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[Al-Lec 15 L24] Introduction

Thus far we have concentrated on single- and two-player perfect
information games, in which players know the state of the game at all
times

However, in real-world applications this condition is often violated.
Consider for instance the stock-market, Poker, or RTS games. In those
games, participants often have different information

The question becomes how to play imperfect information games well

This question is addressed by the mathematical field of game theory
which studies strategic decision making and was founded by John von
Neumann with his seminal 1928 paper “Zur Theorie der
Gesellschaftsspiele” (Literally: On the theory of parlour games)
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Introduction (continued)

Today, game theory is a thriving field with lots of applications ranging
from building rational agents for complex tasks to trying to understand
irrational human behaviour (see for instance “Predictably Irrational” by
Dan Ariely)

As it turns out, computing good moves in arbitrary imperfect information
games according to our current understanding is intractable, i.e., we
only know exponential time algorithms, which are impracticable

An exception are two-player zero-sum games for which in each game
episode the payoffs for both players always add up to 0. For such
games, computing moves is tractable (i.e., in polynomial time)
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Introduction (continued)

As we will see shortly, imperfect information games require us to
consider randomized strategies

In the brief remaining time we will motivate a solution concept based on
linear programming and give an example of how solving imperfect
information games can be used to improve RTS game Al

For a more thorough description of the field of game theory |
recommend visiting

http://en.wikipedia.org/wiki/Game_theory
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Background: Linear Programming

The best-known category of constraint optimization problems is linear
programming (LP), in which constraints must be linear inequalities
which represent half-spaces whose intersection forms a convex set,
and the objective function is also linear. For instance:

x2 A Maximum achieved here

1+ Maximize f(x1, x2) = x1 + 2*x2

over constrained domain D

defined by linear constraints

AN
/7

1 x1
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Linear Program Example

Problem:

maximize xq + 2x» subjectto x; <1, xo < Xy, X0 >0
Domain D is defined by 3 linear inequalities, each describing a
half-plane. Their intersection forms a triangle
Solution:

X1 = X2 = 1 and the maximum value of the objective function is 3
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Linear Programming (continued)

All linear programs can be written in the following normal form:

maximize c¢!x

subjectto Ax <b

and x>0
where b, ¢ are constant column vectors, t denotes transposition, A is a
constant matrix, x is the unknown column vector subject to optimization,

and the inequalities hold component-wise, i.e., x > 0 means
x1>0,..,x,>0

[ Exercise: Determine A, b, ¢ for the previous example ]
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Solving Linear Programs

It is easy to see that without loss of generality optimal values will be
achieved in corners of domain D, of which there can be an exponential
number depending on the number of variables

The Simplex Algorithm hops from corner to corner to find the optimal
solution. It can take exponential time in the worst case, but runs much
faster in many applications

In 1984 Kamarkar proved that LPs can be solved in polynomial time in
the input size (hnumber of variables plus constraints), using a so-called
interior-point method which starts somewhere in the interior of the
domain set and then incrementally walks towards the optimal constraint
corner
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Solving LPs (continued)

CPLEX is a fast commercial solver which uses an interior point method,
which iteratively approaches the max point from the interior of the
feasible region

GLPK (free software GNU Linear Programming Kit) works well for
moderate input sizes

As we will see shortly, two-player zero-sum imperfect information
games can be solved using LPs. More general payoff structures lead to
Linear Complimentary Problems (LCPs) which are harder to solve
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Convex Optimization

LPs are probably the most widely studied and broadly useful class of
optimization problems

They are a special case of the more general problem of convex
optimization, which allows the constraint region to be any convex region
and the objective to be any function that is convex within the constraint
region

Under certain conditions, convex optimization problems are solvable in
polynomial time, scaling up to thousands of variables

Several important problems in machine learning and control theory can
be formulated as convex optimization problems
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Matrix Games

Recap:

> Two players
» Payoff matrices A, B (payoffs for players 1 and 2)
» Simultaneous moves: player 1 picks row i/, player 2 picks column j

» Player 1 receives amount Aj, player 2 receives B
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Example: Rock-Paper-Scissors

A: payoff for P1 B: payoff for P2
R P S - P2 R P S - P2
fom fom
R | 0O -1 +1 R | o +1 -1
P | +1 0o -1 P | -1 0 +1
S | -1 +1 0 S | +1 -1 0
| |
P1 P1

This is a zero-sum game (payoffs add up to 0, i.e., B = —A, so we only
need to consider one matrix, say A)
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How to Play RPS?

Deterministically?

Whenever someone announces to use a deterministic (“pure”) strat-
egy the opponent can win all the time

Try it!

What else can we do?

Randomize actions (“mix” strategies)
Prob(Rock) = pg € [0, 1]
Prob(Paper) = pp € [0, 1]
Prob(Scissors) = ps =1 — pg — pp

What if the opponent announces a strategy with one probability = 1/3 ?
Can you beat that strategy on average?
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How to Play RPS? (continued)

Yes. If one probability is # 1/3, consider a move m with the highest
probability (must be > 1/3 —why?)

Then we just always play the move that defeats m

~» Our expected payoff > 0

So, what's leftis pg = pp = ps =1/3

This is the only so-called MiniMax strategy for RPS

In what follows we will see how action probabilities for MiniMax

strategies can be computed from a given payoff matrix of a 2-player
zero-sum matrix game based on linear programming
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MiniMax Theorem

Theorem (John von Neumann, 1928):

For every two-person, zero-sum game with finitely many pure strategies,
there exists a value V and a mixed strategy for each player, such that

(a) Given MIN’s strategy, the best payoff possible for MAX is V, and
(b) Given MAX’s strategy, the best payoff possible for MIN is —V

Hence these mixed strategies are optimal strategies for both players in

the paranoid sense when assuming the opponent always choses a best
strategy
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Generalization

More general:

Definition:

A tuple of strategies (also known as strategy profile) forms a
Nash-equilibrium iff no unilateral strategy deviation beneficial to a single
player exists

John Nash in his seminal 1950 paper proved that such equilibria exist
for ALL finite n-player games, not just zero-sum, 2 player games

MiniMax strategies form a Nash-equilibrium for 2-player zero-sum
games
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MiniMax Strategies

MiniMax strategies in the zero-sum, 2 player case

A mixed strategy is a probability distribution over all players’ choices
(i.e., column vector of numbers > 0 adding up to 1)

Suppose player MAX (picking row /) uses mixed strategy x and player
MIN uses y (picking column j)

What is the expected payoff for MAX, assuming MAX’s payoff is A;?
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MiniMax Strategies (continued)

If MAX picks row / and MIN picks column j, the result is Aj
This happens with probability x; - y;
Thus for those two choices the expected result is
Xi - A Y
Summing over all choice pairs leads to the expected payoff for MAX:

> xiAjy; = x'Ay  (t = transposed)
i
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Best Response Strategies

Strategy x is called a best response strategy for MAX for a fixed y if it
maximizes

x'(Ay)

Likewise, a best response strategy y for MIN minimizes
(x'A)y

for fixed x

The best response value for MAX given y can be written as follows:

max x'(Ay)

subjectto > ; x; = 1and x; > 0 for all /
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Best Response Strategies (continued)
The constraints mean that x is a probability distribution

MIN tries to minimize MAX’s value, and his optimization problem is
analogous

Problem: this is a quadratic program (QP, maximizing a quadratric
function subject to linear constraints), but not an LP

Recall: LPs have the following form:

max ¢! x subjectto Ax < band x >0

where ¢, b, x are column vectors, A is a matrix, and <, > apply to all
vector components

l.e., we try to maximize a linear function over a set defined by linear
constraints
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Best Response Strategies (continued)

The MiniMax theorem says:
: t _ : t
min max x'(Ay) = max min (x*'A)y
Not quite an LP. But note that
in (x!A
min (X A)y

for a given strategy x can be achieved by a pure strategy y (assigning
probability 1 to one move). So we don’t have to mix. Why?

(x!A) is a row vector and MIN simply chooses the single best counter
move and assigns it probability 1. Mixtures can’t be better

E.g., (x!A)y = (-1,2,-5,3) y
~» pick y3 = 1 and all others = 0
~» worst value for MAX is —5
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Computing Nash-Strategy Profiles

With this insight we can rewrite the MinMax optimization as a linear
program which optimizes a linear function subject to linear constraints:

.t _ by
max min x'(Ay) = max mjln (x'A); (+)

subject to x being a distribution: x > 0and ), x; = 1
Still not an LP yet, i.e., not of the form (x):

max c!- x subjectto Ax < band x >0

Can you find an LP formulation for min; (x'A); for a fixed x?
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Computing Nash-Strategy Profiles (continued)

The right-hand side of (+) is equal to

max Z
z,X

subject to z < (x'A); forall j,x > 0,and >"; x; = 1

Why? Because for a given x,

min (x'A); = max Z for z < (x'A); for all j
J

This is an LP!

(Exercise: prove this by choosing corresponding values for ¢, A, and b
in the LP normal form (x))
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Computing Nash-Strategy Profiles (continued)

The analogous LP for MIN is:

min Z
z?y

subjectto z > (Ay); forall i,y > 0,and > _; y; = 1

This means that we can compute the game value z and move
distributions x and y by solving above LPs
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Example: RPS

e
R| 0 -1 1
P | +1 0o -1
S | -1 +1 0
x (1)

For MAX’s strategy solve:

maxz, x Z subject to

X1+ Xo+ X3 =1

X1,X2,X3 >0

Z < Xo — x5 value for move y; (col 1)
z < —xq + x3 value for move y» (col 2)
Z < x1 — X2 value for move y3 (col 3)
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Solving RPS

Each z constraint describes the payoff against a pure MIN strategy.
MAX wants to maximize this value

Claim: z=0and xy = xo = x3 = 1/3
Proof: Adding all constraints shows z < 0. Can z = 0 be reached?
Yes, by choosing x; = 1/3

All other choices leadto z < 0
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Online Solver

Try https://www.math.ucla.edu/~tom/gamesolve.html t0 see
an LP based matrix game solver in action

E.g.,

A: payoff for P1

.
R| 0 -2 +1
P | +2 0o -1
s | -1 +1 0
|

P1

The Nash-equilibrium is x = y = (1, 1, ) and the game value is 0
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MiniMax Strategies in More Complex Games

Optional reading — material will not appear on any test

How to find MiniMax strategies in more complex imperfect information
games?

By generalizing the maxtrix game!

But first, how do “game trees” for imperfect information games look?
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Extensive Form Games

We have seen matrix game definitions earlier. This representation is
called strategic form or normal form

Alternatively, the extensive form game representation consists of a
game tree and an information set overlay:

1:0
L/ \R
/ \
2:X 3,4
1/ \r
/ \
1:0::::::0 <- information set (player 1 to move, choices S,T)
/ \ / \ player 1 does not know which state is the current one

s/ T\ s| T\
0,1 2,0 6,0 5,2 <- payoffs for player 1,2
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Solving 2-Player Zero-Sum Extensive Form Games

Imagine all possible pure strategies in a finite 2-player zero-sum game,
i.e., specify a move in every information set where the player is to move

Perfect information case:

Overlay both trees ~» principal variation ~ leaf value determines payoff

Imperfect information case:

Create payoff matrix, where a “move” is now a pure strategy
Payoff entry i, is the value of pitting strategy / vs. j

Mixed MiniMax strategy = mixture of pure strategies
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Solving Extensive Form Games (continued)
Distributions can be computed by solving above LPs
That’s a huge matrix!

(# of pure strategies for MAX) - (# of pure strategies for MIN)
# of strategies usually exponential in the game tree size
~» doubly exponential in game tree depth!

But there is a lot of redundancy in this LP (e.g., when moving left, all our
choices in the right subtree are irrelevant)

There exists an algorithm [1,2] based on the so-called sequence form
that computes MiniMax strategies in time polynomial in the size of the
game tree!

BIG IMPROVEMENT, which led to the first competetive Poker bots
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Applications: Oshi-Zumo

Two players, each start with n coins. Sumo wrestler in the middle of
2k+1 locations

In each round, players secretly bid any amount of coins they hold. The
player who bid more pushes the Sumo one position towards the other
player’s side, both players pay in any case (in case of a tie the wrestler
does not move)

The game is over when the wrestler is pushed over the edge, both
players bid 0, or money runs out. In these cases the half the wrestler
resides in determines the loser
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Oshi-Zumo (continued)

The game defines a tree of matrix games which can be solved
bottom-up by dynamic programming [3]:

» Start with base cases:
(0 vs. 0 coins) x (any position -(k+1)..(k+1))

> lterate until no more unsolved positions exist:
> Look at all positions whose values haven’t been computed yet
» Determine whether all successor values computed
> If so, compute value by solving LP
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Example: k = 3 (7 Sumo locations)

Smallest position that requires strategy mixing:

5 vs 2 coins, Sumo at -3 [5,2,-3]

expected value for pl:

(1,0) 25% -> [4,2,-2] draw (pl bids 1)
(1,2) 25% -> [4,0,-4] instant loss
(2,0) 25% -> [3,2,-2] loss (p2 bids 1)
(2,2) 25% -> [3,0,-3] draw (bid 3x1)

All pure strategies for p1 lose more
E.g., bids (2,0) — (3,2,-2) — (*,1): p1 loses

=> expected value -0.25
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Target Selection in RTS Games [5]

nvs. m units with attack value and hitpoints

Assume every unit can attack all others

Playing in rounds (simultaneous moves) until one side is defeated.
What is a good target ordering?

Matrix game formulation:
» rows/columns : which units do both players attack?

» matrix entry: expected value of reached state when attack actions
i,j are chosen
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Target Selection in RTS Games (continued)

Tree of matrix games, can be solved bottom up by LP:

» Solve leaf state LPs and use their values to fill in the payoff matrix
entries one level up

> lterate, until root matrix game is solved

Large number of states, because in each level the number of move
pairs is n’ - nm’, where n’, m" are the number of units left
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Target Selection in RTS Games (continued)

Example that shows that mixed strategies are sometimes necessary [5]:

Voo TN

(4, 1) 5.3 IR o] 1o
| 1] 1 I

T T S O A U

ay ey AL

Black: row player MAX <hitpoints,attack>

(entries = result of sub-games for MAX after playing (i,j), thin entries are
dominated)
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Target Selection in RTS Games (continued)

Playing deterministically (move 3 or 4): Black’s score is 0

Play non-dominated actions with probability 0.5: Black’s expected score
is 0.5

We currently only know exponential time algorithms to solve this
problem in general (generate tree of LPs)
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High-Level Strategy Selection in RTS Games

MiniMax search has been success-
ful in chess, why not apply it to RTS
games”?

» Huge branching factor (100s
of units)

» Imperfect information (simulta-
neous moves + “fog of war”)

Minimax at lowest level won't work

We need abstractions
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An RTS Game Planning Problem

138
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RTS-Plan Idea

Moves = Strategies

Computing Move = Select Strategy

Create Strategies (“scripts”)

Apply traditional methods to select strategy to follow
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RTS-Plan

During the game:
» Create payoff matrix with results of playing strategy i vs. j
» Solve LP ~- strategy distribution
» Pick strategy accordingly, follow for a couple of seconds

» Then replan

CMPUT 350 F2023 M. Buro Advanced Games Programming (Al) Part 5: Imperfect Information Games 44/62



Strategy Simulation

max min

game end
result r;;
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Payoff Matrix

Player B
Player B S S S S S .
R P S S,
R| O] -1|+1 Pliyer S,
Player
P(+1| O] -1 X
A 5
S|-=Ij+1]| 0 S,
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Issues

Simulations slow + matrix to be filled!
Simulate till end?

Subsequent choice points would be nice
Partial observabilty?

What if opponent strategy isn’t covered?
Nash-equilibria don’t maximally exploit

Payoff entries may be random variables
~> need to solve LPs robustly

vVvVvyVvyVvyVvyYyvyy
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State/Action Abstraction

Consider unit groups

Strategies issue group commands

CMPUT 350 F2023 M. Buro Advanced Games Programming (Al) Part 5: Imperfect Information Games 48/62



Spread Out Matrix Computation

for (int i=0; i < numOurStrategies; ++1) {
for (int 3=0; Jj < numTheirStrategies; ++3j) {

if (!'nextSimulationAllowed())
return notDone

r[(i][j] = simulate(ourStrat[i], theirStrat[]j])

}
return pickStrategy (r)
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Fast Forwarding

Advance to next “interesting” point in time

nextTime = min (getNextCollideTime (),
getNextOrderDoneTime (),
getNextShootingTime (),
getNextStrategyTimeoutTime ()
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Basic Opponent Modeling

Monitor opponent actions
Only consider “nearby” opponent strategies

If no strategy matches, consider all strategies
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Experiments

Army deployment scenarios

> 3 bases for both players

» Symmetric locations

> Flat terrain

» 3 groups of units located at each base
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Example

.-~ Attacking base

-

W
ame, T Attack base All groups attack
" enemy here

~, L ”
/Groups join here
[ L
Wead
Y.
Attack base L
) Attacking base

(a) Starting position and orders (b) Opponents attack bases while we gather

Bt B
M
Attacking new base
v
Hunt down a,

remaining enemy

Chase down
remaining group

Attack next base once
current one destroyed

(c) We eliminate part of the enemy force (d) We eliminate the rest of the enemy
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Results

RTS-Plan without opponent modeling vs. individual strategies

Strategy Wins | Losses | Ties
Null 100 0 0
Join Defence 96 4 0
Mass Attack(base) 99 1 0
Mass Attack(units) 99 1 0
Spread Attack(base) 38 62 0
Spread Attack(units) 38 62 0
Half Defense-Mass Attack | 99 1 0
Hunter 46 54 0
Attack Least Defended 99 1 0
Harass 70 28 2
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Results

RTS-Plan with opponent modeling vs. individual strategies

Strategy Wins | Losses | Ties
Null 100 0 0
Join Defence 100 0 0
Mass Attack(base) 99 1 0
Mass Attack(units) 99 1 0
Spread Attack(base) 83 17 0
Spread Attack(units) 83 17 0
Half Defense-Mass Attack | 99 1 0
Hunter 63 37 0
Attack Least Defended 100 0 0
Harass 91 5 4

With opponent modelling, RTS-Plan is able to win against each single
opponent strategy
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Conclusion

RTS-Plan is first step towards adversarial planning in RTS games

Promising initial results
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Computer Poker

Idea:

» Abstract full game (independent bidding rounds, hand strength
buckets, etc.)

» Solve much smaller abstract game using LP approach

» Map solution back to full game

~» creates strong poker players, BUT ...

Nash-optimal players are not that interesting if weaker players need to
be exploited — say for winning more tournaments
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Exploitation

Nash-optimal player won’t lose in the long run, but also will not win
anything if the expected game value is 0

E.g., playing Rock all the time in RPS
Want to exploit the opponent for maximum profit
E.g., eventually play Paper all the time against the Rock player

Opponent modeling is non-trivial, but essential
Assume that he knows that | know that he knows ...

locaine Powder [3] won the first computer RPS tournament
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Dealing with Large Game Trees

Algorithms based on regret minimization have been shown to be
effective in Poker, leading to world-class Al systems that can defeat
professional players

The idea is to play repeatedly and monitor the performance of moves in
information sets to adjust their probabilities according to the losses they
incurred against the currently best counter strategy

See [6,8,9] for details on Counterfactual Regret (CFR) minimization

Strategies estimated by CFR converge to a Nash-equilibrium in
2-player, zero-sum games

CFR only requires memory linear in the number of information sets, not
in the number of states

~» more fine-grained abstractions can be used
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Future Work

» Look-ahead procedure similar to MiniMax search that approxi-
mates Nash-optimal strategies (see DeepStack paper [8])

» Stochastic programming: how to deal with payoff entries that are
random variables? E.g., payoff estimates

» Model opponents effectively
» More than 2 players

We are working on a strong Skat program, for which we need to
address 3-player aspects, opponent modelling, and abstraction to
approximate Nash-equilibria (see [7])
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