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Sets

Lecture 7 A central concept in mathematics are sets,
which we understand to be specified collections of ob-
jects.

Objects in a given set are called elements.

For any object there must be a definite yes or no answer
to the question whether the object is a member of the
set.

If object x is an element of set A we write x ∈ A. If
not, we write x 6∈ A.

Sets can be described with words, such as

“the set of odd integers between 1 and 12”

or the elements may be listed

{1, 3, 5, 7, 9, 11}

or partially listed if the pattern is obvious:

{1, 3, 5, ..., 11}

To define sets we will use the following set-builder no-
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tation:
{x | P (x)}

where P (x) is a one-variable predicate that character-
izes the membership of x in the set.

Example: If P (x) says

“x is an odd integer between 1 and 12”,

then the set {x | P (x)} is

{1, 3, 5, 7, 9, 11}
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Caution: not all predicates lead to meaningful set defi-
nitions, as the following paradox shows that goes back
to philosopher Bertrand Russell (1902):

M = {x | x is a set that does not contain itself}

Is M ∈ M? Assume yes, then the set definition says
M 6∈ M , a contradiction. On the other hand, if M 6∈
M then M ∈M !

These problems can be avoided by adhering to Zer-
melo’s and Fraenkel’s (ZF) axiomated set theory, which
is beyond the scope of this course.

However, all our discussions of sets are consistent with
this theory.
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We will use the following notations for sets of numbers:

N = {0, 1, 2, 3, . . .} is the set of natural numbers.

Z = {0, 1,−1, 2,−2, 3, ...} is the set of integers.

Q is the set of rational numbers.

R is the set of real numbers.

Definition: Let ∅ = {x | x 6= x}. Then ∅ contains
no elements (because x 6= x is false for every object
x). ∅ is called empty set.

Definition: Let A and B be sets. We say A is a
subset of B iff every element of A is also an element
of B. In symbols:

A ⊆ B ⇔ ∀x (x ∈ A⇒ x ∈ B)
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Venn Diagram

Examples:
{2, 3, 4} ⊆ {1, 2, 3, 4, 5}
{0} 6⊆ {1, 2, 3, 4, 5}

Note: Venn diagrams are useful tools for obtaining intu-
itions about set relationships. However, drawing Venn
diagrams does not constitute a rigorous proof!
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Theorem: For any set A,
1. ∅ ⊆ A

2. A ⊆ A

Proof:

1. LetA be any set and x be any object. Then, because
x ∈ ∅ is false, x ∈ ∅ ⇒ x ∈ A is true. Therefore
∅ ⊆ A.

2. Let A be any set and x be any object. Then x ∈
A⇒ x ∈ A is true, because it is a tautology of the
form P ⇒ P . Therefore, A ⊆ A. �

Theorem: Let A,B,C be sets. If A ⊆ B and B ⊆ C
then A ⊆ C, i.e. ⊆ is transitive.

Proof: exercise.
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Often the question arises whether two descriptions of
sets yield the same set. Intuitively, we call sets A and
B equal if they contain exactly the same elements, i.e.

A = B ⇔ ∀x (x ∈ A⇔ x ∈ B)

The latter condition is equivalent to

∀x (x ∈ A⇒ x ∈ B) ∧ ∀x (x ∈ B ⇒ x ∈ A)
which means

A ⊆ B ∧ B ⊆ A

Definition: Let A and B be sets. Then A = B iff
A ⊆ B and B ⊆ A.

If A is a subset of B, but A 6= B, then A is called a
proper subset of B, denoted as A ⊂ B, or A ( B.

Example: {1} ( {1, 2, 3}
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One of the axioms of set theory asserts that for every
set A the collection of all subsets of A is also a set.

Definition: Let A be a set. The power set of A
is the set whose elements are the subsets of A. It is
denoted P(A). Thus

P(A) = {B | B ⊆ A}

Example: Let A = {1, 2, 3}. Then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A}

Note: elements of P(A) are themselves sets. When
working with sets whose elements are sets, it is impor-
tant to distinguish “is an element of” and “is a subset
of”. A ∈ B reflects whether set A is an element of B,
whereas A ⊆ B requires each element of A also to be
an element of B.
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Example: Let X = {∅, {1, 2, 3}, {4, 5}, 6}. All of the
following statements are true:

X has 4 elements
6 ∈ X
{6} 6∈ X
{6} ⊆ X
∅ ∈ X

∅ ⊆ X
{{4, 5}} ⊆ X
{4, 5} ∈ X
{4, 5} 6⊆ X , because 5 6∈ X .
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Set Operations

Here we present the most common ways of combining
two sets to produce a new set.

Definition: Let A and B be sets.

• The union of A and B is the set

A ∪B := {x | x ∈ A ∨ x ∈ B}
• The intersection of A and B is the set

A ∩B := {x | x ∈ A ∧ x ∈ B}
• The difference of A and B is the set

A−B := {x | x ∈ A ∧ x 6∈ B}
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Examples: For A = {1, 2, 4, 5, 7} and B = {1, 3, 5, 9}
A ∪B = {1, 2, 3, 4, 5, 7, 9}
A ∩B = {1, 5}
A−B = {2, 4, 7}
B − A = {3, 9}
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Another Venn Diagram
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Definition
Two sets A and B are disjoint iff A ∩B = ∅.

Examples: The sets of even and odd integers are dis-
joint, but {1} and {1, 2} are not.

Like the logical connectives ∧,∨,¬ we have seen ear-
lier, the set operations ∪,∩,− obey certain rules that
allow us to simplify set expressions and replace expres-
sions with equivalent ones.

Here is a list of the basic rules:
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Theorem: Let A,B,C be sets. Then

1. A ⊆ A ∪B
2. A ∩B ⊆ A

3. A ∩ ∅ = ∅
4. A ∪ ∅ = A

5. A ∩ A = A

6. A ∪ A = A

7. A− ∅ = A

8. ∅ − A = ∅
9. A ∪B = B ∪ A (commutative)

10. A ∩B = B ∩ A
11. (A ∪B) ∪ C = A ∪ (B ∪ C) (associative)

12. (A ∩B) ∩ C = A ∩ (B ∩ C)
13. (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) (distributive)

14. (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)
15. A ⊆ B ⇔ A ∪B = B

16. A ⊆ B ⇔ A ∩B = A
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Selected proofs (others exercise):

2. Prove A∩B ⊆ A. We must show that, if x ∈ A∩B
then x ∈ A. Suppose x ∈ A ∩ B. Then, x ∈ A and
x ∈ B. Therefore, x ∈ A.

16. Prove A ⊆ B ⇔ A ∩ B = A. This requires two
steps, ⇒ and ⇐:

“⇒”: Assume A ⊆ B. We have to show A ∩B = A.
We start with A ⊆ A ∩ B: If x ∈ A, then x ∈ B
according to the assumption, and thus x ∈ A ∩B.
On the other hand, A ∩B ⊆ A always holds (fact 2).
Together, this shows A ∩B = A

“⇐”: Assume A∩B = A. We must prove A ⊆ B. So,
if x ∈ A then with the assumption we have x ∈ A∩B,
and therefore x ∈ B, which proves the claim. �
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Lecture 8 When forming quantified expressions we intro-
duced the notion of domains from which quantified vari-
ables would receive their values. A similar concept is
useful in the context of sets.

Definition: If D is the domain and A ⊆ D, then
we define the complement of A to be the set Ac :=
D − A.

Thus, Ac is the set of elements in the domain that are
not in A.
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Examples:

For A = {2, 4, 6, 8}, Ac = {0, 10, 12, 14, . . .} if the
domain is the even natural numbers.

For domain R, if A = {x | x is rational} then
Ac = {x | x is irrational}.
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Theorem: Complement rules for A and B being sub-
sets of domain D:

1. (Ac)c = A

2. A ∪ Ac = D

3. A ∩ Ac = ∅
4. A−B = A ∩Bc

5. A ⊆ B ⇔ Bc ⊆ Ac

6. (A ∪B)c = Ac ∩Bc (De Morgan’s Laws)

7. (A ∩B)c = Ac ∪Bc

8. A ∩B = ∅ ⇔ A ⊆ Bc

Note the similarities between ∧,∨,¬ and ∩,∪ and
complement — they are not a coincidence.

Proof:

5.
A ⊆ B ⇔ ∀x (x ∈ A⇒ x ∈ B)

⇔ ∀x (x 6∈ B ⇒ x 6∈ A)
⇔ ∀x (x ∈ Bc⇒ x ∈ Ac)
⇔ Bc ⊆ Ac

Others: exercise.
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Mathematical Induction

The most familiar number system is the set of natural
numbers N = {0, 1, 2, . . .}.
Giuseppe Peano (1858-1932) devised five axioms, that
based on the notion of successors, completely describe
N:

1. 0 is a natural number

2. Every natural number has a successor in the natural
numbers

3. 0 is not the successor of any natural number

4. If the successor of two natural numbers is the same,
then the two original numbers are the same

5. If a set contains 0 and the successor of every number
in the set is in the set as well, then the set contains
the natural numbers.



CMPUT 272, F2010, M. Buro Mathematical Induction 21

Illustration
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Peano’s fifth axiom leads to a characteristic property
of N, the principle of mathematical induction
(PMI):

If S is a subset of N with these properties:

• 0 ∈ S
• For all n ∈ N, if n ∈ S, then n + 1 ∈ S,

then S = N.

The PMI allows to do two imporant things: first to
make inductive definitions, and second, to prove that
some properties are shared by all natural numbers.

Inductive definitions define an infinite set of objects that
can be indexed by the natural numbers. I.e., there is
a first, second, third object and so on. Basic inductive
definitions follow the form of the PMI. We define a first
object, and the (n+ 1)-st object is defined in terms of
the n-th object. The PMI ensures that the set of all n
for which the corresponding object is defined is N.
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Example:

The factorial of a natural number n (written as n!)
may be defined inductively:

1. 0! := 1

2. For n ∈ N, define (n + 1)! := n! · (n + 1).

Example:

4! = 4 · 3! = 4 · 3 · 2! = 4 · 3 · 2 · 1! = 4 · 3 · 2 · 1 · 0! = 24

Let S be the set of n for which n! is defined. According
to 1. 0 ∈ S. Condition 2. says how we define (n + 1)!
in terms of n!. Thus, if n ∈ S then n+1 ∈ S. By the
PMI, S = N.
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Note: the idea of inductive definitions can be general-
ized to define complex objects in terms of less complex
objects of similar form in a process called structural
induction:

Example: Define well-formed propositional formulas

1. All proposition symbols A,B, . . . are well-formed
formulas.

2. If ϕ and ψ are well-formed formulas, so are
(ϕ ∧ ψ), (ϕ ∨ ψ), and ¬ϕ.

3. No other formula is a well-formed formula.

Well formed formulas: Q, (P ∧ ¬Q)
To establish whether a formula is well-formed we need
to be able to verify that each sub-formula is well-formed
and that these sub-formulas have been combined cor-
rectly, according to 2. E.g.

(P ∧ ¬Q) = (ϕ ∧ ψ) with ϕ = P and ψ = ¬Q.
ϕ is well-formed according to 1. and ψ is well-formed
because it can be constructed by applying step 2. to Q.
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Example

R1: Rule 1

R2: Rule 2
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The other important application of PMI is to prove that
certain statements hold for all natural numbers n.

Example: We want to prove that
n∑

i=1

(2i− 1) = 1 + 3 + 5 + · · · (2n− 1) = n2

holds for every natural number n.

[ Here we are using the “sigma”-notation for sums,
which reads: the sum for i equals 1 to n of 2i − 1.
Summation terms are computed by setting i to values
1, 2, . . . , n in turn: (2·1−1)+(2·2−1)+. . .+(2·n−1).
If the upper index is less than the lower index, the value
of the sum is 0. Similarly, “pi”-notation is used for prod-
ucts: e.g.

∏n
i=1 i = 1 · 2 · · ·n. The value of empty

products is 1 ]

In our lifetime we can only check a finite number of
cases manually by evaluating the sum and comparing
the result with n2.

So instead, we attempt a proof by using PMI.
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Let S = {n ∈ N |∑n
i=1(2i− 1) = n2}.

We want to show that S = N, in which case above
claim is true for all natural numbers n.

1. For n = 0 the sum is empty and 0 = 02. Therefore,
0 ∈ S.

2. Let n ∈ S. Then
∑n
i=1(2i − 1) = n2 holds. We

want to prove that n + 1 ∈ S, which means

n+1∑

i=1

(2i− 1) = (n + 1)2

We note that
n+1∑

i=1

(2i− 1) = [

n∑

i=1

(2i− 1)] + 2(n + 1)− 1

by splitting up the sum. Now we can use the fact
that n ∈ S and replace the sum that runs up to n
by n2. After simplifying the expression we get to:

n+1∑

i=1

(2i− 1) = [n2] + 2(n + 1)− 1 = (n + 1)2,

which means n + 1 ∈ S. So, with PMI, S = N. �
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To summarize, proofs using the PMI have the following
form:

Let S = {n ∈ N | statement that holds for n}
1. Prove that 0 ∈ S
2. Prove that S is inductive, i.e. n ∈ S ⇒ (n+1) ∈ S
3. By the PMI, S = N

In practice, set S is not defined explicitely and the in-
duction proof proceeds like follows:

Proof of ∀n ∈ N P (n) by induction: (*)

1. (Induction Base) Prove that P (0) is true

2. (Induction Step) Show P (n)⇒ P (n + 1), i.e. sup-
pose that P (n) is true — called the induction hy-
pothesis — and show that P (n + 1) is true.

3. (Conclusion) By steps 1. and 2. and the PMI, P (n)
is true for all n ∈ N.

[ (*) Note how we now make use of set notation to specify domains

for quantified variables like so ∀n ∈ N ∃k ∈ N... ]
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An Example from Geometry

This is an L-shaped tromino:

Question: Can chess boards of size 2n by 2n be tiled
with L-shaped trominos for all n ≥ 1, so that every
square is covered by non-overlapping trominoes, except
for one square that has been removed?

8 by 8 case and tiling:

We think the answer is yes and try to prove this claim
by induction. The induction base n = 0 (1 by 1 board
with one removed square) is easy: the tiling consists of
0 trominoes.
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Induction step: suppose all 2n by 2n boards with one
removed square can be tiled. Show, that then also all
2n+1 by 2n+1 boards with one removed square can be
tiled. We try to tile quadrants separately.

This doesn’t seem to work because only one of the four
quadrants has one square removed, and so the induction
hypothesis does not apply to the other three ... but
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we could remove the squares in the other three quad-
rants that are closest to the center. Then the induction
hypothesis applies to these quadrants as well, i.e. we
can tile them. What’s left is to tile the 3 squares in the
middle — by putting one tromino down — to complete
the tiling of the 2n+1 by 2n+1 chess board.

So the induction step works, and therefore, by applying
the PMI, the claim is true for all n.
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Lecture 9 Other Forms of Mathematical Induction

Some statements are not true for all natural numbers,
but they are true for all n ≥ k where k is a fixed nat-
ural number. It is not hard to prove that the following
variation of the PMI holds:

Generalized Principle of Mathematical Induction

Let k ∈ N. If S ⊆ N with the following two properties:

1. k ∈ S
2. for all n ∈ N with n ≥ k, if n ∈ S, then n+1 ∈ S,

then S contains all natural numbers greater or equal to
k.

Moreover, showing P (n)⇒ P (n+ 1) in the induction
step may be a difficult task, when there is no apparent
connection between the statements for n and n + 1.
However, the statement for n + 1 may be related to
statements for k < n. A generalization of the PMI
suitable for such cases is called complete or strong
induction.
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The Principle of Complete Induction (PCI)

Suppose S ⊆ N has these properties:
1. 0 ∈ S
2. {0, 1, . . . , n} ⊆ S ⇒ n + 1 ∈ S,
then S = N.

It can be proved that PCI is equivalent to PMI, and as
such is a valid tool to prove S = N.

Example:

Theorem: Every natural number > 1 is a prime or a
product of primes. E.g.: 4 = 2·2, 6 = 2·3, 30 = 2·3·5
Recall: n ∈ N is a prime iff n > 1 and n is only divisible
by 1 and n.

Proof by using the PCI.

We have to show ∀n ∈ N P (n), where P (n) says

(n ≤ 1)∨(n is prime)∨(n can be factored into primes)
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Induction Base: n = 0 and n = 1

Both P (0) and P (1) are true, because n ≤ 1 in these
cases.

Induction Step:

Suppose n ≥ 1 and P (k) holds for all k ≤ n. We want
to show that P (n + 1) then also holds.

Case 1: If n+ 1 is prime, then P (n+ 1) holds trivially.

Case 2: If n + 1 is not prime, then we can write it as
product

n + 1 = a · b
with 2 ≤ a ≤ n and 2 ≤ b ≤ n, because n + 1
is divisible by a number between 2 and n, inclusive.
Therefore, we can apply the induction hypothesis to a
and b because they are ≤ n:

a is a prime, or can be factored into primes, and

b is a prime, or can be factored into primes.

Thus, n + 1 = a · b can be factored into primes.

So, P (n + 1) is true in both cases. �
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More Induction Examples

Claim: ∀n ∈ N :

n∑

i=0

2i = 2n+1 − 1

Examples 1 = 21− 1 1+2 = 3 = 22− 1

1 + 2 + 4 = 7 = 23 − 1

Proof: By induction on n

Induction Base n = 0

We check
0∑

i=0

2i = 20 = 1 = 21 − 1. OK

Induction Step n n + 1

Assume claim holds for n, i.e.
n∑

i=0

2i = 2n+1 − 1

This is called the induction hypothesis

Using this, we want to show that the claim also holds

for n + 1, i.e.
n+1∑

i=0

2i = 2n+2 − 1

(replaced all occurrences of n by n + 1)
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Split up the new sum (sum up to n + last element):

n+1∑

i=0

2i = [

n∑

i=0

2i] + 2n+1

By the induction hypothesis we know the value of the
sum and we can replace it by that value:

= [2n+1 − 1] + 2n+1

= 2n+2 − 1

which is the result we wanted to prove. So, by the PMI
the claim is true. �
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Claim:
√
2 is irrational, i.e. it cannot be represented by

p
q , where p, q are natural numbers > 0 (denoted N+).

Proof: We rephrase the claim and prove the following
statement by induction on n:

∀n ∈ N+ ∀b ∈ N+ :
√
2 6= n

b

Induction Base n = 1

1
b ≤ 1 <

√
2 for all b ∈ N+. So, the claim holds for

n = 1.

Induction Step ≤ n n + 1

Assume the claim holds for all k ≤ n, i.e.

∀k ≤ n ∀b ∈ N+ :
√
2 6= k

b

We want to show:

∀b ∈ N+ :
√
2 6= n + 1

b

The proof is by contradiction:

Assume the opposite, i.e. ∃b ∈ N+ :
√
2 = n+1

b

Take such a b and square the equality:
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2 =
(n + 1)2

b2

⇒ 2b2 = (n + 1)2

This means (n + 1)2 is even, and therefore n + 1, say
n + 1 = 2t:

⇒ 2b2 = (2t)2 = 4t2

⇒ b2 = 2t2

This means b2 is even, and therefore b, say b = 2s.

Coming back to the original assumption:

√
2 =

n + 1

b
=

2t

2s
=
t

s

But t = n+1
2 ≤ n for n ≥ 1 and therefore, the state-

ment in the previous line contradicts the induction hy-
pothesis which stated:

∀k ≤ n ∀b ∈ N+ :
√
2 6= k

b

Thus, our assumption was wrong, proving ∀b ∈ N+ :√
2 6= n+1

b and — with the PCI — the claim. �
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Claim: ∀n ∈ N : n < 2n

Check small cases:

0 < 1, 1 < 2, 2 < 4, 3 < 8, 4 < 16

Proof: By induction on n

Induction Base n = 0

0 < 20 = 1. OK.

Induction Step n n + 1

Suppose the induction hypothesis n < 2n holds for an
n ≥ 0. Using this, we want to show

n + 1 < 2n+1

By the induction hypothesis and adding 1 on both sides
which maintains the < relation:

n + 1 < 2n + 1

Because n ≥ 0 we know 1 ≤ 2n. Therefore

n + 1 < 2n + 1 ≤ 2n + 2n = 2n+1

which is what we wanted to show. With the PMI, the
claim is therefore true for all n. �
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Lecture 10

Preview: Proving Loop Correctness
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Principles of Counting

Lecture 11 This section introduces some of the basic tech-
niques for counting the number of elements in finite
sets.

Definition: We call a set A finite iff A has n elements
for some n ∈ N. The size or cardinality of a finite set
A is the number of elements it contains. This number
is denoted by |A|.

Examples: |∅| = 0, |{2, 3, 4}| = 3
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Theorem (Sum Rule): If A and B are disjoint finite
sets then

|A ·∪ B| = |A| + |B|

( ·∪ requires the sets to be unified to be disjoint)

Example: For A = {1, 2} and B = {3, 4, 5},
|A ·∪ B| = |{1, 2, 3, 4, 5}| = |A| + |B| = 2 + 3 = 5

Proof: We prove: for all finite sets A,B |A ·∪ B| =
|A|+ |B| by induction on n = |B|, i.e. predicate P (n)
for which we want to prove ∀n ∈ N P (n) states

“forall finite disjoint setsA,B with |B| = n, |A ·∪B| =
|A| + |B|”
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Induction Base: n = 0, 1

If B is empty, A ·∪ B = A and therefore |A ·∪ B| =
|A| = |A| + 0 = |A| + |B|
If B contains one element that is not element of A then
A ·∪B contains one element more thanA, i.e. |A ·∪B| =
|A| + |B|.
Induction Step: n n + 1

Assume that |A ·∪ C| = |A| + |C| holds for all finite
sets A and C with |C| = n ≥ 1.

Consider set B with n + 1 elements and A ∩ B = ∅.
Pick an element x of B and set C := B−{x}. Because
C has n elements, by the induction hypothesis we know

|A ·∪ C| = |A| + |C|
x is neither an element of A nor C and B = C ·∪ {x}.
Therefore, by the base case (n = 1) and the induction
hypothesis:

|A ·∪B| = |(A ·∪C) ·∪ {x}| = |A|+|C|+1 = |A|+|B|
Thus, the claim holds for all n. �
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The Sum Rule can be extended to any finite number of
pairwise disjoint sets:

Theorem (Generalized Sum Rule): For pairwise
disjoint sets A1, . . . , An, the following holds:

|
n⋃
·
i=1

Ai| =
n∑

i=1

|Ai|

[ The
⋃· operator unifies all sets for i = 1 . . . n and the

dot indicates that disjoint sets are being unified ]

Proof: By induction on n — the number of sets.

1. If n = 1, then |⋃· 1i=1Ai| = |A1| =
∑1
i=1 |Ai|

2. Suppose that |⋃· ni=1Ai| =
∑n
i=1 |Ai| holds. Be-

cause
⋃· ni=1Ai and An+1 are disjoint, we can apply

the Sum Rule and the induction hypothesis:

|
n+1⋃
·
i=1

Ai| = |(
n⋃
·
i=1

Ai) ·∪ An+1| = |
n⋃
·
i=1

Ai|+ |An+1|

= (

n∑

i=1

|Ai|) + |An+1|. Thus, |
n+1⋃
·
i=1

Ai| =
n+1∑

i=1

|Ai|

�
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How to compute |A ∪ B| in case A and B are not
disjoint?

By simply adding |A| and |B| we overcount |A ∪ B|
because elements in A ∩ B are counted twice. The
following theorem corrects this error:

Theorem: For finite sets A and B
1. |A ∪B| = |A| + |B| − |A ∩B|
2. |A ∩B| = |A| + |B| − |A ∪B| (follows from 1.)
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Example: A = {1, 2, 3}, B = {3, 4, 5, 6}
|A ∪B| = |A| + |B| − |A ∩B| = 3 + 4− |{3}| = 6

This theorem can be generalized to more than two sets
by the Principle of Inclusion and Exclusion.

Example for 3 sets:

|A ∪B ∪ C| = |A| + |B| + |C|
−|A ∩B| − |A ∩ C| − |B ∩ C|
+|A ∩B ∩ C|

Elements in double intersections are counted twice

Elements in the triple intersection are counted thrice
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Theorem (Product Rule): If two independent tasks
T1 and T2 are to be performed, and T1 can be executed
in c1 ways, and T2 can be performed in c2 ways, then
the two tasks can be executed in sequence in c1 · c2
ways.

Example: Consider rolling two regular dice in turn. How
many outcomes are there? 6 · 6 = 36 — 6 for the first
die, and for the outcomes 6 for the second die. Note,
roll 1 3 is different from roll 3 1.
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Like the Sum Rule, the Product Rule can be extended
to n tasks by induction:

Theorem (Generalized Product Rule): If n inde-
pendent tasks Ti are to be performed and the number
of ways Ti can be performed is ci, then the number of
ways to perform all tasks in sequence is c1 · c2 · · · cn

One of the many applications of this rule is to compute
the cardinality of power sets.

Theorem: For finite setsA with n elements, |P(A)| =
2n.

Proof: We need to count the subsets of A, which
has n elements. Each subset is characterized by the
elements we select from A. For each of the n elements
we define task Ti to be either selecting element i or not,
i.e. ci = 2. The tasks are independent of each other.
So, according to the generalized product rule, the total
number of choice sequences is

∏n
i=1 ci =

∏n
i=1 2 =

2n. �
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Definition: A permutation of a set is an arrange-
ment of the elements of the set in a specific order.

How many permutations exist for sets with n elements?

Let’s count permutations for small n:

n = 1 : {1} : (1) 1

n = 2 : {1, 2} : (12 21) 2

n = 3 : {1, 2, 3} : (123 132 213 231 312 321) 6

n = 4 : {1, 2, 3, 4} : (1234 1243 . . . 4312 4321) 24

What is the pattern? 2/1 = 2 6/2 = 3 24/6 = 4

1 = 1! 2 = 2! 6 = 3! 24 = 4!

Recall: n! = n(n− 1)(n− 2) · · · 2 · 1
Why would there be n! different permutations for sets
with n elements?

The intuition is this: for the first element in the se-
quence we have n choices. Then there are n − 1 ele-
ments left to choose from, so we have n−1 choices for
the second element, and so on. All choices are inde-
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pendent of each other. So, by the generalized product
rule the total number of possibilities is

n(n− 1)(n− 2) · · · 2 · 1 = n!

Lecture 12 This proves the following

Theorem: The number of permutations of n objects
is n!

A central question in many counting problems is how
many subsets of a certain size exist.

Definition: The number of k-element subsets of sets
with n elements is denoted

(n
k

)
and read “n choose k”.

The number
(n
k

)
is called a binomial coefficient.

Example: What are the 2-element subsets of {1, 2, 3}?

{1, 2} {1, 3} {2, 3}, thus

(
3

2

)
= 3

For any n-element set there is only one subset of size
n. Thus,

(n
n

)
= 1 for every n ∈ N. Likewise, there is

only one subset of size 0, so
(n
0

)
= 1 for all n ∈ N.
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Theorem: Let n ∈ N and k ∈ N such that 0 ≤ k ≤
n. Then (

n

k

)
=

n!

k!(n− k)!

Proof: We count the number of ways to arrange n
objects in two different ways. By an earlier theorem we
know that this number is n!. The n objects may also be
arranged by first selecting k objects (

(n
k

)
possibilities),

arranging them (k! choices), and then arranging the
remaining n − k objects ((n − k)! choices). Thus, by
the generalized product rule, the number of choices is(

n

k

)
k!(n− k)! = n!

Therefore,
(n
k

)
= n!
k!(n−k)! �
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Examples

Using the formula we verify:(
n

0

)
=

n!

0!(n− 0)!
=

n!

1 · n! = 1

(
n

1

)
=

n!

1!(n− 1)!
=

n(n− 1)!

1 · (n− 1)!
= n

Number of 2-element subsets of n elements:
(
n

2

)
=

n!

2!(n− 2)!
=

n!

2 · (n− 2)!
=
n(n− 1)

2

Number of 3-element subsets of n elements:(
n

3

)
=
n(n− 1)(n− 2)

6

... (
n

n

)
=

n!

n!(n− n)! =
n!

n! · 0! = 1
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Theorem: Let n ∈ N and k ∈ N with 0 ≤ k ≤ n.

(a)

(
n

k

)
=

(
n

n− k

)

(b)

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
for n, k ≥ 1

(c) (Binomial Theorem)

For a, b ∈ R, (a + b)n =

n∑

i=0

(
n

i

)
aibn−i

(d)
n∑

i=0

(
n

i

)
= 2n

Proof:

(a): Using the formula we just derived we note:(
n

k

)
=

n!

k!(n− k)! =
n!

(n− k)!k!

=
n!

(n− k)!(n− (n− k))! =
(

n

n− k

)

This means, the number of ways we can select k objects
out of n is the same as the number of ways selecting
n − k elements. In hindsight this seems obvious, be-
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cause choosing k objects corresponds to choosing n−k
objects to exclude.

(b): How can we split up the number of ways to select
k items out of n?

One option is to distinguish the case in which the first
item is among the k selected items from the case where
it isn’t. Both cases are clearly disjoint, and together
form all the choices we have.

Thus,(
n

k

)
=

(
n− 1

k − 1

)

︸ ︷︷ ︸
first element selected

+

(
n− 1

k

)

︸ ︷︷ ︸
not selected

In the first case, there are k−1 items yet to be selected
out of n− 1 items, and in the second case we need to
select k out of n− 1.
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Application: Part (b) can be used to construct Pascal’s
triangle, which contains the binomial coefficients

(n
k

)
,

by just using additions:

To compute a new row we start with 1 =
(n
0

)
and then

add the numbers located on top and to the left in the
previous row. Rows are finished by 1 =

(n
n

)
.
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Lecture 13

(c): Prove: For a, b ∈ R, (a + b)n =

n∑

i=0

(
n

i

)
an−ibi

Examples

(a + b)1 = 1a1b0 + 1a0b1 = 1a + 1 b

(a + b)2 = 1a2 + 2ab + 1 b2

(a + b)3 = 1a3 + 3a2b + 3ab2 + 1 b3

(a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1 b4

Observation: the coefficients are
(n
k

)
and the powers of

a and b always add up to n.

Example: (a + b)(a + b) = aa + ab + ba + bb

In general

(a + b)n = (a + b)(a + b) · · · (a + b)︸ ︷︷ ︸
n times

,

each term of the expansion of (a+ b)n — in which we
multiply out all factors — contains one term from each
of the n factors (a + b).
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Thus, each term of (a + b)n contains a total of n a’s
and b’s, i.e. for some i it contains

an−ibi

For a given i, the term an−ibi arises exactly
(n
i

)
times,

because this is the number of ways to choose i b’s out
of the n (a+ b) terms. Therefore, each an−ibi appears(n
i

)
times.

(d): We use part (c). Choose a = b = 1, then:

(1 + 1)n = 2n =

n∑

i=0

(
n

i

)
1n−i1i =

n∑

i=0

(
n

i

)

This is an alternate proof of |P(A)| = 2|A|, because
the sum counts all subsets arranged by increasing size.

�


