
CMPUT 272, F2010, M. Buro Contents 1

Part 5: Program Verification

Contents [DOCUMENT FINALIZED]

• Computing Functions p.2

• Computation Model p.3

• Pseudo-Code p.12

• Program Correctness p.18

• Hoare Triples p.28

• Hoare Calculus p.30

• Proving While Loops Correct p.34

CMPUT 272, F2010, M. Buro Computing Functions 2

Computing Functions

In this last lecture part we will first introduce a compu-
tation model that allows us to specify simple numerical
algorithms.

Then we will formalize the concept of program cor-
rectness, develop a formal method to prove statements
about computations, and then apply it to proving the
correctness of simple algorithms.

CMPUT 272, F2010, M. Buro Computation Model 3

Computation Model

RAM (Random Access Machine)

RAM also means “random access

memory” — the read/write memory

in modern computers that loses its

contents when power is switched off

• Input/Output devices: function arguments read from
input, computed result written to output

• CPU (Central Processing Unit): executes program

•Memory M : infinite sequence of integers that form
the variables that can be used by the program

• Program P : fixed, finite, instruction sequence the
CPU executes step by step

CMPUT 272, F2010, M. Buro Computation Model 4

CPU

• has direct access to any memory location (by index)

• moves integers between memory cells

• reads integers from input to memory

• writes integers from memory to output

• executes primitive operations

• contains a program counter (p) that is advanced by
one after each step or set to a specific value by jump
instructions

The RAM Instruction Set Overview

RAM program building blocks:

• input/output instructions

• copy memory contents

• (conditional) jumps

• arithmetic operations (+,−, ∗, div, mod)

• comparisons

• stop — ends execution

CMPUT 272, F2010, M. Buro Computation Model 5

Example 1:
RAM Program that computes f (x) = x+ 1 for x ∈ Z

1. read M[0] // read number x into M[0]
2. M[0] ← M[0]+1 // add 1 to M[0] (now x + 1)
3. write M[0] // report result
4. stop // done

(// indicates a comment)

The execution of this program proceeds as follows:

• Program counter (p) initialized with 1

• CPU reads first program instruction and executes it:
reads a number from the input and stores it into
M[0]. After, p is incremented to 2

• CPU reads second program instruction and executes
it: reads M[0], adds 1, and stores result back into
M[0]. After, p is incremented to 3

• CPU reads third instruction and executes it: writes
M[0] to the output device, p incremented to 4

• CPU reads instruction 4 and executes it: the pro-
gram stops

CMPUT 272, F2010, M. Buro Computation Model 6

Example 2:
RAM Program that computes f (x) = |x|, the absolute
value of x ∈ Z, i.e.

|x| =
{
x, if x ≥ 0
−x, if x < 0

1. read M[0] // read number x into M[0]
2. if M[0] ≥ 0 goto 4 // proceed at 4 if x ≥ 0
3. M[0] ← - M[0] // negate x
4. write M[0] // report result
5. stop // done

Again, the program is executed step by step starting
with instruction 1.

In line 2 we see a conditional jump statement, that
checks a Boolean condition (M[0] ≥ 0) and continues
the computation at instruction 4 if the result is true, or
resumes with the following statement (3) if the result
is false.

So, when the execution reaches instruction 4, M[0] con-
tains the absolute value of input x: x if input x was
≥ 0, and −x if input x < 0.

CMPUT 272, F2010, M. Buro Computation Model 7

Example 3:
RAM Program that computes f : N→ N, with f (n) =∑n
i=1 i.

// assume input ≥ 0
1. read M[0] // read number n into i (M[0])
2. M[1] ← 0 // initialize partial sum M[1]

3. if M[0] ≤ 0 goto 7 // exit loop when i ≤ 0
4. M[1] ← M[1] + M[0] // add i to partial sum
5. M[0] ← M[0] - 1 // decrease i
6. goto 3 // iterate
7. write M[1] // report result
8. stop // done

In addition to the conditional jump instruction in line
3 there is an unconditional jump instruction in line 6,
whose effect is simply to set p to 3.

Lines 3–6 form a so-called while-loop which is executed
repeatedly and exited when a certain condition holds.
Here, the loop stops and the program execution con-
tinues at line 7 when M[0] becomes ≤ 0.

This program computes the sum of all natural numbers
1..n by counting down i from n to 0 and adding i to a
variable that contains the partial sum up to that point.

CMPUT 272, F2010, M. Buro Computation Model 8

Formalizing Program Execution

Lecture 23

What does program execution mean exactly?

Each step changes the state of the machine which can
be thought of a computation snapshot.

Given a state, the computation that follows is uniquely
determined.

For our RAM model, the state is given by

• the program counter p,

• the current memory contents M , which is an infinite
integer sequence,

• the infinite input sequence I and input index i that
marks the position of the next integer to be read,

• the infinite output sequence O and output index o
that marks the position where the next output is
stored

In short, a RAM state is given by a tuple

(M, I,O, p, i, o)

CMPUT 272, F2010, M. Buro Computation Model 9

Using the concept of states, we can precisely define
what single RAM instructions do: they change the cur-
rent state into a new state.

I.e. each instruction r defines a state transition function
given by

tr(M, I,O, p, i, o) = (M ′, I ′, O′, p′, i′, o′)

E.g., for instruction ’M[0]← 1’, the corresponding im-
age (i.e. next state) is:

M ′ = M except for M ′[0] which is 1
I ′ = I no input changes
O′ = O no output changes
p′ = p + 1 program counter incremented
i′ = i no input changes
o′ = o no output changes

For instruction ’write M[1]’, the next state is:

M ′ = M no memory changes
I ′ = I no input changes
O′ = O except for O′[o] =M [1]
p′ = p + 1 program counter incremented
i′ = i no input changes
o′ = o + 1 output location incremented

CMPUT 272, F2010, M. Buro Computation Model 10

What is the state when the computation starts?

M = (0, 0, . . .) memory cleared
I = (i1, . . . , in, 0, . . .) some input values
O = (0, 0, . . .) output cleared
p = 1 index of first instruction
i = 0 first input location
o = 0 first output location

How do we tell the program has stopped?

We could define p = 0 to indicate the program reached
a stop instruction, i.e.

tstop(M, I,O, p, i, o) = (M, I,O, 0, i, o)

So, now what does computation mean?

A computation is a sequence of state transitions that
beginning with a start state defined above that encodes
some function arguments, applies transition functions
given by the current program instruction (program line
p) until an end state is reached (e.g. p = 0). The result
of the computation, i.e. the image of the arguments, is
stored in O[0..o− 1].

CMPUT 272, F2010, M. Buro Computation Model 11

Computation trace of program:

1. read M[0] // read number x into M[0]
2. if M[0] ≥ 0 goto 4 // proceed at 4 if x ≥ 0
3. M[0] ← - M[0] // negate x
4. write M[0] // report result
5. stop // done

on input −8:

Step M I O p i o Instr.
1 (0, 0, . . .) (−8, 0, . . .) (0, 0, . . .) 1 0 0 read
2 (−8, 0, . . .) (−8, 0, . . .) (0, 0, . . .) 2 1 0 if
3 (−8, 0, . . .) (−8, 0, . . .) (0, 0, . . .) 3 1 0 M[0] ←
4 (8, 0, . . .) (−8, 0, . . .) (0, 0, . . .) 4 1 0 write
5 (8, 0, . . .) (−8, 0, . . .) (8, 0, . . .) 5 1 1 stop
6 (8, 0, . . .) (−8, 0, . . .) (8, 0, . . .) 0 1 1

|
output

CMPUT 272, F2010, M. Buro Pseudo-Code 12

Pseudo-Code

Modern computers use the von Neumann computer ar-
chitecture which resembles RAMs. The main differ-
ences are:

• memoryM is finite and can only store small numbers
(say from 0 to 255) in each memory cell,

• program input and output are stored in M ,

• and so are programs themselves.

In the early days of computing, programs looked like
RAM instruction sequences. They were hard to under-
stand and maintain.

Nowadays, we can still write programs that way, using
so called assembly programming languages, because the
underlying hardware principles haven’t changed much.

However, most programming today is done using high-
level programming languages such as C++, Java, C#,
or Lisp.

For our purposes (and later in CMPUT 204/304) the
preferred way of presenting algorithms is in pseudo-code

CMPUT 272, F2010, M. Buro Pseudo-Code 13

notation, which describes instruction sequences using
English phrases and variable names, and flow control
statements which are easier to understand than RAM
instructions.

At the same time, pseudo-code avoids the burden of
syntactic strictness which is present in all high-level lan-
guages.

Here are pseudo-code representations of the RAM pro-
grams we encountered so far:

// input: integer x
// output: x + 1
function plus1(x)
return x + 1

// input: integer x
// output: |x|
function abs(x)
if x < 0 then

x← −x
end

return x

// input: integer n ≥ 0
// output:

∑n
i=1 i

function sum(n)
s← 0
while n > 0 do

s← s + n
n← n− 1

end

return s

Note, how the input and output mechanism in RAMs

CMPUT 272, F2010, M. Buro Pseudo-Code 14

is replaced by explicit function arguments and return
statements, which allows us to compose functions quite
easily — like so:

x← max(f (a), g(b) + 1, h(a, b))

To evaluate this expression, first function f is called
with argument a, then function g is called with b and
1 is added to the result, and then h is called with ar-
guments a, b.

In the end, these three values are passed on as argu-
ments to the function called max and the result is stored
in variable x.

CMPUT 272, F2010, M. Buro Pseudo-Code 15

Common pseudo-code statements:

a← a + 1 // simple expression and assignment

while a < b do // while-loop
... // loop body executed as long as cond. true

end

for i← a to b do // for-loop
... // loop body executed with i = a, a + 1, ..b

end // body not executed if a > b

if a > b then // if-then-else
... // executed when condition true

else // optional else-branch
... // executed when condition false

end

x← max(3, 4, 5) // function call

return value // return function value to caller

CMPUT 272, F2010, M. Buro Pseudo-Code 16

Variables reside in distinct memory locations. Their
indexes are irrelevant.

Also, in pseudo-code programs we don’t need to bother
with instruction addresses anymore, because explicit
goto instructions are replaced by flow control state-
ments such as if-then-else and while.

Arrays

To study algorithms that act on arbitrarily large data
sets, we will allow integer arrays of the form

A[1..n]

representing a sequence of n integers stored in memory,
starting with index 1.

As usual, array elements can be read and written to:

A[i]← 0 // store 0 at the i-th location
x ← A[1] // copy the first element into x

Conceptually, arrays are functions from an index set,
like {1..n} in the above example, to Z.

To have RAMs support arrays, we need to add instruc-

CMPUT 272, F2010, M. Buro Pseudo-Code 17

tions with indirect addressing, e.g.

M [0]←M [M [1]]

which when executed first reads M [1], say a, and then
copies M [a] into M [0]. This way, arbitrary memory
locations can be accessed.

Pseudo-code example with array:

// input: integer array A[1..n]
// output: maximum element in A[1..n]

function max(A[1..n])
m← A[1]
for i← 2 to n do

if A[i] > m then

m← A[i]
end

end

return m

Is this function correct?

In what follows, we will formalize this question and
study techniques to verify program correctness.

CMPUT 272, F2010, M. Buro Program Correctness 18

Program Correctness

We call a program (or algorithm) correct if it meets its
input-output specification.

Partial correctness simply requires that if an answer
is returned it will be correct.

(Total) correctness in addition requires that the pro-
gram terminates.

Thus, correctness proofs of programs that are meant to
compute a certain function require two distinct steps:

1. We need to prove that the given program terminates
for all inputs in the function domain, and

2. we need to show that, if the program stops, it returns
the correct output value.

CMPUT 272, F2010, M. Buro Program Correctness 19

The general problem of proving correctness of arbi-
trary programs is impossible to solve algorithmically
with RAMs, as the following theorem shows which we
state without proof:

Theorem: The halting problem for RAM programs is
undecidable, i.e. there is no RAM program that takes
the code of an arbitrary RAM program P and its input
x as input and reports 1 if P started on x halts, and 0
otherwise. �

But this doesn’t mean that we can’t establish the cor-
rectness of particular programs we are interested in.

CMPUT 272, F2010, M. Buro Program Correctness 20

Example:

We are looking for a program P ′ that given variable
n ∈ N sets variable z to nn, i.e. for input 0 the output
is 1, for input 2 it is 2 ·2 = 4, and for 4 it is 3 ·3 ·3 = 27.

We write this functional specification as follows:

{ n ≥ 0 } // precondition in { }
P ′

{ p = nn } // postcondition in { }

where the assertions in curly braces are predicates rang-
ing over the program variables. The first assertion is
assumed to be true, and all subsequent ones need to
be proved true.

There is no procedure that can generate programs from
such specifications automatically.

So, programmers need to rely on their experience and
knowledge of definitions and program design patterns
to find suitable implementations.

Consider for instance the following pseudo-code instruc-
tion sequence P ′:

CMPUT 272, F2010, M. Buro Program Correctness 21

i← n // counter
p← 1 // partial product
while i > 0 do // enter loop if i > 0 (∗)

i← i− 1 // decrement counter
p← p ∗ n // update partial product

end

Execution trace for n = 3 (state snapshots taken at
line (∗)):

t n i p
1 3 3 1
2 3 2 3
3 3 1 9
4 3 0 27

After 3 iterations (at the fourth time line (∗) is visited),
i has reached 0, the while-loop stops, and p contains
27 = 33, which is correct.

For the proof that P ′ is correct for all inputs n, we will
insert further comments in curly brackets that describe
the relationships between program variables.

CMPUT 272, F2010, M. Buro Program Correctness 22

{ n ≥ 0 }
i← n // counter
p← 1 // partial product
{ p = nn−i ∧ i ≥ 0 }1 // loop invariant
while i > 0 do // enter loop if i > 0 (∗)
{ p = nn−i ∧ i > 0 }2
i← i− 1 // decrement counter
{ p = nn−i−1 ∧ i ≥ 0 }3
p← p ∗ n // update partial product
{ p = nn−i ∧ i ≥ 0 }4 // loop invariant holds again

end

{ p = nn−i ∧ i ≥ 0 ∧ i ≤ 0 }5 // loop inv.+loop exit cond.
{ p = nn−i ∧ i = 0 }6
{ p = nn }

Assertion justifications:

1: (n ≥ 0 ∧ i = n) ⇒ (nn−i = n0 = 1 = p ∧ i ≥ 0)

2: while-conditition i > 0 is true if the execution gets here and
p = nn−i holds at first and after each loop iteration.

3: i ≥ 0 now because i > 0 before i was decremented,
p = nn−i before i was decremented, so now p = nn−(i+1) =
nn−i−1

4: p = nn−i−1 before p← p ∗ n, so now p = nn−i

5: while-condition false: i ≤ 0 and p = nn−i ∧ i ≥ 0

6: (i ≥ 0 ∧ i ≤ 0) ⇒ i = 0

CMPUT 272, F2010, M. Buro Program Correctness 23

So, if program P ′ exits the while-loop, variable p con-
tains value nn for any input n ≥ 0, i.e. we proved the
partial correctness of program P ′.

For this we have used a so-called loop invariant, which
is a predicate that is true before entering a loop, and
stays true after executing the loop body.

What is left is to show that P ′ terminates for all inputs
n ≥ 0, i.e. for any n ≥ 0, the while-loop is exited
eventually.

For this we consider a suitable runtime bound that
is always ≥ 0 and is decreased by each loop iteration if
the while-condition is true.

In our case we can use one of the variables — i — as
runtime bound. At the start, i ≥ 0 and i is decre-
mented by one in each loop iteration if i > 0.

Therefore, the number of loop iterations is finite. To
see this consider the initial value of i: n. After exactly
n iterations, i reaches 0 and the loop is exited.

This shows that P ′ terminates for each input value n ≥
0, and P ′ is (totally) correct.

CMPUT 272, F2010, M. Buro Program Correctness 24

Lecture 24

Formalisation

To treat the subject of program verification formally
we need to specify the syntax and semantics of the
programming language and the assertion language we
will be using.

The syntax of a language defines which symbol se-
quences are valid, whereas its semantics specifies the
meaning of valid symbol sequences.

With these in place, we will then discuss a formal sys-
tem, called Hoare calculus, for reasoning about partial
program correctness, present a systematic way to prov-
ing while-loops correct, and finally apply it to several
examples.

For the purpose of this high-level introduction we will
discuss concepts on a “naive” level to avoid getting
bogged down in details.

CMPUT 272, F2010, M. Buro Program Correctness 25

Programming Language

We will be using pseudo-code with integer variables and
integer arrays as described earlier.

The program semantics is defined by the state transition
functions corresponding to statements and value se-
mantics of arithmetic and Boolean expressions (i.e. how
to evaluate expressions given variable values and con-
stants).

Assertion Language

For assertions we will use predicate logic statements
with Z as quantifier domain and program variables as
the only free variables (i.e. not bound by quantifiers).

For specifying predicates we will allow functions and
relations over Z, like so

∀i [(0 ≤ i < n)⇒ (A[i] < x)]

Here, x, n, and array A are program variables, i is not!

CMPUT 272, F2010, M. Buro Program Correctness 26

Substitution

Let ϕ be a predicate logic sentence (also referred to as
formula) in which x is a free variable, i.e. x is not in
the scope of a ∃x or ∀x quantifier.

Example:

ϕ = (∃z : z + z = x) (“x is even”)

Let t be an arithmetic expression over the program vari-
ables, which we call term.

Then ϕ(t/x)

[read “phi t for x”] is created from ϕ by replacing
each free occurence of x in ϕ by term t.

The goal of this syntactic substitution process is for
ϕ(t/x) to mean for t what ϕ meant for x.

Example using ϕ above:

ϕ(y/x) = (∃z : z + z = y) (“y is even”)

One needs to be careful to avoid conflicts with quanti-
fied variables: E.g., ϕ(z/x) can’t possibly mean

(∃z : z + z = z)

CMPUT 272, F2010, M. Buro Program Correctness 27

The latter formula is always true, independent of the
value of variable z in the program execution, whereas
ϕ meant that x is even.

We can solve this problem by renaming all clashing
quantified variables before substituting t. E.g.

ϕ(z/x) = ∃z′ : z′ + z′ = z

With this groundwork we are ready to introduce pro-
gram correctness statements which are named after
Charles A. R. Hoare, who is best known for discovering
QuickSort.

CMPUT 272, F2010, M. Buro Hoare Triples 28

Hoare Triples

Definition:

Syntax:

For program P and formulas

ϕ(x1, . . . , xm) and ψ(x1, . . . , xm)

(with free program variables x1, . . . , xm) we call

{ϕ} P {ψ}

Hoare triple.

Semantics:

A Hoare triple is valid iff the following statement
holds for all possible states:

If ϕ is true before P is executed and P stops, then ψ
is true after executing P .

Thus, Hoare triples can be used to model partial pro-
gram correctness.

CMPUT 272, F2010, M. Buro Hoare Triples 29

Examples

{n ≥ 0} P ′ {p = nn} is valid

{x = 7} x← x + 1 {x = 8} is valid

{x ≤ 7} x← x + 1 {x ≤ 8} is valid

{x < 0} x← x + 1 {x > 0} is invalid

{x > 0} while x > 0 do x← x + 1 end {x ≤ 0}
is valid, because the loop exits only if x ≤ 0 holds,

nevermind the loop never exiting!

CMPUT 272, F2010, M. Buro Hoare Calculus 30

Hoare Calculus

We now consider a formal inference rule system — the
Hoare calculus — which

• helps us carrying out formal correctness proofs,

• provides insights into how to create while-loops for
specific purposes,

• has become the basis of computer aided or even
computer generated correctness proofs, and

• allows us to identify theoretical limitations of pro-
gram verification.

CMPUT 272, F2010, M. Buro Hoare Calculus 31

Hoare Rules

A Hoare rule has the form

H1, H2, . . . , Hn

H

where H is a Hoare triple and the Hi are either Hoare
triples or predicate logic formulas.

A Hoare rule is valid iff

H1 ∧H2 ∧ · · · ∧Hn⇒ H

is a tautology.

Example: Composition Rule

Given two programs P1, P2 and their matching post-
and pre-conditions, the following composition rule
asserts that after executing P1 followed by P2 the post-
condition of P2 holds, if before the pre-condition of P1
was true and both programs stop:

{ϕ} P1 {ψ} , {ψ} P2 {χ}
{ϕ} P1 P2 {χ}

CMPUT 272, F2010, M. Buro Hoare Calculus 32

Hoare Rule Set

Composition Rule:
{ϕ} P1 {ψ} , {ψ} P2 {χ}

{ϕ} P1 P2 {χ}

If-Then Rule:
{ϕ ∧ β} P {ψ} , (ϕ ∧ ¬β)⇒ ψ

{ϕ} if β then P end {ψ}

If-Then-Else Rule:
{ϕ ∧ β} P1 {ψ} , {ϕ ∧ ¬β} P2 {ψ}
{ϕ} if β then P1 else P2 end {ψ}

While Rule:
{ϕ ∧ β} P {ϕ}

{ϕ} while β do P end {ϕ ∧ ¬β}

Consequence Rule:
ϕ⇒ ϕ′ , {ϕ′} P {ψ′} , ψ′ ⇒ ψ

{ϕ} P {ψ}

Assignment Rule:
ϕ⇒ ψ(t/x)

{ϕ} x← t {ψ}

CMPUT 272, F2010, M. Buro Hoare Calculus 33

As an example we will prove that the assignment rule

ϕ⇒ ψ(t/x)

{ϕ} x← t {ψ}
is valid.

Suppose the precondition ϕ ⇒ ψ(t/x) is true, i.e. for
all states s : if ϕ holds in s, so does ψ(t/x).

We need to show {ϕ} x← t {ψ}.
Consider a state s in which ϕ is true. Then, by the
precondition, we know that ψ(t/x) holds.

After executing the assignment, x has value t.

Thus, the result when evaluating predicate formula ψ
in the follow-up state s′ is the same as the value of
ψ(t/x) in state s, which was true. �

Example: suppose Q is a unary predicate, then

{Q(i)} i← i− 1 {Q(i + 1)}

Here, ϕ = Q(i), ψ(i) = Q(i + 1), and ψ((i− 1)/i) =
Q(i− 1 + 1) = Q(i)

CMPUT 272, F2010, M. Buro Proving While Loops Correct 34

Proving While Loops Correct

The While Rule suggests how we can verify (and de-
velop) while loops. The general situation looks like
this:

{ ϕ0 } // precondition
P0 // initialization
{ ϕ } // loop invariant
[t] // runtime bound
while β do

{ ϕ ∧ β }
P // P terminates if ϕ ∧ β holds
{ ϕ } // loop invariant holds again

end

{ ϕ ∧ ¬β } // loop invariant + loop exit condition
{ ψ } // postcondition

By finding a loop invariant that together with the loop
exit condition implies the postcondition, we can estab-
lish the partial correctness of while loops.

But how do we know the while loop eventually stops?

In general this question can’t be answered, but in many
cases we can define a progress measure that allows us
to prove termination.

CMPUT 272, F2010, M. Buro Proving While Loops Correct 35

Termination Lemma:

1. If P be a program that stops if ϕ ∧ β holds, and

2. there is a function t : S → N that maps program
states to natural numbers with

{ϕ ∧ β ∧ (t(s) = y)} P {ϕ ∧ (t(s) < y)}

where s is the current state and y is a new variable that
doesn’t occur elsewhere, then

while β do P end

terminates when started in a state s in which ϕ holds.

Proof: Suppose ϕ holds in state s. If ¬β also holds,
then the claim is true.

Now assume β holds and suppose above while-loop
does not terminate.

This means that for all n ≥ 0 after the n-th iteration
a state sn is reached (s0 = s) in which ϕ ∧ β is true
(proof by induction using condition 1.)

Therefore (condition 2.), t(s0) > t(s1) > t(s2) > . . .
and t(sn) ≥ 0 for all n ≥ 0 — a contradiction. �

CMPUT 272, F2010, M. Buro Proving While Loops Correct 36

The following list summarizes the steps for verifying the
correctness of while loops based on the While Rule and
the Termination Lemma:

While Loop Verification Checklist

First, identify a suitable loop invariant ϕ and a runtime
bound t : S → N. Then:

1. prove that ϕ holds when reaching the while state-
ment for the first time,

2. prove {ϕ ∧ β} P {ϕ},
3. prove (ϕ ∧ ¬β)⇒ ψ,

4. prove that if ϕ ∧ β, the t-value > 0,

5. prove if ϕ∧β holds, then executing P decreases the
t-value

CMPUT 272, F2010, M. Buro Proving While Loops Correct 37

Example

We are looking for a program P that given x ∈ N
computes b√xc.
E.g. b

√
0c = 0, b

√
1c = 1, b

√
2c = 1, b

√
3c = 1,

b
√
4c = 2

{ x ≥ 0 } // precondition
P
{ w = b√xc } // postcondition

Analysis:

Previously we proved for w ∈ N:

w = b√xc ⇔ w ≤ √x < w + 1

which is equivalent to

w ≥ 0 ∧ w2 ≤ x < (w + 1)2

This suggests a loop that increments w until this con-
dition is met.

We can use the first and second inequalities as loop
invariant and the third inequality as loop exit condition.

CMPUT 272, F2010, M. Buro Proving While Loops Correct 38

{ x ≥ 0 } // precondition
w ← 0
{ w ≥ 0 ∧ w2 ≤ x } // loop invariant
[t : x− w] // runtime bound
while (w + 1)2 ≤ x do

{ w ≥ 0 ∧ w2 ≤ x ∧ (w + 1)2 ≤ x }
w ← w + 1
{ w ≥ 0 ∧ w2 ≤ x } // loop invariant holds again

end

{ w ≥ 0 ∧ w2 ≤ x < (w + 1)2 } // loop inv. + loop exit cond.
{ w = b√xc } // postcondition

Correctness Proof:

1.+2.+3: analysis on previous page and assignment
rule applied twice.

4.: Prove: (ϕ ∧ β)⇒ t > 0

w ≥ 0 ∧ w2 ≤ x ∧ (w + 1)2 ≤ x

Because w + 1 ≥ 1, x ≥ w + 1 ⇒ x > w
⇒ t = x− w > 0

5.: prove that executing P decreases t: trivial, as w is
increased.

CMPUT 272, F2010, M. Buro Proving While Loops Correct 39

Final Exam:

Friday, Dec. 17, 2pm in the Universiade Pavilion

Read sign for row, seats

2 hours, closed book

Format similar to term exams

Everything is relevant: all lecture notes, assignments,
seminars

Study assignment and seminar solutions

There will be problem-solving questions

Monday, Dec. 13 Office Hour @ 3pm

Good luck!

FIN

