Lecture Notes for Al (CS 482/682)
Fall 2009, Lecture 05

Instructor: Kostas Bekris

September 8, 2009

1 Overview

In the previous lectures we explored uninformed search techniques, i.e., algorithms that search the state
space of a problem for a solution and have available only the successor function and the cost of actions.
Examples of these techniques include breadth-first search and depth-first search.

Then we moved on to informed search, a type of search that uses heuristic information to improve
performance. A heuristic is a function h(n) that attempts to estimate for every state n the cost of the path
from that state to the goal.

The basic strategy for informed /heuristic search is best-first search. In best-first search, an evaluation
function f(n) is defined. Best-first search selects as the next node to expand the node which has the optimum
value according to f(n). There are two popular ways to implement best-first search:

1. The simplest form of best-first search is greedy best-first search, where the evaluation function is
equal to the heuristic one: f(n) = h(n). If the heuristic is a very good estimate of the true path cost
then greedy best-first search will work well. In the general case, however, greedy best-first search is an
incomplete and suboptimal algorithm.

2. An alternative form of best-first search is the A* algorithm, where the evaluation function is defined
as: f(n) = g(n) + h(n), where g(n) is the true path cost from the root of the tree to the current node
n. This lecture studies the properties of the A* algorithm and ways to design heuristics for informed
search.

2 A* search

As in the case of uninformed search, in informed search we can distinguish between two alternative ways
on how to deal with repeated states. If we allow our search algorithm to revisit repeated states, then the
resulting search data structure is a tree and the approach is referred to as TREE-SEARCH. Instead, if we use
an additional data structure to store the nodes that have been already expanded (e.g., a hash table), then
the resulting data structure is a graph and the approach is referred to as GRAPH-SEARCH. As long as the
state space is small enough so as to be feasible to remember all the states that the search technique visits,
GRAPH-SEARCH is typically the preferred approach. For very large state-spaces and for problems were loops
might be beneficial for the solution of the problem TREE-SEARCH is used. We will show in the following
discussion the properties of A* for each of these two cases.

2.1 TREE-SEARCH

For A* to be optimal in the case of TREE-SEARCH, we must use an admissible (optimistic) heuristic.

Definition An admissible heuristic h(n) always returns a value smaller than the true path cost C*(n):
h(n) < C*(n) Vn

Thus, an admissible heuristic is always optimistic about the distance between the current node and the goal.
It is very easy to come up with admissible heuristics, since even assigning a distance of 0 as the heuristic
value to all states will be sufficient for the heuristic to be admissible (but we will see later that such a bad
distance estimate effects the performance of A* considerably).

Lemma 2.1. If G5 is a node that corresponds to a goal state but a suboptimal path, A* will select a
reachable node n along the optimal path before selecting G5 for expansion.

Proof. Note that a reachable node n along the optimal path always exists in the set of fringe nodes, since at
least the root of the tree and one of its successors trivially belong to the optimal path.

Assume that the true optimal path from the root of the tree to the goal is C*. Then in order to show
that A* selects first a node n along the optimal path before selecting G2 for expansion it is sufficient to show
that there is a node n along the optimal path so that:

f(n) < f(G2)

Notice however the following:

f(Ga) = g(G2) + h(G2) = g(Ga) + 0> C* (1)

The heuristic value of Gg is zero because Gz is a goal node (h(G2) = 0). Furthermore, the path cost
from the root g(G3) has to be greater than the optimum cost to the goal C* because G5 is a goal node that
is connected to the root with a suboptimal path (g(Gz) = 0).

On the other hand:

f(n) = g(n) + h(n) < C* (2)
The above equation is due to the fact that h(n) is optimistic and underestimates the distance of n from the

goal node.
Given Equations 1 and 2, we can conclude that:

f(n) <C* < f(Go)
which proves that n will be selected before the suboptimal goal node Gs. O

Theorem 2.2. A* always finds the optimal path in TREE-SEARCH if the heuristic is admissible.

The proof of the theorem is based on the above lemma. As long as there are reachable nodes along
the optimal path, A* with an admissible heuristic will always prefer to expand them before expanding a
suboptimal goal node. Consequently, the first goal node reached by A* is the goal node along the optimal
path.

2.2 GRAPH-SEARCH

Now we will focus on the case where we avoid repeated states. In GRAPH-SEARCH, an admissible heuristic is
no longer sufficient for A* to be optimal. Since we avoid repeated states, after we have already generated a
goal node, even if it corresponds to a suboptimal path, subsequent goal nodes will not be generated because
they correspond to a repeated state. One way to alleviate this problem is to check whether the new path to
that node is better than the path already stored but in general this approach requires a lot of book-keeping.
We will show in the following discussion that given a new requirement for the heuristic function, the first
goal node to be generated is the optimum goal node.

Definition A heuristic is consistent as long as:

h(n) <= c(n,a,n') + h(n'), Vn,n' so that: 3 a and succ(n,a) =n’ (3)

In the above definition:

e h(n) is the heuristic of the parent node n

e h(n') is the heuristic of the successor node n’

e c(n,a,n’) is the path cost to move from n to n’ when applying action «

Figure 1 illustrates a geometric representation of the consistency property and shows the similarity be-
tween consistency and the triangular inequality. A consistent heuristic is a more strict requirement than
admissibility. Nevertheless, it is generally difficult to come up with an admissible heuristic that is not also
consistent.

successor

_::2‘0 goal node

current node
h(n) <= c(n,n',a) + h(n')

Figure 1: Triangular Inequality.

Theorem 2.3. A consistent heuristic is also an admissible heuristic.

Proof. To prove the theorem’s statement we must show that given Equation 3 holds for all states, then
h(n) < C*(n), Vn, where C*(n) is the true optimal cost from node n to the goal. We will prove this
property by induction.

Base Case: For a goal state ng, we have that trivially: h(ng) < C*(ng), since h(ng) = 0 and C*(ny) = 0.
We will now show that the property holds for nodes that are parents of goal nodes. We will denote such
nodes as nq and their property is that 3oy so that: succ(ni,a;) = ng. Then if ¢(nq, 01, ny) is the cost of
the action «q, the following statement holds:

C*(n1) = c(n1, a1, ng)
Furthermore, due to the fact that the heuristic is consistent (Equation 3):
h(n1) < c(ni,a1,ng) + h(ng) = c(ni, ar,ng)
since h(ngy) = 0, as n, is a goal node. Therefore:
h(ni) < c(ny, ar,ng) = C*(ny).

Thus the desired property holds for the parents of goal nodes as well.

Inductive Step: For the inductive step we assume that for a node n;_; it holds that h(n;—1) < C*(n;—1).
We then want to show that for the parent node n; [succ(n;, ;) = n;—1)] that the property also holds:
h(n;) < C*(n;). Notice then that the:

C*(nz) = c(ni, Ozi,’l’Li,1) + C’*(ni,1). (4)

Because the heuristic is consistent (Equation 3):
h(n;) < c(ng,ai,ni—1) + h(n;—1) = (by the inductive assumption: h(n;—1) < C*(n;—1))
h(n;) < e(ng, o, ni—1) + C*(ny—1) (5
Therefore from Equations 4 and 5: h(n;) < C*(n;), and the heuristic is admissible. O

~

Lemma 2.4. If h(n): consistent, then f(n) is non-decreasing along any path

Proof. Assume that n’ is a successor node of n. Then:
g(n') = g(n) + c(n, a,n’)
And consequently we have that:
f(n') = g(n") + h(n') = g(n) + ¢(n, a,n") + h(n')
Since ¢(n,a,n’) + h(n’) > h(n) (consistent heuristic), we have that:

f(') =z g(n) + h(n) = f(n),

which means that the evaluation function always increases as we traverse a path of the tree towards the
goal. O

Corollary 2.5. A* expands nodes with a non-decreasing order of f(n)

The above corollary is based on the previous lemma. At each iteration of A*, the algorithm will pick the
node n that minimizes f(n). All the remaining nodes on the tree will have greater values that at least one
node in the current fringe and they will be selected after that node for expansion. Consequently, A* always
expands nodes in a non-decreasing order of f(n).

Proposition 2.6. The first node that corresponds to the goal state also corresponds to the optimal path.

The above proposition is now obvious. Since A* expands nodes in non-decreasing order of the evaluation
function, the first goal that will be expanded is the goal node with the minimum evaluation function, and
thus the one that corresponds to the optimal path. Suboptimal goal nodes will be at least as expensive as
the optimal one in terms of their evaluation function.

Corollary 2.7. A* expands all nodes with f,, < C*.

At some point in the operation of A* the (optimal) goal node will be expanded. The evaluation function
of the optimal goal node is f(ny) = C*(n,) = C*. Since A* expands nodes in non-decreasing order, then all
the nodes with f(n) < f(n,) = C* will be expanded.

A consequence of the above corollary is that the closer the heuristic is to C* the fewer nodes will be
expanded, making the search much more efficient. Consequently, although it is very easy to come up with
optimistic heuristics, overoptimistic estimates will degrade the performance of A*, because the algorithm
will be forced to expand a larger number of nodes before reaching the goal node. Different ways to design
heuristics will be discussed later.

Corollary 2.8. A* is complete if the number of nodes for which f(n) < C* is finite.

The number of nodes for which f(n) < C* is finite if the branching factor is finite and if the minimum
edge cost is greater than € > 0. The above corollary is true because if we try to search an infinite amount of
nodes, we will never find the solution because there are still more nodes to expand.

Corollary 2.9. For the same heuristic (and ignoring ties) there is no other optimal algorithm that will
expand fewer nodes than A*.

Every optimal algorithm must have the property that at least all the nodes with f(n) < C* are expanded.
A* expands exactly this set.

[] Oradea

Sibiu - Fagaras

aea || 8 (|| 3 ||| 1 6 || 71| 8

Eforie

[Giurgiu Start State Goal State

Figure 2: The path finding problem on the road network of Romania and the 8-puzzle.

3 Designing Heuristics

For some problems it is straightforward to come up with a good heuristic function. For example for the path
finding problem in Figure 2 we can select the straight-line distance between two cities as the heuristic. The
straight-line distance has the property that it is both optimistic and consistent.

Nevertheless, for many other problems the procedure to come up with a good heuristic is much more
involved. For example, let’s focus on the 8-puzzle problem in Figure 2. Two possible ideas for a heuristic
are the following:

h1: the number of tiles that has to be moved so that the current state looks like the final state,
hso: the sum of the Manhattan distances for all tiles between the current state and the final one.

For the start state shown in Figure 2 the value of the two heuristics is: h; = 8 and hy = 18. The true
number of steps that it takes to reach the goal from this state is 26. This is an indication that the two
heuristics are admissible. It turns out that both heuristics are truly admissible and consistent. However,
how can we evaluate which heuristic is the most appropriate to solve the problem with A* and how can we
come up with heuristics in an automated way. The following discussion focuses on these two questions.

3.1 Evaluating heuristics

Overall, we prefer heuristics that will make the A* algorithm to expand as few nodes as possible (thus making
the search procedure faster).

One way to evaluate the number of nodes expanded by a search technique is the effective branching factor
b*. This factor is computed as follows: If an algorithm has visited IV nodes, and the solution was at depth d,
then b* is the branching factor of the complete tree of length d with N nodes. Notice that the relationship
between the three parameters is the following:

N+1=14b"+0)+...+")?

e.g., if d = 5 and N = 52 then the branching factor is 1.92. This means that the algorithm on average
branched out 1.92 times out of each node. The optimum and desired performance is for the effective
branching factor to be 1, since this means that the algorithm never had to expand any redundant node.

If we experiment with the two possible heuristics for the 8-puzzle, we will discover that the second heuristic
hs has on average a lower effective branching factor than hq. This happens because ha(n) > hi(n), Vn. When
this happens, we say that hy dominates hi. From the properties of A*, we know that the algorithm expands
all the nodes with f(n) < C*. For a dominant heuristic the number of such nodes will be smaller than other
heuristics.

3.2 Automatic Generation of Heuristics

Notice that the common characteristic between heuristics hy and hs is that both are optimal solutions to a
simpler version of the original 8-puzzle. In particular:

hy : it is the cost of the optimal solution to the problem where we move a piece directly to its goal position,

ho : it is the cost of the optimal solution to the problem where we can move pieces while ignoring the fact
that other pieces are already present in the same position.

In general, optimal solutions to problems with fewer restrictions than the original definition (called relaxed
problems) are good candidates for a heuristic function. Such heuristics will be admissible and consistent as
optimal solutions to a problem.

3.2.1 Using Subproblems

One way to come up with relaxed versions of the original problem is to use subproblems. In the case of the
8-puzzle, we can define a subproblem by looking only at four of the tiles and how to move those four into the
correct position while ignoring the presence of the remaining tiles (Figure 3). The optimal solution found
this way, is an admissible heuristic for the original problem.

* 2 4 1 2

* * 3 4 *
* 3 1 * * *
Start State Goal State

Figure 3: Finding a heuristic for the 8-puzzle.

3.2.2 Combining multiple heuristics

In many cases we can define multiple valid heuristics and the question that arises is which one should we
select to use. For example, we can have heuristics for various subproblems of the original problem (e.g.,
different set of four tiles in the case of the 8-puzzle).

If we have a list of heuristics, hy, ho, ..., h, and there is not one that dominates every other heuristic all
of the time, then we can use at each state the heuristic that dominates the others in that specific state. In
this way, we are defining a new heuristic hy,q.(n) = max{hy, ha, ..., hy}, which has the following properties:

e if hqy,...,h, are admissible, then h,,,; is also admissible
e if hy,...,h, are consistent, then h,,.. is also consistent
® h,pq. is a dominant heuristic over this set.

It happens that for the 8-puzzle the best heuristic is to use the maximum over multiple heuristics defined
over subproblems (e.g., optimal costs for different sets of four tiles).

