. 354-359, 2017

FIN

CMPUT 350 F2023 M. Buro Advanced Games Programming (AI) Part 6: Sampling-Based Search 35 / 35

	Sampling-Based Methods
	Monte Carlo Tree Search
	UCB
	UCT

