
CMPUT 272, F2010, M. Buro Contents 1

Part 1: Logic and Proof Techniques

Contents [DOCUMENT FINALIZED!]

• Introduction p.2

• Logic and Proofs p.8

• Propositions p.9

• Logic and Bit Operations p.14

• Equivalence, Tautology, Contradiction p.15

• Conditionals p.18

• Biconditionals p.24

• Conditional Statements in Natural Languages p.28

• Important Equivalences p.30

• Constructing New Equivalences p.33

• Predicates p.35

• Quantifiers p.36

• Rules of Inference p.53

• Theorems and Basic Proof Techniques p.58

CMPUT 272, F2010, M. Buro Course Information 2

Course Information

Lecture 1

• Instructor: Michael Buro
– ATH 337, 492-1763, mburo@cs.ualberta.ca

– Office hours: Mondays 2-3pm, Wednesdays 1-
2pm, and by appointment

• Section web page:

http://www.skatgame.net/mburo/courses/272

• Lecture notes and assignments will be posted on the
section web page

• Sources used to create these lecture notes:

– “Discrete Mathematics and Its Applications” (6th
Edition) by K.H. Rosen

– “A Transition To Advanced Mathematics” (6th
Edition) by D. Smith, M. Eggen, R. St. Andre

– Various web sites and lecture notes

There is no need to purchase a textbook for this
course.

CMPUT 272, F2010, M. Buro Course Information 3

• Course work:
– 5 assignments : 8% each

– 1 term test in class (80 min., closed book) : 25%

– Final (2 hours, closed book) : 35%

• Collaboration policy: Consultation
– You can talk to anyone,

– but you must write up the solution on your own,

– and acknowledge who you talked to. All sources
(webpages, books, etc.) used must be cited.

• Grading: approximately curved with reasonable cut-
offs. See section page for details.

Expect to invest 4h/week in this course in addition to
lectures and seminars.

Important: Do assignments right from the start! With-
out solving exercises on your own, it will be hard to pass
this course.

DON’T CHEAT. Getting caught may end your aca-
demic career right there.

CMPUT 272, F2010, M. Buro Course Information 4

Seminars
• start in week 2

• marked assignments are handed back

• assignment solutions are presented

• more problems are discussed

• question and answer sessions

CMPUT 272, F2010, M. Buro Course Information 5

Computing Science Theory Courses

272 Formal Systems and Logic in Computing
Science

An introduction to fundamental discrete structures and
tools used for the design and analysis of algorithms,
including:

• Logic and Proofs

• Sets

• Relations

• Graphs

• Functions

• Program Verification

CMPUT 272, F2010, M. Buro Course Information 6

204 Algorithms I

• Introduction to algorithms

• Analysis: correctness, worst/average/best case be-
haviour, asymptotical runtime

• Algorithms: sorting and searching, optimization, graph
algorithms

• Design techniques: divide-and-conquer, dynamic pro-
gramming, greedy

304 Algorithms II

•More advanced algorithms, and their design and anal-
ysis, complexity, notion of reduction, NP-completeness

474 Formal Languages, Automata and Com-
putability

•More formal approach to models, complexity, and
computability

• Computational limitations, problems that computers
can’t solve

CMPUT 272, F2010, M. Buro Introduction 7

Why Study Mathematics in Computing Science?

Math is the foundation of CS.

CS develops algorithms, i.e. step by step procedures to
solve problems, it also is concerned with fundamental
limits of computation.

Programs take some input and produce some output
that follows some specification. Inputs and outputs are
usually mathematical objects composed of integers.

E.g. Input: natural number n, Output: n · n.

For a new algorithm we have to prove that the in-
put/output specifications is obeyed, i.e. we need to
convince prospective users of the program that it ter-
minates on all valid inputs, and secondly, we need to
argue that if the program stops, its output is valid.

In this course we present fundamental mathematical ob-
jects and tools that will allow us to specify input/output
relations and to prove that algorithms meet their spec-
ifications.

CMPUT 272, F2010, M. Buro Logic and Proofs 8

Logic and Proofs

Lecture 2

Deductive Reasoning: use logic to draw conclusions
based on statements accepted as true.

CS Example: given that a subroutine A is correct,
we want to conclude that program B that calls A is
also correct. This is the idea of modular programming,
in which we establish the correctness of modules first,
which we then use as building blocks to create bigger,
correct programs.

Topics covered in this part:

• Propositions and connectives

• Predicates and Quantifiers

• Basic proof methods

• Proofs involving quantifiers

CMPUT 272, F2010, M. Buro Propositions 9

Propositions

Natural languages describe real world phenomena

Some sentences are basic, others are built up from sim-
ple components to describe more complex thoughts

Some sentences are either true or false, and we call such
sentences propositions

a. 1 + 1 = 2

b. Chess is a 2-player game

c. Elephants will become extinct by the year 2525

d. Julius Caesar had two eggs for breakfast on his tenth
birthday

Examples of sentences that are not propositions:

e. What did you say?

f. x2 = 36

g. She has your keys

h. This statement is false

CMPUT 272, F2010, M. Buro Propositions 10

Propositions a.-d. are simple or atomic, they do not
have any other propositions as components.

Compound propositions are formed by using logical
connectives:

“It is raining AND my shoes are dirty”

“I have no money OR the moon is made of blue cheese”

Definition: Given propositions P and Q,

• the conjunction of P and Q, denoted P ∧ Q, is
the proposition “P and Q”

• the disjunction of P and Q, denoted P ∨Q, is the
proposition “P or Q”

• the negation of P , denoted ¬P or ∼P , is the
proposition “not P .” ¬P is true exactly if P is
false.

CMPUT 272, F2010, M. Buro Propositions 11

Examples of true compound propositions:

• It is not the case that
√
2 > 2

• 2 < 3 or chickens have lips

• Jupiter is larger than Mars and 1+4=5

Examples of false compound propositions:

•Mozart was born in Salzburg and π is rational

• It is not the case that 10 is divisible by 2

• 24 = 15 or a pound is more than 500g

In general, compound propositions can combine many
propositions by logical connectives.

A propositional form is a well-formed expression in-
volving finitely many logical connective symbols and
letters that represent propositions.

Expressions that are atomic propositions or correctly
built using connectives are called well-formed.

CMPUT 272, F2010, M. Buro Propositions 12

The following expressions are well-formed:

(P ∧Q) ∨ ¬(¬R)
P ∨ (Q ∧R)

and these are not:

RP ∨Q¬
) ∧ PQ(

Balanced pairs of parentheses are used to avoid am-
biguities whenever they appear. We will see a formal
definition of well-formed expressions later in the math-
ematical induction section.

Truth values of compound propositional forms can be
obtained by exhibiting all possible combinations of the
propositions in a truth table.

Truth tables for ¬P, P ∧Q, P ∨Q:

P ¬P
F T
T F

P Q P ∧Q P ∨Q
F F F F
F T F T
T F F T
T T T T

CMPUT 272, F2010, M. Buro Propositions 13

For propositional forms involving 3 propositions we need
to list values for 2 · 2 · 2 = 23 = 8 possible combina-
tions. To simplify the evaluation, we first evaluate all
subcomponents and then combine the results:

Example: (P ∧Q) ∨ ¬R.

P Q R P ∧Q ¬R (P ∧Q) ∨ ¬R
F F F F T T
F F T F F F
F T F F T T
F T T F F F
T F F F T T
T F T F F F
T T F T T T
T T T T F T

CMPUT 272, F2010, M. Buro Digression: Logic and Bit Operations 14

Digression: Logic and Bit Operations

Modern computers represent information using bits.

A bit (=binary digit) is a symbol with two possible val-
ues, 0 and 1, which are realized as electric potentials
(0 Volts vs. 5 Volts say)

Each bit can represent a truth value: 0 for false, and 1
for true.

To speed up computations, data is organized in words
of 32 or 64 bits that are accessed in parallel.

In addition to loading and storing data in memory, arith-
metic, branches, central processing units (CPUs) have
a subset of instructions dealing with bitwise logic oper-
ations applied to pairs of bit strings.

Example:

1001010010 bit string A
0100110111 bit string B
0000010010 A ∧B (bitwise and)
1101110111 A ∨B (bitwise or)
0110101101 ¬A (bitwise not)

CMPUT 272, F2010, M. Buro Equivalence, Tautology, Contradiction 15

Equivalence, Tautology, Contradiction

Writing a proof requires us to connect statements so
that the truth of any given statement in the proof fol-
lows logically from previous statements in the proof,
from known results, or from basic assumptions.

Important is to write a statement equivalent to another:

Definition: Two propositional forms ϕ (“phi”) and
ψ (“psi”) are equivalent if and only if they have the
same truth tables when considering all propositions in
ϕ and ψ. We then write ϕ ≡ ψ. If they are not
equivalent, we write ϕ 6≡ ψ.

Example: P and ¬(¬P) are equivalent, i.e. P ≡ ¬(¬P).
Here is the evidence:

P ¬P ¬(¬P)
F T F
T F T

Columns 1 and 3 are identical.

Another example: “It is not true that Superman is not
strong” is equivalent to “Superman is strong”.

CMPUT 272, F2010, M. Buro Equivalence, Tautology, Contradiction 16

A more complex example is one of De Morgan’s rules:

¬(P ∧Q) ≡ ¬P ∨ ¬Q
Truth table check:

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q
F F F T T T T
F T F T T F T
T F F T F T T
T T T F F F F

Indeed, column 4 and 7 are identical.

In words: “You don’t have both P and Q” is the same
as saying “You don’t have P or you don’t have Q”

Note that truth tables need to cover all combinations
of all propositions in both propositional forms. E.g. if
ϕ contains P,Q and ψ contains Q,R, the truth table
built for establishing the equivalence of ϕ and ψ lists
all choices for P,Q,R.

CMPUT 272, F2010, M. Buro Equivalence, Tautology, Contradiction 17

Often the truth value of propositional forms does not
depend on the truth value of its propositions. This
warrants a

Definition

• A tautology is a propositional form that is true for
every assignment of truth values to its propositions.

• A contradiction is a propositional form that is
false for every assignment of truth values to its
propositions.

The most basic tautology is P ∨ ¬P , which can easily
be checked using a truth table. Likewise, P ∧ ¬P is
a contradiction. Here is a more complex tautology:
(P ∨Q) ∨ (¬P ∧ ¬Q)

P Q P ∨Q ¬P ∧ ¬Q (P ∨Q) ∨ (¬P ∧ ¬Q)
F F F T T
F T T F T
T F T F T
T T T F T

The last column is filled with T, so the propositional
form is a tautology.

CMPUT 272, F2010, M. Buro Conditionals 18

Conditionals

Sentences of the form “If P , then Q” are the most
important kind of proposition in mathematics.

Examples:

• If x = 2, then x2 = 4

• If x2 = 4, then x = 2 or x = −2
• If a < b and c > 0, then ac < bc

In above statements, the second condition holds if the
if-condition is true. If it is false, the second condition
may or may not hold.

Definition

For propositions P and Q, the conditional sentence
P ⇒ Q is the proposition “If P , then Q.” Proposition
P is called hypothesis, premise or antecedent and
Q the conclusion or consequence. P ⇒ Q is true
if and only if P is false or Q is true, i.e. ¬P ∨Q.

CMPUT 272, F2010, M. Buro Conditionals 19

Truth table for P ⇒ Q:

P Q P ⇒ Q
F F T
F T T
T F F
T T T

Lecture 3

Suppose Ann promises to Ben:

“If 1 + 1 = 2, then I will give you a dollar”

Because 1 + 1 = 2 is true, we find the truth value of
her statement in line 3 or 4:

If Ann pays, the statement is true (line 4).

If she doesn’t pay, the statement is false (line 3)

When the hypothesis is false, a promise is always true.

If Ann said “If 1 + 1 = 5, then I will give you a dollar”
she can always keep her promise. According to lines 1
and 2, the sentence is true whether she pays or not.

CMPUT 272, F2010, M. Buro Conditionals 20

A conditional sentence may be true even if there is no
connection between the hypothesis and the conclusion,
because its value only depends on the truth value of
the components, not on their interpretation.

Examples

• The sun is green ⇒ 1 = 3 (true)

• Ants have ears ⇒ Spiderman can fly (true)

• Bears have ears ⇒ Ants have ears (false)

CMPUT 272, F2010, M. Buro Conditionals 21

For the proof techniques we will discuss later, the fol-
lowing property of the conditional statement P ⇒ Q
is key:

If both P and (P ⇒ Q) are true, so is Q.

This deduction rule is called modus ponens (“mode
that affirms”) and can be verified by inspecting the
truth table for P ⇒ Q.

Example:

Suppose we know this statement to be true:

(2 > 0) ⇒ (3 > 1)

and we also know 2 > 0 is true. Then we know 3 > 1
is true as well.

CMPUT 272, F2010, M. Buro Conditionals 22

Two propositions closely related to P ⇒ Q are the
following:

Definition

• The converse of P ⇒ Q is Q⇒ P

• The contrapositive P ⇒ Q is ¬Q⇒ ¬P
What is their exact relationship to P ⇒ Q?

Consider the following conditional sentence for fixed
values of x:

If x = 2, then x2 = 4

which is obviously true. However, what about its con-
verse

If x2 = 4, then x = 2?

This sentence is wrong for x = −2.

CMPUT 272, F2010, M. Buro Conditionals 23

Theorem

a. A conditional sentence and its converse are not equiv-
alent

b. A conditional sentence and its contrapositive are
equivalent

Proof

P Q P ⇒ Q ¬P ¬Q (¬Q)⇒ (¬P) Q⇒ P
F F T T T T T
F T T T F T F
T F F F T F T
T T T F F T T

a) holds because columns 3 and 7 are different. b) is
true because columns 3 and 6 are identical. �

CMPUT 272, F2010, M. Buro Biconditionals 24

Biconditionals

The last connective we need is the biconditional con-
nective ⇔. The double arrow reminds one of both ⇐
and ⇒, and this is no accident:

Definition

For propositions P and Q, the biconditional sen-
tence P ⇔ Q is the proposition “P if and only if Q”.
P ⇔ Q is true exactly when P and Q have the same
truth values.

The phrase “if and only if” is often abbreviated as “iff”

The truth table for P ⇔ Q is

P Q P ⇔ Q
F F T
F T F
T F F
T T T

CMPUT 272, F2010, M. Buro Biconditionals 25

Example: Consider propositions

P : “You take the flight” and

Q : “You buy a ticket.”

Then P ⇔ Q is the statement:

“You take the flight if and only if you buy a ticket”

This statement is true if P and Q are either both true
or both false.

I.e., if you buy a ticket and take the flight, or if you
do not buy a ticket and you don’t take the flight.

It is false when P and Q have different values

I.e., if you don’t buy a ticket, but you take the flight
(free trip) or you buy a ticket, but you don’t fly
(because the airline bumps you).

CMPUT 272, F2010, M. Buro Biconditionals 26

How do ⇒ and ⇔ relate, exactly?

Theorem: [P ⇔ Q] and [(P ⇒ Q) ∧ (Q ⇒ P)] are
equivalent.

I.e., if we know that both P ⇒ Q and Q ⇒ P hold,
then we know that P ⇔ Q is true, and vice versa, if
we know that one of P ⇒ Q and Q ⇒ P does not
hold, then P ⇔ Q is false.

Proof: The truth table entries for both propositional
forms are identical:

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P) P ⇔ Q
F F T T T T
F T T F F F
T F F T F F
T T T T T T

�
With the notational convention (P ⇒ Q) ≡ (Q⇐ P)
above relationship can be easily memorized as

“⇔ equals ⇐ and ⇒”

CMPUT 272, F2010, M. Buro Biconditionals 27

Observation

Using biconditionals we can characterize equivalence of
propositional forms ϕ and ψ like so:

ϕ ≡ ψ if and only if ϕ⇔ ψ is a tautology

Both mean that for all truth value assignments of propo-
sitions in ϕ and ψ both forms have the same truth
value.

CMPUT 272, F2010, M. Buro Conditional Statements in Natural Languages 28

Conditional Statements in Natural Languages

Goal: recognize the structure of a sentence and trans-
late the sentence into symbolic form using logical con-
nectives

Sometimes hard because of ambiguity and language nu-
ances

Example: “You don’t win the lottery UNLESS you buy
a lottery ticket”

With

A: You don’t win the lottery

B: You buy a lottery ticket

this could mean:

(¬B)⇒ A (preferred meaning of “A unless B”: if-not)

but sometimes it is meant like

(¬B)⇔ A

which in the lottery case wouldn’t make much sense.

CMPUT 272, F2010, M. Buro Conditional Statements in Natural Languages 29

P ⇒ Q is the translation of the following statements

If P , then Q P implies Q
P is sufficient for Q P only if Q
Q, if P Q whenever P
Q is necessary for P Q, when P
Q follows from P Q unless ¬P

P ⇔ Q is the translation of:

P if and only if Q
P if, but only if Q
P is equivalent to Q
P is necessary and sufficient for Q

Example:

|x| = 2 is necessary and sufficient for x2 = 4

can be translated into:

|x| = 2 ⇔ x2 = 4

CMPUT 272, F2010, M. Buro Important Equivalences 30

Important Equivalences

Here we list some useful equivalences. All of them can
be proved by comparing truth table entries.

Let P,Q,R be propositions and T always true and F
always false. Then the following equivalences hold:

Law Equivalence
Identity P ∧ T ≡ P

P ∨ F ≡ P
Domination P ∧ F ≡ F

P ∨ T ≡ T
Idempotent P ∧ P ≡ P

P ∨ P ≡ P
Double negation ¬(¬P) ≡ P
Commutative P ∧Q ≡ Q ∧ P

P ∨Q ≡ Q ∨ P
Associative (P ∧Q) ∧R ≡ P ∧ (Q ∧R)

(P ∨Q) ∨R ≡ P ∨ (Q ∨R)
Distributive P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R)

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R)
De Morgan’s ¬(P ∧Q) ≡ ¬P ∨ ¬Q

¬(P ∨Q) ≡ ¬P ∧ ¬Q
Absorption P ∨ (P ∧Q) ≡ P

P ∧ (P ∨Q) ≡ P
Negation P ∨ ¬P ≡ T

P ∧ ¬P ≡ F

CMPUT 272, F2010, M. Buro Important Equivalences 31

Observations

The commutative, associative, and distributive laws re-
semble those you know from arithmetic:

Commutative Law: “You are allowed to switch operands
without changing the value”

P ∧Q ≡ Q ∧ P , x + y = y + x

Associative Law: “Evaluation order does not matter”

(P ∧Q)∧R ≡ P ∧(Q∧R) , (x+y)+z = x+(y+z)

Distributive Law: “Factoring-in and out is allowed”

P ∨ (Q ∧R) ≡ (P ∨Q) ∧ (P ∨R) ,
x · (y + z) = (x · y) + (x · z)

De Morgan’s Laws: “Negations can be moved inwards
by switching ∧,∨”. This can be repeated. In the end,
negations are only needed right in front of propositions.

¬(P ∧(Q∨R)) ≡ ¬P ∨¬(Q∨R) ≡ ¬P ∨(¬Q∧¬R)

CMPUT 272, F2010, M. Buro Important Equivalences 32

Generalisations

The associative laws show that expressions like P ∧
Q ∧ R and P ∨ Q ∨ R are well-defined, because it
doesn’t matter what operation we evaluate first. For
the truth values it only matters whether all propositions
are true in the first case, or all propositions are false in
the second. This can be generalized to

P1 ∧ P2 ∧ · · · ∧ Pn and P1 ∨ P2 ∨ · · · ∨ Pn

being well-defined for an arbitrary number of proposi-
tons n.

De Morgan’s laws scale up as well:

¬(P1 ∧ P2 ∧ · · · ∧ Pn) ≡ ¬P1 ∨ ¬P2 ∨ · · · ∨ ¬Pn
¬(P1 ∨ P2 ∨ · · · ∨ Pn) ≡ ¬P1 ∧ ¬P2 ∧ · · · ∧ ¬Pn

Methods for proving these identities will be given in the
section on mathematical induction.

CMPUT 272, F2010, M. Buro Constructing New Equivalences 33

Constructing New Equivalences

Already established equivalences can be used to con-
struct new ones by replacing propositions with equiva-
lent propositions without changing their truth value.

Example 1: We want to show that ¬(P ⇒ Q) and
P ∧ ¬Q are equivalent.

We could do it by using truth tables, but we now pro-
ceed by applying equivalence laws to transform the first
into the second propositional form:

¬(P ⇒ Q) ≡ ¬(¬P ∨Q) definition ⇒
≡ ¬(¬P) ∧ ¬Q De Morgan law
≡ P ∧ ¬Q double negation

Example 2: We show that (P ∧ Q) ⇒ (P ∨ Q) is a
tautology by a sequence of equivalences yielding T :

(P ∧Q)⇒ (P ∨Q) ≡ ¬(P ∧Q) ∨ (P ∨Q) definition ⇒
≡ (¬P ∨ ¬Q) ∨ (P ∨Q) De Morgan
≡ (¬P ∨ P) ∨ (¬Q ∨Q) assoc.+com.
≡ T ∨ T com.+neg.
≡ T domination

CMPUT 272, F2010, M. Buro Constructing New Equivalences 34

The truth table method can only be used for small num-
bers of propositions, because the number of rows grows
exponentially. Checking equivalence for 100-proposition
forms would require us to verify 2100 rows (a number
with more than 30 decimal digits) – taking more than
1013 years on contemporary hardware!

No other methods are known that could solve the equiv-
alence problem faster in general.

For humans, the equivalence transformation method
can work much better than enumerating a large number
of truth values.

CMPUT 272, F2010, M. Buro Predicates 35

Predicates

Lecture 4

Unless x has been assigned a value, sentence x ≥ 0 is
not a proposition, because its truth value depends on
the value of x

Sentence x ≥ 0 is an example of an open sentence
or predicate, a sentence containing zero or more vari-
ables that becomes a proposition when all variables are
assigned specific objects.

Notation: if P is a predicate depending on variables
x1, . . . , xn we write P (x1, . . . , xn). In this case, P is
called an n-ary predicate — its arity is n.

Examples:

P given as x+y = z is written as P (x, y, z). P (4, 3, 7)
is true because 4+3 = 7, but P (1, 2, 4) is false. P has
arity 3.

Let Q(x, y) be (x + y > 0). Then Q(1,−1) is false
and Q(2,−1) is true. Q has arity 2.

CMPUT 272, F2010, M. Buro Quantifiers 36

Quantifiers

Assigning values to all of a predicate’s variables creates
a propositional statement which is either true or false.

Another way to create a proposition from a predicate is
quantification. Quantification expresses the extend
to which a predicate is true over a range of objects.

In English, words like all, some, many, none, and few
are used in quantifications.

We will concentrate on two types of quantification:

• universal quantification tells us that a predicate
is true for every object under consideration, and

• existential quantification tells us that for at least
one object the predicate is true.

The area of logic dealing with predicates and quantifiers
is called predicate calculus.

CMPUT 272, F2010, M. Buro Quantifiers 37

Universal Quantifiers

Many mathematical statements assert that a property
is true for all values of a variable in a particular domain
(or universe).

Example: “for all natural numbers x, x ≥ 0 holds”

Here the domain is N = {0, 1, 2, . . .}, the natural num-
bers.

The meaning of the universal quantification changes
when we change the domain. If we used Z (the inte-
gers) in the example above, the statement is no longer
true.

Definition

The universal quantification of P (x) is the statement

“P (x) holds for all values of x in the domain”

which we write as ∀x P (x). ∀ is called the universal
quantifier. An object a for which P (a) is false is called
a counterexample of ∀x P (x).

CMPUT 272, F2010, M. Buro Quantifiers 38

Note: An implicit assumption is that the domain is
nonempty. For empty domains ∀x P (x) is defined to
be true, because no counterexample exists.

Example 1: Consider P (x) := (x + 1 > x). What is
the truth value of ∀x P (x) in case the domain is R
(the real numbers) ?

Because x + 1 > x is true for every real number x,
∀x P (x) is true.

Example 2: Consider P (x) := x ≥ 0. Then ∀x P (x)
is true if the domain is N, but it is false for domains Z
and R, because x = −1 is a counterexample in these
cases.

When all objects in the domain can be listed — say
x1, x2, . . . xn — it follows that universal quantification
∀x P (x) has the same truth value as the conjunction

P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

(this motivates the other notation that is used for uni-

versal quantification:
∧

x

P (x))

CMPUT 272, F2010, M. Buro Quantifiers 39

Example 3:

What is the truth value of ∀x P (x), where P (x) is the
statement x2 < 10 and the domain is all integers > 0
not exceeding 4?

The domain contains the values 1, 2, 3, 4. So we can
rewrite ∀x P (x) as

P (1) ∧ P (2) ∧ P (3) ∧ P (4)
and check each case separately.

We have the feeling that P (x) does not hold for large
values, so we determine P (4) first — it states 4·4 < 10,
which is false. So, x = 4 is a counterexample and
∀x P (x) is false.

CMPUT 272, F2010, M. Buro Quantifiers 40

Existential Quantifiers

Many mathematical statements assert that there is an
object in the domain with a certain property. Such
statements are expressed using existential quantifica-
tion.

Example: There exists a natural number k such that
10 = 2k.

Here, the domain is N and 10 = 2·5 shows that for k =
5 the predicate holds. Thus, the quantified statement
is true.

Definition

The existential quantification of P (x) is the proposition

“P (x) holds for at least one object x in the domain”

which we write as ∃x P (x). Here ∃ is called the ex-
istential quantifier. An object a for which P (a) is
true is called witness for ∃x P (x).
Note: If the domain is empty, ∃x P (x) is defined to be
false, because there can be no witness.

CMPUT 272, F2010, M. Buro Quantifiers 41

Example 1: Let P (x) denote the statement “x > 3”.
What is the truth value of ∃x P (x) for domain R?

4 is a witness because 4 > 3. Therefore, ∃x P (x) is
true.

Example 2: Consider Q(x) := (x = x+1) and domain
N. What is the truth value of ∃x Q(x)?
x = x+1 is false for every natural number x. Therefore,
there can not exist any witness. Therefore, ∃x Q(x) is
false.

Similar to the universal quantifier case, if all objects in
the domain can be listed, say x1, . . . , xn, then ∃x P (x)
has the same truth value as the disjunction

P (x1) ∨ . . . ∨ P (xn)

(this motivates the other notation that is used for ex-

istential quantification:
∨

x

P (x))

CMPUT 272, F2010, M. Buro Quantifiers 42

Natural Language and Quantified Expressions

To get familiar with the concepts of quantified expres-
sions here we give some examples of translating English
phrases.

Example 1: “Some people dislike taxes”
∃x (x dislikes taxes) [domain people]

Example 2: “All people need oxygen to live”
∀x (x needs oxygen to live) [domain people]

Example 3: “Automobiles have engines” probably means:
∀x (x has an engine) [domain automobiles]

Example 4: “Golfers wear knit shirts” probably means:
∃x (x wears knit shirts) [domain golfers]

CMPUT 272, F2010, M. Buro Quantifiers 43

Example 5: “All apples have spots” [domain fruit]

Let A(x) := (x is an apple) and S(x) := (x has spots)

First attempt: ∀x (A(x) ∧ S(x))
Doesn’t quite work because if this is true it says that
all fruit x are apples and have spots.

Second attempt: ∀x (A(x)⇒ S(x))

This works, because this states that if a fruit is an apple
then it has spots.

Example 6: “Some apples have spots” [domain fruit]

First attempt: ∃x (A(x)⇒ S(x))

Doesn’t work, because this doesn’t ensure that there
actually is an apple. If there were no apple in the
fruit domain, the statement would still be true, because
A(x) would be false all the time.

Second attempt: ∃x (A(x) ∧ S(x))
This works, because this states that there is a fruit that
is an apple and it has spots.

CMPUT 272, F2010, M. Buro Quantifiers 44

Logical Equivalence Involving Quantifiers

We would like to make general statements about quan-
tified expressions that do not depend on the actual pred-
icates we use.

Definition

Statements ϕ and ψ involving predicates and quanti-
fiers are (logically) equivalent iff they have the same
value no matter which predicates are substituted and
which domain is used for the variables. We write ϕ ≡ ψ
in this case.

Example 1: The following equivalence holds:

∀x [P (x) ∧Q(x)] ≡ [∀x P (x)] ∧ [∀x Q(x)]

Proof: Suppose P,Q are arbitrary predicates with com-
mon domain D. We prove the claim in two parts:

1. prove ∀x [P (x)∧Q(x)] ⇒ [∀x P (x)]∧ [∀x Q(x)]
and

2. prove [∀x P (x)]∧ [∀x Q(x)] ⇒ ∀x [P (x)∧Q(x)]
If both parts are true, we know that the truth values of

CMPUT 272, F2010, M. Buro Quantifiers 45

both sides are identical, and thus the equivalence holds.

ad 1: Suppose ∀x [P (x) ∧ Q(x)] is true. This means
that for every a in the domain P (a) and Q(a) both
hold. This means [∀x P (x)] and [∀x Q(x)] is true.

ad 2: Suppose [∀x P (x)] ∧ [∀x Q(x)] is true. Then
for each a in the domain P (a) and Q(a) is true. This
means P (a) ∧Q(a) is true for each a, and thus
∀x [P (x) ∧Q(x)] holds. �

Example 2: Prove or disprove:

[∀x (P (x) ∨Q(x))] ≡ [∀x P (x)] ∨ [∀x Q(x)]

This statement is wrong. We construct a counterexam-
ple: D contains values 0 and 1, and P,Q are defined
as follows: P (0) = F, P (1) = T,Q(0) = T,Q(1) = F

Then ∀x (P (x)∨Q(x)) is true, but both ∀x P (x) and
∀x Q(x) are false, which shows that the equivalence
doesn’t hold.

CMPUT 272, F2010, M. Buro Quantifiers 46

Lecture 5

Negating Quantified Expressions

In mathematics one is often faced with the problem of
finding the logical negation of quantified expressions.
Consider:

“Every student in this class has graduated from high-
school,” written as ∀x P (x).
What is the negation? (¬∀x P (x))
“It is not the case that ...”

This is equivalent to saying

“There is a student in this class who has not graduated
from high-school,” which means ∃x ¬P (x)
So, we conjecture that the following equivalence holds:

1.¬∀x P (x) ≡ ∃x ¬P (x)
and similarily

2.¬∃x Q(x) ≡ ∀x ¬Q(x)
These are called the De Morgan laws for quanti-
fiers.

CMPUT 272, F2010, M. Buro Quantifiers 47

Examples:

Negation of ∀x (x2 > x) ?

¬∀x (x2 > x) ⇔ ∃x ¬(x2 > x) (De Morgan 1)

⇔ ∃x (x2 ≤ x)

Negation of ∃x (x2 = 2) ?

¬∃x (x2 = 2)⇔ ∀x (x2 6= 2) (De Morgan 2)

Proof of De Morgan 1.

To show that ¬∀x P (x) is equivalent to ∃x ¬P (x)
regardless of the predicates and domains we chose, we
fix P and a domain and note:

[¬∀x P (x)] is true ⇔ [∀x P (x)] is false

⇔ there exists a in the domain with P (a) = F

⇔ there exists a in the domain with ¬P (a) = T

⇔ ∃x ¬P (x) �
Law 2. can be proved similarly.

CMPUT 272, F2010, M. Buro Quantifiers 48

Nested Quantifiers

Often, we like to model situations with more than one
variable.

Example 1 (assuming domain R):

∀x [∃y (x + y = 0)]︸ ︷︷ ︸
P (x,y)︸ ︷︷ ︸
Q(x)

Which means: for each real number x there exists an
y such that x+y = 0, which is called “additive inverse
of x” and written as y = −x.

Given x and y, we can evaluate x + y = 0. We call
this predicate P (x, y). One level up we define Q(x) :=
∃yP (x, y), which for a given x is either true or false.
In ∃y(x + y = 0), x is called a free variable because
it is not bound by any quantifier.

y obviously depends on x. We say that y lies in the
scope of x, which is indicated by the square brackets,
or that y is nested in the scope of x.

CMPUT 272, F2010, M. Buro Quantifiers 49

Example 2:

∀x ∀y (x + y = y + x)︸ ︷︷ ︸
P (x,y)︸ ︷︷ ︸
Q(x)

means: operator + is cummutative over R, i.e. operand
order doesn’t matter.

Example 3:

∀x ∀y ∀z (x + (y + z) = (x + y) + z)︸ ︷︷ ︸
R(x,y,z)︸ ︷︷ ︸
P (x,y)︸ ︷︷ ︸
Q(x)

means: operator + is associative over R, i.e. evaluation
order doesn’t matter

CMPUT 272, F2010, M. Buro Quantifiers 50

Example 4:

∀x ∀y [(x > 0 ∧ y < 0)⇒ (x · y < 0)]︸ ︷︷ ︸
P (x,y)︸ ︷︷ ︸
Q(x)

means: the product of a positive and a negative real
number is negative.

Multiple quantifiers are not always nested:

[∀x P (x)] ∧ [∀y Q(y)]

Here, the two quantified expressions are independent of
each other because neither lies in the scope of the other.
Therefore, x and y are unrelated. In such a case we can
even reuse the same variable names without changing
the logical meaning:

[∀x P (x)] ∧ [∀x Q(x)]
is equivalent to the expression above.

CMPUT 272, F2010, M. Buro Quantifiers 51

Order of Quantifiers

Does quantifier order matter?

∀x ∀y P (x, y) ≡ ∀y ∀x P (x, y)

The order is not important in this case, because both
sides are true if and only if P (x, y) is true for all com-
binations of x and y.

Similarly true:

∃x ∃y P (x, y) ≡ ∃y ∃x P (x, y)

But does this equivalence hold in general?

∃x ∀y Q(x, y) ?≡ ∀y ∃x Q(x, y)

Consider domain R and Q(x, y) := (x+ y = 0). Then
the left-hand side says:

“There is a number x such that for every y, x+y = 0”

This is clearly wrong, because if x+y = 0 then x+(y+
1) 6= 0. But the right-hand side is true (the witness
is x = −y). So, quantifier order may matter when
quantifiers alternate (∃∀∃...)

CMPUT 272, F2010, M. Buro Quantifiers 52

Generalized De Morgan Laws

Without proof we state the following generalized ver-
sion of the De Morgan laws for quantifiers:

¬∀x1 ∃x2 ∀x3 · · · ∀/∃xn P (x1, . . . , xn) ≡
∃x1 ∀x2 ∃x3 · · · ∃/∀xn ¬P (x1, . . . , xn)

and

¬∃x1 ∀x2 ∃x3 · · · ∀/∃xn P (x1, . . . , xn) ≡
∀x1 ∃x2 ∀x3 · · · ∃/∀xn ¬P (x1, . . . , xn)

i.e., to negate a nested quantified statement we flip all
quantifiers and negate the predicate.

Example:

¬∀x ∃y (x + y = 0) ≡ ∃x ∀y (x + y 6= 0)

Observation: These laws in conjunction with the De
Morgan laws for compound propositions and double
negation allow us to transform quantified expressions
into an equivalent form in which negations only appear
as singletons immediately in front of predicates:

¬∀x ∃y (P (x, y) ∧ ¬Q(x, y)) ≡ ∃x ∀y (¬P (x, y) ∨Q(x, y))

CMPUT 272, F2010, M. Buro Rules of Inference 53

Rules of Inference

Proofs in mathematics are valid arguments establishing
the truth of mathematical statements.

Argument: sequence of statements that end with a
conclusion.

Valid Argument: conclusion must follow from the
truth of the preceding statements, or premises, of the
argument.

I.e., arguments are valid iff it is impossible for all premises
to be true and the conclusion to be false.

In other words:

An argument form with premises P1, . . . , Pn and con-
clusion Q is valid iff P1∧ · · · ∧Pn⇒ Q is a tautology.

To decuce new statements from existing ones, we will
use rules of inference which are templates for con-
structing valid arguments.

CMPUT 272, F2010, M. Buro Rules of Inference 54

Valid Arguments

Example:

“If you have a current password, then you can log onto
the network”

“You have a current password”

Therefore,

“You can log onto the network”

Is this a valid argument? We must determine if the
conclusion must be true if the premises are both true.

Let’s look at the arguments propositional form.

Let P = “You have a current password”

and Q = “then you can log onto the network”

Then, the argument has the form

P ⇒ Q
P
Therefore, Q

written as:
P ⇒ Q
P
Q

CMPUT 272, F2010, M. Buro Rules of Inference 55

If P is true, and P ⇒ Q is true, a look at the truth
table for ⇒ (rows 3 and 4) verifies that Q must also
be true:

P Q P ⇒ Q
F F T
F T T
T F F
T T T

Therefore,

P
P ⇒ Q

Q

is a valid argument. It is called the “modus ponens”
(“mode that affirms”) inference rule which is the sin-
gle most important rule for carrying out mathematical
proofs.

CMPUT 272, F2010, M. Buro Rules of Inference 56

Other important inference rules:

¬Q
P ⇒ Q

¬P
”Modus tollens” (Latin: mode that denies)

“I can’t log onto the network”

“If you have a current password, then you can log onto
the network”

Therefore, “I don’t have a current password.”

P ⇒ Q
Q⇒ R

P ⇒ R

”Hypothetical syllogism”

“If you have a current password, then you can log onto
the network”

“If you can log onto the network, then you can remove
files”

Therefore, “If you have a current password, then you
can remove files”

CMPUT 272, F2010, M. Buro Rules of Inference 57

P ∨Q
¬P
Q

”Disjunctive syllogism”

“I am rich or I drive a kick scooter to work”

“I am not rich”

Therefore, “I drive a kick scooter to work”

P ∨Q
¬P ∨R
Q ∨R

”Resolution”

Basis for automated theorem proving systems and logic-
based programming languages such as Prolog (covered
in CMPUT 325 — Non-procedural programming lan-
guages)

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 58

Theorems and Basic Proof Techniques

Some terminology:

Theorem: (somewhat important) statement that can
be shown to be true.

Proposition: less important theorem.

Lemma: (plural: lemmas or lemmata) less important
theorem that is helpful in the proof of other results.

Corollary: theorem that can be established directly
from another theorem.

Theorems are demonstrated to be true by proofs, which
are valid arguments.

Statements used in a proof can include axioms (state-
ments we assume to be true), premises of the theorem,
and previously proven theorems.

All terms used in theorems must be defined.

Rules of inference are used to draw conclusions from
assertions, tying together the steps of a proof.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 59

For proving statements of the form ∀x (P (x)⇒ Q(x))
our goal is to show P (c)⇒ Q(c) is true, where c is an
arbitrary object in the domain.

Therefore, we focus on methods that show that condi-
tional statements P ⇒ Q are true.

For this, we only need to look at the case where P is
true, for which we have to prove that Q is true as well.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 60

Direct Proofs

Direct proofs are formed by implication chains of the
form P1 ⇒ P2 ⇒ · · ·Pn ⇒ C meaning that if state-
ment P1 holds then conclusion C also holds.

To show that this argument is valid, we assume that P1
is true and then proceed by proving that each Pi and
C is true as well.

Example:

Claim: The square of every odd natural number is odd.
I.e., ∀x [odd(x)⇒ odd(x2)].

Proof: Pick an arbitrary natural number x. By defini-
tion we know odd(x) means ∃k (x = 2k + 1).
E.g. 17 = 2 · 8 + 1, so 17 is odd.

Therefore:

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 61

odd(x)

def.⇒ ∃k (x = 2k + 1)

square⇒ ∃k (x2 = (2k + 1)2) [= 4k2 + 4k + 1 =
2(2k2 + 2k) + 1]

⇒ ∃l (x2 = 2 · l + 1)
(choose l = 2k2 + 2k with k from the previous line)

def.⇒ odd(x2)

Because this argument is valid for arbitrary x,
∀x [odd(x)⇒ odd(x2)] is true. �

It is good practice to annotate implications with the
reason why they hold, like in the last example (defini-
tion, square, etc.)

This simplifies the task of verifying proof steps and
helps you to double check your work and us when grad-
ing.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 62

Lecture 6

More Complex Direct Proof Templates

Here we consider direct proofs for common statements
of the form

ϕ⇒ ψ

where ϕ and ψ are compound propositions themselves.

For example:

(P ∧Q)⇒ R

This poses no new difficulty. We even have one more
premise to work with compared to P ⇒ R.

P ⇒ (Q ∧R)
This is equivalent to (P ⇒ Q) ∧ (P ⇒ R).
(If P is false then both statements are true, and if P is
true both are equal to Q ∧ R). Thus, we can proceed
by first showing P ⇒ Q and then P ⇒ R.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 63

P ⇒ (Q ∨R)
This is equivalent to (P ∧ ¬Q)⇒ R or altnernatively
(P ∧ ¬R)⇒ Q, because all three are equivalent to

¬P ∨Q ∨R
So we have one more premise to work with.

(P ∨Q)⇒ R

This is equivalent to (P ⇒ R) ∧ (Q ⇒ R) (proof ex-
ercise). Thus, a proof of above statement can proceed
in two steps: 1. P ⇒ R and 2. Q⇒ R.

Proofs by Exhaustion

Special case: (P ∨¬P)⇒ R, which when true means
that R must be true as well. From the previous equiv-
alence we know that

[(P ∨ ¬P)⇒ R] ≡ [(P ⇒ R) ∧ (¬P ⇒ R)]

So, if we can show that both P ⇒ R and ¬P ⇒ R are
true, then R is true. This proof is a special case of the
more general idea of proving statements by exhaustion,
i.e. examining all possible cases.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 64

Example:

Claim: Suppose that n is an odd integer. Then n =
4j+1 for some integer j, or n = 4i−1 for some integer
i.

Proof: Suppose n is odd. Then n = 2m + 1 for some
integer m. We distinguish two cases: m even and m
odd (P and ¬P) and show that in both cases the con-
clusion holds, and thus the claim is valid.

Case 1: If m is even then m = 2j for some integer j,
and so n = 2m + 1 = 2 · 2j + 1 = 4j + 1.

Case 2: If m is odd then m = 2k + 1 for some integer
k, and so n = 2m + 1 = 2 · (2k + 1) + 1 = 4k + 3 =
4(k + 1)− 4 + 3 = 4i− 1 for i = k + 1.

So, in either case the conclusion, which is a disjunction,
is true. �

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 65

Proof by Contraposition

Attempts at direct proofs often reach dead ends. Here
we consider proof methods that do not start with the
premises and end with the conclusion, which are called
indirect proofs.

A useful type of indirect proof is known as proof by
contraposition, in which we make use of the fact that
P ⇒ Q is equivalent to ¬Q⇒ ¬P .

We can therefore start with the negation of the conclu-
sion, and then using axioms and other theorems, we try
to show that the premise is false.

Example:

Claim: If n = a · b, where a and b are natural numbers,
then a ≤ √n or b ≤ √n.

Proof: Because we can’t see an obvious direct proof, we
attempt a proof by contraposition. We start with the
negation of the conclusion: (a >

√
n) ∧ (b >

√
n).

Therefore, by multiplying both inequalities we get to
a · b > √n · √n = n, which means a · b 6= n. This
contradicts the premise and the claim is true. �

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 66

Proofs by Contradiction

Suppose we want to prove that statement P is true.

If we can find a contradiction Q (e.g. R ∧ ¬R) such
that ¬P ⇒ Q, then P is true.

This is called a proof by contradiction.

Example:

Claim: There are infinitely many prime numbers, i.e. nat-
ural numbers ≥ 2 that are only divisible by 1 and them-
selves (2, 3, 5, 7, 11, 13 . . .)

Proof: Assume there are only finitely many prime num-
bers, say p1, p2, . . . , pn. Let

p = p1 · p2 · · · pn + 1.

Then p is bigger than any pi. Thus, p is not a prime
number, because it is not on the list. On the other
hand, p is not divisible by any pi, because the remain-
der is always 1. Because all non-prime numbers can
be decomposed into a product of primes, either p is
a prime, or there are prime numbers which p can be
decomposed into which are not on the list. In either

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 67

case, this leads to a contradiction. Therefore, there are
infinitely many prime numbers. �

Proofs of Equivalence

Theorems of the form of biconditional statements

P ⇔ Q

can be proved by showing P ⇒ Q and Q⇒ P (based
on the equivalence we have seen before).

Sometimes, theorems state that several propositions
(say P1, P2, . . . Pn) are equivalent, i.e.

P1⇔ P2, P2⇔ P3, · · ·Pn−1⇔ Pn,

which means that all propositions have the same truth
values.

One way of proving this equivalence is to show that

P1⇒ P2, P2⇒ P3, . . . , Pn−1⇒ Pn, Pn⇒ P1

are all true, which means that all Pi have the same
truth value. This is way more economical than proving
n− 1 equivalences.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 68

Example: (skipped in class, read at home)

Claim: These statements about integer n are equivalent

P1: n is even

P2: n− 1 is odd

P3: n2 is even

Proof: We show P1⇒ P2, P2⇒ P3, P3⇒ P1

P1⇒ P2: n even ⇒ n = 2k for some integer k.
Therefore n− 1 = 2k − 1 = 2(k − 1) + 1 is odd.

P2⇒ P3: n − 1 = 2k + 1 for some k. Therefore,

n2 = (2k + 2)2 = 4k2 + 8k + 4 = 2(2k2 + 4k + 2),
which shows that n2 is even.

P3⇒ P1: Proof by contraposition: assume n odd,

i.e. n = 2k + 1 for some integer k. Then n2 = (2k +
1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 is odd. �

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 69

Proofs Involving Quantifiers

The proof methods we described above can be directly
applied to expressions of the form

∀x P (x) and ∃x P (x)

A direct proof of ∀x P (x) has the following form:

• Let x be an arbitrary object in the domain.

• ...

• Hence, P (x) is true.

• Because x is arbitrary, ∀x P (x) is true

Likewise, a proof of ∀x P (x) by contradiction proceeds
as follows:

• Suppose ¬∀x P (x)
• Then ∃x ¬P (x)
• Let t be an object such that ¬P (t)
•

• Therefore, Q ∧ ¬Q
• Thus, ∃x ¬P (x) is false, and ∀x P (x) is true.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 70

For statements of the form ∀x P (x) we can either start
looking for a direct or indirect proof, or — if we have
reason to believe that it doesn’t hold, we can try to find
a counterexample that disproves the statement.

Example: Consider the sequence of prime numbers
2, 3, 5, 7, 11, . . .= p1, p2, p3, . . . in increasing order. We
claim that for each n, p1 ·p2 · · · pn+1 is a prime num-
ber (we used that number to prove that the sequence
of primes is infinite).

This seems to work in the first couple of cases:

2 + 1 = 3

2 · 3 + 1 = 7

2 · 3 · 5 + 1 = 31

Not finding a direct way of proving the claim, we con-
tinue to search for a counterexample and after a few
more checks we find one:

2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509

Therefore, the claim is false.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 71

Existence Proofs

A proof of a statement of the form ∃x P (x) is called
an existence proof.

Often we can find an object a in the domain such that
P (a) is true. Such a proof is called constructive.

If we prove ∃x P (x) in some other way, this proof is
called non-constructive.

Example of a non-constructive existence proof involving
irrational numbers:

Recall: a number is rational if it can be expressed as
a ratio p/q of integers p, q or equivalently, its decimal
representation is either finite, or repeating.

Numbers that are not rational are called irrational.

Facts: 1.5 and 1.1111111... are rational
√
2 = 1.4142... is irrational.

CMPUT 272, F2010, M. Buro Theorems and Basic Proof Techniques 72

Claim: There exist irrational numbers x and y such that
xy is rational, i.e. in domain R

∃x ∃y (x irrational ∧ y irrational ∧ xy rational)

is true.

Proof: Consider the number
√
2

√
2
. If it is rational, we

have found two numbers x, y such that xy is rational,
and we are done.

If
√
2

√
2

is irrational, let x =
√
2

√
2

and y =
√
2.

Then xy = (
√
2

√
2
)
√
2 =
√
2

√
2·
√
2
=
√
2
2
= 2, which

is rational.

So, one of the pairs of numbers has the desired prop-
erty. Even though we don’t know which, this proves
the claim. �

