OpenGL and
Graphics Hardware

Overview of OpenGL
Pipeline Architecture
Alternatives

Administration

e Future classes in Wean 5409

* Web page off my home page:
http://www.cs.cmu.edu/~djames/15-462/Fall03

o Assignment #1 out next week (Tuesday)

Question

How many of you have programmed in
OpenGL?

How extensively?

What is OpenGL?

* A low-level graphics API for 2D and 3D
Interactive graphics. OS independent.

Descendent of GL (from SGI)

mplementations: For the Linux PCs we
nave Mesa, a freeware implementation.

Graphics —
library -«—» Hardware €&— /,

Application
program

What OpenGL isn't:

* A windowing program or input driver,
since those couldn’t be OS independent.

GLU

A

o

OpenGL /
application \
program \

GLUT —» Xlib, Xtk —»

N7

GL: core graphics capability
GLU: utilities on top of GL
GLUT: input and windowing functions

How does it work?

 From the programmer’s point of view:
Specify geometric objects
Describe object properties
Define how they should be viewed
Move camera or objects around for animation

Function calls

Data

How does it work?

State machine with input and output:

» State variables: color, current viewing
position, line width, material properties, ...

* These variables (the state) then apply to

every subsequent drawing command
* Input Is description of geometric object
e Output Is pixels sent to the display

How does it work?

From the implementor’s perspective:
OpenGL pipeline

Vertices—p» Transformer—p» Clipper —®» Projector —» Rasterizer —#» Pixels

Primitives Rotate
+ material Translate
properties Scale

IS it Convertto Display
visible? ~ SP02D el

Let’s walk through the pipeline...

Primitives: drawing a polygon

« Put GL into draw-polygon state
glBegin(GL_POLYGON);

e Send it the points making up the polygon

g
g
g

Vertex2f(x0, y0);
Vertex2f(x1, yl);
Vertex2f(x2, y2) ...

e Tell it we're finished
glENd();

Build models in appropriate units (microns, meters,
Transform to screen coordinates (pixels) later.

Specifying Primitives

Code for all of today’s examples available from
http://www.xmission.com/~nate/tutors.html

Primitives: points, lines, polygons

GL_LINE_STRIP GL_LINE_LOOP

Py P,
GL_POINTS

oPs
o p4
] P 5
Ps
GL_POINTS GL POLYGON GL_QUADS GL _TRIANGLES

Primitives: points, lines, polygons

 Why triangles, quads, and strips?

P4 Ps Ps P, P4 Ps3 Ps P,
Py P, Py Pg Py P, P, Ps

GL_TRIANGLE_STRIP GL_QUAD_STRIP

 Hardware may be more efficient for
triangles

e Strips require processing less data
—fewer glVertex calls

Primitives: Material Properties

« glColor3f(r,g,b):;

All subsequent primitives will be this color.
Colors are not attached to objects.
glColor3f(r,g,b) changes the system state.
Everyone who learns GL gets bitten by this!

Red, green & blue color model.
Components are from 0-1.

Primitives: Material Properties

Many other material properties available:
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(MASK); [* 32x32 pattern of bits */

glDisable (GL_POLYGON_STIPPLE);

Primitives: Material Properties

« Ambient : same at every point on the surface
 Diffuse : scattered light independent of angle (rough)

A

e Specular : dependent on angle (shiny)

O

lightmaterial.exe

Light Sources

e Point light sources are common:

lightpositions.exe

Transforms

 Rotate

e Translate

e Scale

e glPushMatrix(); glPopMatrix();

transformations.exe

i
| -
@)
=
(D)

L
-

=

.
&)

1k

O
@)
-
4y}

-
@)
N
=

Q
>
.
-
)]
| -
D

=

A

Camera Views

Camera Views

== Camera

| | // \‘\.//’\\‘-// hd
¢ (a) (b)

Lines from each point on the image are drawn through
the center of the camera lens (the center of projection (COP)).

Camera Views

Many camera parameters...

For a physical camera:
e position (3)
e Oorientation (3)
* lens (field of view)

Camera Projections

e Orthographic projection
* long telephoto lens.

 Flat but preserving distances and shapes. All
the projectors are now parallel.

* glOrtho (left, right, bottom, top, near, far);

Camera Projections

* Perspective projection
« Example: pin hole camera
* Objects farther away are smaller in size

Camera Transformations

e Camera positioning just results in more

transformations on the objects:
—Transformations that position the object
relative to the camera

 Example:
void gluLookAt
(eyex, eyey, eyez,
centerx, centery, centerz,

upx, upy, upz)

Clipping

Not everything is visible on the screen

Rasterizer

» Transforms pixel values in world coordinates to
pixel values in screen coordinates

II&X ynax)

min?

World coordinates Raster coordinates

LL A

Clipping window

Graphics window

Special Tricks

e Gouraud Shading:

Change the color between setting each vertex,
and GL will smooth-shade between the
different vertex colors.

e Shadows on ground plane:

Render from the position of the light source and
create a shadow map

* Fog (fog.exe)

Drawing A Box

{

void DrawBox()

MakeWindow("Box", 400, 400);

glOrtho(-1, 1, -1, 1, -1, 1);

glClearColor(0.5, 0.5, 0.5, 1);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.0, 0.0);

glBegin(GL_POLYGON);
[* or GL_LINES or GL_POINTS... */

glVertex2f(-0.5, -0.5);
glVertex2f(0.5, -0.5);
glVertex2f(0.5, 0.5);
glVertex2f(-0.5, 0.5);

glEnd();

Setting up the window

* The coordinate system
glOrtho(left, right, bottom, top, near, far);
e.g., glortho(0, 100, O, 100, -1, 1);
For now, near & far should always be -1 & 1
» Clearing the screen
glClearColor(r, g, b, a);
a Is the alpha channel; set this to 0.
glClear(GL_COLOR_BUFFER_BIT);

glClear can clear other buffers as well, but we’re
only using the color buffer...

Getting Started

 Example Code

We will give you example code for each
assignment.

Modifying existing code is much easier than
writing “hello world” (unfortunately)

e Documentation:

Book

Html-ifled OpenGL man pages are on the
course software page.

Future classes in Wean 5409

Graphics Hardware

Graphics Hardware

 First “graphics” processors just did display
management, not rendering per se.

e bitblit for block transfer of bits

| Display I
processor

Goal

* Very fast frame rate on scenes with lots of
Interesting visual complexity

o Complexity from polygon count and/or
texture mapping

Pipeline Architecture

Vertices—p» Transformes—p» Clipper —p» Projector —m» Rasterizer —p» Pixels

* Pioneered by Silicon Graphics, picked up by
graphics chips companies,

Nvidia, 3dfx, S3, ATI,...

 OpenGL library was designed for this
architecture (and vice versa)

e Good for opaque, textured polygons and lines

Why a Pipeline Architecture?

Higher throughput
But potentially long latency

ia

* — +

Parallel pipeline architecture

each stage can employ multiple specialized
processors, working in parallel, busses
between stages

#processors per stage, bus bandwidths carefully
tuned for typical graphics use

Pipeline Stages

Vertices—m» Transformet—m» Clipper —» Projector —m Rasterizer —» Pixels

Immediate mode rendering transform

application generates stream of “th
geometric primitives (polygons, lines) * €IP

. erspective divide
system draws each one into buffer Pl
rasterize (scan

entire scene redrawn anew every frame convert)
texture & fog
z-buffer test
alpha blend, dither

Implementing Algorithms in Hardware

e Some work well, but others are harder

o Z-buffer
computations are bounded, predictable

Implementing Algorithms in Hardware

e Ray tracing
Poor memory locality
Computational cost difficult to predict (esp. if adaptive)
SIMD (single instruction, multiple data) parallel approach
Keep copy of entire scene on each processor

* Recent graphics hardware approaches (Purcell et al., 2002)

Pixel Planes and Pixel Flow (UNC)

http://www.cs.unc.edu/~pxfl/

programmable processor per pixel
good for programmable shading, image processing
can be used for rasterization
Pixel-Planes 4: 512x512 processors with 72bits of memory
But most processors idle for most triangles
Pixel-Planes 5: divide screen into ~20 tiles each with a bank
of processors. Network is limit. 2Million tri/sec.

Pixel Planes and Pixel Flow (UNC)

Pixel-Flow: Image composition. Subdivide geometry
to processors and recombine by depth using special

hardware

Rendered on simulator and predicted to run
In real time on physical hardware

Talisman (Microsoft)

http://research.microsoft. com/MSRSIGGRAPH/96/Talism an/

Observation: an image is usually much like the one
that preceded it in an animation.

Goal: a $200-300 board

Image-based rendering
cache images of rendered geometry

re-use with affine image warping (sophisticated sprites)
re-render only when necessary to reduce bandwidth and
computational cost

Current & Future Issues

Interaction
Geometry compression
Progressive transmission

Alternative modeling schemes (not polygon soup)

Parametric surfaces, implicit surfaces, subdivision
surfaces

Generalized texture mapping: displacement mapping,
light mapping
Programmable shaders
Beyond just geometry:
dynamics, collision detection, Al, ...

Future classes in Wean 5409

