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Relations

After introducing sets that contain items with certain
properties, we may be interested to model relations be-
tween elements.

Examples

– We might say that integers a and b are related if a
divides b, or a = b + 1.

– Two people may be related if they have the same
blood type or like the same food.

In this part we will study “is related to” in precise terms
by introducing the concept of relations and their prop-
erties.

We begin by considering ordered pairs of two objects
a and b, symbolized by (a, b), which has the property
that if either of the coordinates a and b change, then
the ordered pair changes. I.e., two ordered pairs (a, b)
and (x, y) are equal iff x = a and y = b.

What makes such pairs ordered is the fact that (a, b) 6=
(b, a), i.e. the order of objects matters.
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Generalizing this concept we say that the ordered n-
tuples (a1, a2, . . . , an) and (x1, x2, . . . , xn) are equal
iff ai = xi for all i ∈ {1 . . . n}.
Thus, the 5-tuples (1, 2, 3, 4, 5), (5, 4, 3, 2, 1), and
(1, 5, 2, 4, 3) are all different.

An ordered 2-tuple is an ordered pair, and ordered 3-
tuples are called ordered triples.

Definition: Let A and B be sets. The set of all or-
dered pairs having the first coordinate in A and the sec-
ond in B is called the Cartesian product (or cross
product) of A and B and is written A×B. Thus,

A×B := {(a, b) | a ∈ A and b ∈ B}

Example

Let A = {1, 2} and B = {2, 3, 4}. Then

A×B = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)},
but

B × A = {(2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}

What is A× A?
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A× A = {(1, 1), (1, 2), (2, 1), (2, 2)}

Constructing a list of pairs in a Cartesian product of
finite sets requires two tasks: selecting an element from
A and then selecting an element from B. The Product
Rule says that if A had m elements and B has n, then
A×B has mn elements.

Generalizing the Cartesian product to more than two
sets is straight-forward:

A1 × A2 × · · ·An :=

{(a1, . . . , an) | a1 ∈ A1 ∧ · · · ∧ an ∈ An}

If all Ai are the same we write An = A× A · · · × A︸ ︷︷ ︸
A n times

.

For example,

A×B × C = {(a, b, c) | a ∈ A ∧ b ∈ B ∧ c ∈ C}

A× B × C and (A× B)× C and A× (B × C) are
all different. Why?

What is |A1 × A2 × · · ·An|?
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Theorem: If A,B,C, and D are sets, then

1. A× ∅ = ∅ × A = ∅
2. A× (B ∪ C) = (A×B) ∪ (A× C)

3. A× (B ∩ C) = (A×B) ∩ (A× C)

4. (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

5. (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D)

Proof:

2. (x, y) ∈ A× (B ∪ C)

⇔ x ∈ A ∧ y ∈ (B ∪ C) (Definition)

⇔ x ∈ A ∧ (y ∈ B ∨ y ∈ C) (Definition)

⇔ (x ∈ A∧ y ∈ B) ∨ (x ∈ A∧ y ∈ C) (Distr. Law)

⇔ (x, y) ∈ A×B ∨ (x, y) ∈ A× C (Definition)

⇔ (x, y) ∈ (A×B) ∪ (A× C) (Definition)

Rest: exercise �
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Relating two objects a and b can be indicated by an
ordered pair (a, b) being an element of a set, which is
called relation:

Definition: Let A and B be sets. R is a (binary)
relation from A to B iff R is a subset of A×B. If
(a, b) ∈ R we write aRb. If (a, b) 6∈ R we write a 6Rb.
A relation from A to A is called a relation on A.

Example 1

Let A = {1, 2, 3, 4} and R = {(a, b) | a divides b}.
R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

Example 2

R1 = {(a, b) | a ≤ b} R5 = {(a, b) | a + b ≤ 3}
R2 = {(a, b) | a + 2 > b}
R3 = {(a, b) | a = b ∨ a = −b}
R4 = {(a, b) | a = b}
Which relations contain the pairs (1, 1), (1, 2), (2, 1),
(1,−1)?
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Example 3

Let G = {(x, y) ∈ R2 | x ≥ y}. Then (5, 2) ∈ G
because 5 ≥ 2. We can also write 5 G 2. The notation
x G y is consistent with x ≥ y.

Representations of Relations

There are several ways to present a relation in a usable
form. We can list the ordered pairs, present them in a
table, find a corresponding predicate, or give a pictorial
representation of the ordered pairs by using a rectan-
gular coordinate system to graph the relation.

Example

Let A = {1, 2, 3, 4}, B = {−1, 1, 2, 4, 5}, and

R = {(1, 4), (2, 5), (2,−1), (4, 1)}

Table format:
1 4
2 5
2 −1
4 1
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Predicate: R = {(x, y) ∈ A×B | |x− y| = 3}
Graph:
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In general there are many relations from a set A to a
set B, because every subset of A×B is a relation from
A to B, including ∅ and A×B. If A has m elements
and B had n elements, then there are 2mn different
relations from A to B (why?)

Definition:

The domain of a relation R from A to B is the set

Dom(R) := {x ∈ A | ∃y ∈ B : x R y}
The range of relation R is the set

Rng(R) := {y ∈ B | ∃x ∈ A : x R y}

Thus, the domain of R is the set of all first coordinates
of ordered pairs in R, and the range of R is the set
of all second coordinates. By definition Dom(R) ⊆ A
and Rng(R) ⊆ B
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Example 1

Let S = {(x, y) ∈ R2 | x2

4 + y2 ≤ 1}

Here we use the interval notation for R:

[a, b] := {x ∈ R | a ≤ x ∧ x ≤ b}
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Example 2 Lecture 14

Let A be any set. The set IA := {(x, x) | x ∈ A} is
called the identity relation on A.

For A = {1, 2}, IA = {(1, 1), (2, 2)}.
Obviously, for any A, Dom(IA) = Rng(IA) = A.

The graph of IA is the “main diagonal” of A×A. For
A = [−2,∞) = {x ∈ R | −2 ≤ x <∞} it looks like
this:
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Another important kind of graphical representation of
a relation on a set A is the directed graph (or di-
graph). We represent each element of A as a vertex.
Relation R is then telling us which vertices to connect
by edges. The edges are directed like arrows pointing
from vertex x to vertex y iff (x, y) ∈ R.

Examples: The following digraphs represent relations
S = {(6, 12), (2, 6), (2, 12), (6, 6), (12, 2)} on the set
V = {2, 5, 6, 12} and the relation “divides” on set
{3, 6, 9, 12}.
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Constructing New Relations

The two most fundamental methods for constructing
new relations from given ones are inversion and com-
position.

Definition: If R is a relation from A to B, then the
inverse of R is

R−1 := {(y, x) | (x, y) ∈ R}

Inversion switches the order of each pair in a relation.

Examples

The inverse of {(1, a), (2, b)} is {(a, 1), (b, 2)}

I−1
A = IA for all sets A

For the real numbers, the inverse of “less than” is
“greater than” because x < y ⇔ y > x.
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The digraph of the inverse of a relation on a set dif-
fers from the digraph of the relation only in that the
directions of the arrows are reversed.

Example

Subset relation ⊆ on the set {∅, {1}, {3}, {1, 2}} and
its reverse:
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Another Example

Let EXP2 (“exponential, base 2”) be the relation on R
given by

x EXP2 y ⇔ y = 2x

LOG2 (“logarithm, base 2”) is the inverse of EXP2

x LOG2 y ⇔ y EXP2 x

Here are their graphs in the Cartesian plane:

You can create one from the other by mirroring the
graphs with respect to the y = x line.
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Theorem: Let R be a relation from A to B. Then

1. R−1 is a relation from B to A

2. Dom(R−1) = Rng(R)

3. Rng(R−1) = Dom(R)

4. (R−1)−1 = R

Proof:

1. Suppose (y, x) ∈ R−1 (we want to show (y, x) ∈
B × A).

Then (x, y) ∈ R, which means (x, y) ∈ A×B.

Therefore, x ∈ A and y ∈ B and (y, x) ∈ B × A,
which proves R−1 ⊆ B × A.

2. x ∈ Dom(R−1)

iff there exists y ∈ A with (x, y) ∈ R−1

iff there exists y ∈ A with (y, x) ∈ R
iff x ∈ Rng(R)

3.+4.: exercise �
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Given a relation from A to B and another from B to
C, composition is a method of constructing a relation
from A to C.

Definition: Let R be a relation from A to B and S
be a relation from B to C. The composite of R and
T is

S ◦R := {(a, c) | ∃b ∈ B : (a, b) ∈ R ∧ (b, c) ∈ S}

S◦R is a relation from A to C because S◦R ⊆ A×C.

Note the right-to-left procedure for checking whether
(a, c) ∈ S ◦R:

– we FIRST consider R by finding a b ∈ B for the
given a with (a, b) ∈ R

– and THEN we consider S when checking (b, c) ∈ S
for the given c ∈ C.
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Example

Let A = {1, 2, 3, 4, 5} and B = {p, q, r, s, t} and
C = {x, y, z, w} and R be the following relation from
A to B:

R = {(1, p), (1, q), (2, q), (3, r), (4, s)}
and S be the following relation from B to C:

S = {(p, x), (q, x), (q, y), (s, z), (t, z)}

What is S ◦R?

S ◦R = {(1, x)︸ ︷︷ ︸
via p

, (1, y)︸ ︷︷ ︸
via q

, (2, x)︸ ︷︷ ︸
via q

, (2, y)︸ ︷︷ ︸
via q

, (4, z)︸ ︷︷ ︸
via s

}
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Is the composition of relations commutative, i.e. does

S ◦R = R ◦ S
hold in general?

No, not even in the case R ⊆ A×A and S ⊆ A×A.

Example

R := {(x, y) ∈ R2 | y = x + 1}
S := {(x, y) ∈ R2 | y = x2}

S ◦R = {(x, y) | ∃z ∈ R : (x, z) ∈ R ∧ (z, y) ∈ S}
= {(x, y) | ∃z ∈ R : z = x + 1 ∧ y = z2}

= {(x, y) | y = (x + 1)2}

R ◦ S = {(x, y) | ∃z ∈ R : (x, z) ∈ S ∧ (z, y) ∈ R}
= {(x, y) | ∃z ∈ R : z = x2 ∧ y = z + 1}

= {(x, y) | y = x2 + 1}

These are different. One witness is (1, 4): (1, 4) ∈ S◦R
but (1, 4) 6∈ R ◦ S
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The following theorem collects serveral results about
inversion, composition, and the identity relation.

Theorem: Let A,B,C,D be sets, R a relation from
A to B, S a relation from B to C, and T a relation
from C to D.

1. IB ◦R = R ◦ IA = R

2. T ◦ (S ◦R) = (T ◦ S) ◦R,
i.e. relation composition is associative

3. (S ◦R)−1 = R−1 ◦ S−1

Proof:

1. We first show IB◦R ⊆ R. Suppose (x, y) ∈ IB◦R.

Then there exists z ∈ B such that (x, z) ∈ R and
(z, y) ∈ IB.

Since (z, y) ∈ IB we know z = y. This means
(x, y) ∈ R, because (x, z) ∈ R.

Conversely, suppose (p, q) ∈ R.

Then, with (q, q) ∈ IB, we have (p, q) ∈ IB ◦R.

Thus, IB ◦R = R. R ◦ IA = R analogous.
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2. Lecture 15 Plan: use definitions of ◦ to flatten logical
description, switch quantifiers, and then undo flat-
tening.
The pair (a, d) is in T ◦ (S ◦R)

⇔ ∃c ∈ C :
[
(a, c) ∈ S ◦R ∧ (c, d) ∈ T

]

[ definition of ◦ ]
⇔ ∃c ∈ C :[(
∃b ∈ B : (a, b) ∈ R ∧ (b, c) ∈ S

)
∧ (c, d) ∈ T

]

[ cover (c, d) ∈ T by ∃b: ]

[ ∃x
[(
∃y P (x, y)

)
∧Q(x)

]
≡ ]

[ ∃x ∃y
[
P (x, y) ∧Q(x)

]
]

⇔ ∃c ∈ C ∃b ∈ B :[
(a, b) ∈ R ∧ (b, c) ∈ S ∧ (c, d) ∈ T

]

[ switch quantifiers: ∃c ∃b : ϕ ≡ ∃b ∃c : ϕ ]
⇔ ∃b ∈ B ∃c ∈ C :[

(a, b) ∈ R ∧ (b, c) ∈ S ∧ (c, d) ∈ T
]

⇔ ∃b ∈ B :[
(a, b) ∈ R ∧ ∃c ∈ C :

(
(b, c) ∈ S ∧ (c, d) ∈ T

)]

⇔ ∃b ∈ B :
[
(a, b) ∈ R ∧ (b, d) ∈ T ◦ S

]

⇔ (a, d) ∈ (T ◦ S) ◦R
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3. Exercise. �

The relations we have seen in this section consisted of
pairs.

Generalizing the relation definition to more than two
variables is straightforward — we just need to consider
subsets of A1 × A2 · · · × An.

Using tables that represent multi-dimensional relations
is the basis of an important field of computer science
called relational databases. Currently, most large
data sets are organized in such relational databases,
which allow to answer queries, such as listing all em-
ployees with salary >$100,000 and age <40, quickly.

Example : relational table representing employee data

First Last Age Salary
Krista Maire 23 60,000
Adam Powell 35 85,000
Kim Martinez 45 104,000
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Equivalence Relations

Each of the following three properties is important in its
own right, and relations that posses all three properties
are particularly interesting:

Definition: Let A be a set and R be a relation on A.

• R is reflexive on A iff ∀x ∈ A : xRx

• R is symmetric iff
∀x ∈ A ∀y ∈ A : (xRy ⇒ yRx)

• R is transitive iff
∀x ∈ A ∀y ∈ A ∀z ∈ A :

[
(xRy∧yRz)⇒ xRz

]

For a relation R 6= ∅, R being reflexive asserts that
some ordered pairs belong to R.

To prove R is reflexive one has to show that xRx for
all x ∈ A, i.e. IA ⊆ R.

To show that R is not reflexive one needs to find an
x ∈ A for which x 6R x.

∅ is not reflexive on A except when A is empty.
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Because symmetry or transitivity are defined by condi-
tional sentences, proofs of these properties are usually
direct.

∅ is both symmetric and transitive on any set A.

To prove that a relation is not transitive or symmetric
a counterexample suffices.

Example 1

For set B = {1, 2, 3, 4}, let

S1 = {(1, 2), (2, 3), (1, 3)}
S2 = {(1, 2), (2, 3), (3, 1)}
S3 = {(1, 1), (1, 2)}
S4 = {(1, 2), (2, 1), (1, 1), (2, 2), (3, 3), (4, 4)}

All Si but S2 are transitive. The only symmetric rela-
tion is S4. S4 is also the only reflexive relation.
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Example 2

Let R be the subset relation on P(Z).

R is reflexive because A ⊆ A for every set A.

R is also transitive because ⊆ is transitive, as we have
seen before.

R is not symmetric because {1} ⊆ {1, 2}, but
{1, 2} 6⊆ {1}

Reflexivity, symmetry, and transitivity can be charac-
terized by properties of digraphs:

• A relation is reflexive iff every vertex of the digraph
has a loop, i.e. an edge from a vertex to itself.

• A relation is symmetric iff between any two vertices
of the digraph there are either no edges or an edge
in both directions.

• A relation is transitive iff whenever there is an edge
from x to y and an edge from y to z, there must be
an edge from x to z.
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Examples

Three relations on A = {2, 3, 6}: “divides”, “≥”, and
relation S where x S y iff x + y > 7.

“Divides” is reflexive on A because every integer divides
itself. Likewise, “≥” is reflexive on A. But S is not
reflexive.

Only the digraph for S contains edges and their twin
edges that point back. Thus, S is symmetric.

Both “divides” and “≥” are transitive, but S is not,
because 2 S 6 and 6 S 3, but 2 6S 3
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The identity relation IA on any set A has all three
properties.

It is in fact the relation “equals”, because

x IA y ⇔ x = y

Equality is a way of comparing objects according to
whether they are the same.

Equivalence relations are more general: they group ob-
jects according to whether they share a common trait.
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For instance, if T is the set of all triangles, we might
say two triangles are “equivalent” if they are congruent
(i.e. a sequence of translations, rotations, and reflec-
tions make them identical).

This generates the relation

R = {(x, y) ∈ T 2 | x congruent to y}
which is reflexive on T , symmetric, and transitive.

The notion of “equivalence” is expressed by these three
properties.

Definition: A relation R on A is an equivalence re-
lation iff R is reflexive on A, symmetric, and transitive.
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Example

For the set P of all people, let L be the relation on P
given by xLy iff x and y have the same last name.

Then L is an equivalence relation, assuming that ev-
eryone has a last name.

Luci Brown L Charlie Brown

James Madison L Dolly Madison

...

The subset of P consisting of all people who are L-
related to Charlie Brown is the set of all people whose
last name is Brown.

This set contains Charlie Brown, by reflexivity. It also
contains Sally Brown, James Brown, and Leroy Brown
and all other Browns.

This insight leads to the following:

CMPUT 272, F2010, M. Buro Equivalence Relations 30

Definition: Let R be an equivalence relation on A.
For x ∈ A, the equivalence class of x determined by
R is the set

x/R := {y ∈ A | x R y}

This is read “the class of x modulo R” or “x mod
R”. The set of all equivalence classes is called A mod-
ulo R and is denoted A/R := {x/R | x ∈ A}.

Example 1

The equivalence class of Charlie Brown modulo L is the
set of all people whose last name is Brown. Further-
more, Buster Brown/L is the same as Charly Brown/L.

Lecture 16 Example 2

Relation H = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} is an
equivalence relation on set A = {1, 2, 3}.
1/H = 2/H = {1, 2} and 3/H = {3}
Thus, A/H = {{3}, {1, 2}}
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Example 3

The relation � on R given by x�y iff x2 = y2 is an
equivalence relation on R.

2/� = {−2, 2} and −π/� = {−π, π}
For any x ∈ R, x/� = {−x, x}
R/� = {{−x, x} | x ∈ R}

Example 4

Two integers have the same parity iff they are either
both even or both odd. Let

R = {(x, y) ∈ Z2 | x and y have the same parity}
R is an equivalence relation on Z with two equivalence
classes: the even integers E and the odd integers D.

If x is even, then x/R = E. Otherwise, x/R = D.

Thus, Z/R = {E,D}
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Equivalence Relations on Integers Based on Divisibility

For a fixed integer m 6= 0, let ≡m be the relation on
Z given by

x ≡m y ⇔ m divides x− y

The expression x ≡m y is also written as

x ≡ y (mod m)

and read “x is congruent to y modulo m”.

For example, 4 ≡ 1 (mod 3), because 3 divides 4 − 1,
and 10 ≡3 16 because 3 divides 10− 16 = −6.

But 5 6≡3 −9, because 3 does not divide 5−(−9) = 14.

It is easy to see that 0 is congruent to 0,−3, 3,−6, 6,
and in fact every multiple of 3.

What is Z/≡3, which we call Z3 ?

For x ∈ Z, x/≡3 = {y ∈ Z | x ≡3 y}.
We use x̄ to denote x/≡3. Because the intergers con-
gruent to 0 mod 3 are exactly the multiples of 3, we
have

0̄ = {3k | k ∈ Z}
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What is 1̄?

1, 4, 7, 10, ... is in the set, as well as −2,−5,−8, ..., i.e.

1̄ = {3k + 1 | k ∈ Z}

Similarly, we obtain

2̄ = {3k + 2 | k ∈ Z}

What about 3̄? It is the same as 0̄. In fact 4̄ = 1̄, 5̄ =
2̄, 6̄ = 0̄, etc.

Thus, Z3 = {0̄, 1̄, 2̄}
In general, it can be proved that there are always m
distinct equivalence classes for the relation ≡m and
Zm = {0̄, 1̄, . . . ,m− 1}.
It his helpful to note that 0, 1, 2, . . . ,m− 1 are exactly
all the possible remainders when integers are divided by
m. For this reason the elements of Zm are sometimes
called the risidue (or remainder) classes modulo m.
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As an application consider how you tell time. Rather
than talking about hours beyond 12 o’clock, we start
over again with 1 o’clock instead of 13 o’clock (13 ≡12
1).

We routinely even do modular hour arithmetic: e.g. 9
hours after 8 o’clock is 5 o’clock, because 8+9=17 and
17 ≡12 5, and 4 hours before 3 o’clock is 11 o’clock,
because 3-4 = -1 and -1 ≡12 11.

Theorem:
The relation ≡m is an equivalence relation on Z.

Proof: ≡m is a set of ordered pairs of integers. There-
fore, ≡m is a relation on Z. We need to prove three
properties:

1. ≡m is reflexive on Z: for all x ∈ Z, x ≡m x,
because x− x = 0 is divisible by m.

2. ≡m is symmetric: suppose x ≡m y. Then m divides
x− y, i.e. ∃k ∈ Z : x− y = km.
This means y − x = −km. Hence, y ≡m x.
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3. ≡m is transitive: suppose x ≡m y and y ≡m z.
Then m divides both x− y and y − z, i.e.

∃k, l ∈ Z : x− y = km and y − z = lm

Now,

x− z = (x− y) + (y− z) = km+ lm = (k + l)m

This means that x−z is divisible by m, i.e. x ≡m z

�
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Partitions

Partitioning is frequently used to organize the world
around us. For example, countries are partitioned in
several ways: states, postal code areas, phone area code
regions, etc.

In each case non-empty subsets that do not overlap
together form a set. In this section we introduce the
concept of partitioning sets and show how it relates to
equivalence relations.

Definition: Let A be a non-empty set, A is a parti-
tion of A iff A is a set of subsets of A such that:

1. If X ∈ A, then X 6= ∅
2. If X ∈ A and Y ∈ A then X = Y or X ∩ Y = ∅
3.
⋃
·

X∈A
X = A

In part 3 we look at all elements X of A (which are
sets) and take their union. We can use the disjoint set
union operator because we know that all elements of A
are pairwise disjoint (part 2).
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Example 1

LetA = {1, 2, 3, 4, 5, 6} andA = {{1, 2, 3}, {4, 5}, {6}}
To prove that A is a partition of A we need to check

1. that all elements of A are non-empty:
{1, 2, 3} 6= ∅
{4, 5} 6= ∅
{6} 6= ∅ — OK

2. that all elements of A are pairwise disjoint:
{1, 2, 3} ∩ {4, 5} = ∅
{1, 2, 3} ∩ {6} = ∅
{4, 5} ∩ {6} = ∅ — OK

3. and that the union of all elements of A is A
{1, 2, 3} ·∪ {4, 5} ·∪ {6} = A — OK
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Example 2

Here are five different partitions of Z:

1.
{
{0}, {−1, 1}, {−2, 2}, {−3, 3}, . . .

}

2. {E,D} where E is the set of even integers and D
is the set of odd integers

3.
{
{x ∈ Z | x < 0}, {x ∈ Z | x ≥ 0}

}

4.
{
..., {−3}, {−2}, {−1}, {0}, {1}, {2}...

}

5. {Z}
The last two examples are extremes in terms of number
of elements in the partition.

Generally, for any non-empty set A,
{
{x} | x ∈ A

}

and {A} are partitions.
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Example 3

The set R of real numbers may be partitioned into

{Q,R−Q}
where Q is the set of rational numbers and R − Q is
the set of irrational numbers.

Alternatively, we can partition R into a set of intervals:

{
[k, k + 1) | k ∈ Z

}

Here, [k, k + 1) denotes the half-open interval from k
to k + 1 (excluding), i.e.

[k, k + 1) = {x ∈ R | k ≤ x < k + 1}
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Looking back at the examples of equivalence classes we
see that for an equivalence relation on A every equiv-
alence class is a non-empty subset of A, equivalence
classes for elements x and y are either equal or dis-
joint, and every element is in some equivalence class.

(The equivalence classes (red) partition A)

The following theorem formalizes this observation:
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Theorem: Let R be an equivalence relation on a non-
empty set A. Then

1. For all x ∈ A : x/R ⊆ A and x ∈ x/R
Thus, x/R 6= ∅

2.
⋃

x∈A
x/R = A

3. x R y ⇔ x/R = y/R

4. x 6R y ⇔ x/R ∩ y/R = ∅ �
1. says that no x/R is empty.

2. states that each y ∈ A is covered by an x/R.

3.+4. imply that equivalence classes of elements of A
are either identical or disjoint.

Therefore, the set {x/R | x ∈ A} of equivalence
classes is a partition of A.

Now that we know that every equivalence relation on
A induces a partition of A, the remaining question is
whether for every partition we can find an equivalence
relation that defines it.
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Consider for instance a country being partitioned ac-
cording to phone area codes. Can this partition be
created by an equivalence relation? Yes: define two
locations are equivalent iff they share the same area
code.

x and y are related, but u and v are not.

The following theorem, which we present without proof,
formalizes this idea:
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Lecture 17

Theorem: Let B be a partition of the non-empty set
A. For x, y ∈ A, define xQy iff there exists C ∈ B,
such that x ∈ C and y ∈ C. Then

1. Q is an equivalence relation

2. A/Q = B (recall: A/Q = {t/Q | t ∈ A}) �

Example 1

In the area code example we just saw locations may be
given by longitude – latitude pairs. For two locations
u and v, (u, v) ∈ Q iff u and v share the same area
code.
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Example 2

Let A = {1, 2, 3, 4} and B = {{1}, {2, 3}, {4}}.
The equivalence relation Q associated with B is

{(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2)}

The three equivalence classes are

1/Q = {1}
2/Q = 3/Q = {2, 3}
4/Q = {4}
and the set of all equivalence classes is exactly B.
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Example 3

The set A = {A0, A1, A2, A3, A4} is a partition of Z,
where

A0 = {5k + 0 | k ∈ Z}
A1 = {5k + 1 | k ∈ Z}
A2 = {5k + 2 | k ∈ Z}
A3 = {5k + 3 | k ∈ Z}
A4 = {5k + 4 | k ∈ Z}
Then integers x and y are in the same set Ai iff
x = 5n + i and y = 5m + i for some integers n,m.

This is equivalent to x− y being a multiple of 5.

Thus, the equivalence relation induced by A is ≡5.
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Graph Introduction

This section introduces the concept of graphs which are
among the most ubiquitous models used in science.

Graphs model binary relations R ⊆ V × V
• Objects are represented by vertices

• Related objects are connected by edges

Example: Relation R with

(x, y) ∈ R ⇔ Person x knows person y

Relations are not necessarily symmetric:

(x, y) ∈ R 6⇒ (y, x) ∈ R

Therefore we need directed edges (“arcs”)

CMPUT 272, F2010, M. Buro Graph Introduction 47

For symmetric relations undirected edges suffice

Example:

(x, y) ∈ F ⇔ x is a friend of y

Then (usually) (x, y) ∈ F ⇔ (y, x) ∈ F
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Definition:

An (undirected) graph is a pair G = (V,E) that is
composed of a non-empty vertex (or node) set V and an
edge set E, so that for each edge e ∈ E, 1 ≤ |e| ≤ 2,
i.e. each edge contains one or two vertices.

G = (V,E) V = {v1 . . . v6}
E = { {v2, v3}, {v3, v4}, {v4, v5}, {v5}, {v4, v6}, {v2, v6} }
The order of G is 6 (number of nodes), and so is its
size (number of edges)
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The order of G = (V,E) is |V |.
The size of G = (V,E) is |E|.
We say that edge e = {u, v} connects node u with
node v. In case e = {u}, vertex u is connected to itself
and forms a loop.

A graph is called simple if it does not contain loops.

A vertex u is called a neighbour of vertex v iff {u, v} ∈
E.

The number of neighbours of a vertex u is called its
degree, denoted deg(u). A loop contributes twice to
the degree.

u, v ∈ V are adjacent iff {u, v} ∈ E
u, v ∈ V are incident to edge e ∈ E iff e = {u, v}
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Some Fundamental Graph Classes and Properties

Will formally define these in a moment.
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V = U ∪W and U ∩W = ∅ (node partition)

All edges of form e = {u,w} with u ∈ U and w ∈ W
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Definition:

A directed graph is a pair G = (V,E) that is com-
posed of a non-empty vertex set V and an edge set
E ⊆ V × V .

Edge e = (u, v) connects vertex u with vertex v (u is
said to be adjacent to v, and v is adjacent from u).
u is called the initial vertex of e, and v is called the
terminal vertex of e.

The in-degree of a vertex v, denoted deg−(v), is the
number of edges with v as their terminal vertex.

The out-degree of a vertex v, denoted deg+(v), is the
number of edges with v as their initial vertex.

Loops contribute 1 to both the in- and out-degree.
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G = (V,E), V = {v1 . . . v6}
E = {(v1, v2), (v1, v5), (v2, v4), (v3, v2), (v4, v4)}
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Graph Data Structures

Adjacency lists are smaller if G is sparse (|E| much
smaller than |V |2). If G is dense (|E| quadratic in
|V |), adjacency matrices save space and allow direct
access to edge information.

Which representation is better depends on algorithm
used
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Connectivity

Lecture 18

Problems of efficiently planning routes for mail deliv-
ery, garbage pickup, diagnostics in computer networks,
etc. can be solved using models that involve paths in
graphs.

Informally, a path is a sequence of edges that begins at
a vertex of a graph and travels from vertex to vertex
along edges of the graph.

Definition
Let n ∈ N− {0} and G = (V,E) a graph. A path of
length n from u to v in G is a sequence of n edges

(e1, e2, . . . , en)

– written as (ei)
n
i=1 – such that ei = {xi−1, xi} ∈ E

for all i, with u = x0 and xn = v.

In case of directed graphs, ei = (xi−1, xi) ∈ E.

CMPUT 272, F2010, M. Buro Connectivity 56

Sometimes it is convenient to define a path just by the
sequence of visited vertices, which implies the edges:

(x0, x1, . . . xn)

A path is a cycle (or circuit) iff x0 = xn and n > 0.

A path or cycle is simple iff it does not contain the
same node more than once (except for the necessary
repetition of the start and end vertex in the case of
cycles).
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Examples
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A graph is called connected iff there is a path between
every pair of distinct vertices of the graph.

Theorem
There is a simple path between every pair of distinct
vertices of a connected graph.

Proof
Let G = (V,E) be a connected graph and u, v ∈ V .
Then there exists a path P0 = (ei)

n
i=1 that connects u

to v, with ei = {xi−1, xi} ∈ E for all i, with u = x0
and xn = v.

If no vertex is repeated, then P0 is a simple path and we
are done. Otherwise, let i, j be distinct integers with
i < j and xi = xj, i.e. vertex xi is repeated.

If we delete the edges ei+1, . . . , ej from P0 we obtain

CMPUT 272, F2010, M. Buro Connectivity 59

a shorter path P1 from u to v and has fewer repeated
nodes. If P1 is a path we are done. Otherwise, we
repeat the process.

Since P0 is a finite sequence and we decrease its length
in every step, eventually we must reach stage k where
no vertices are repeated and the resulting path Pk is
simple. �
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Given a graph G = (V,E), being reachable defines a
relation C on V :

(u, v) ∈ C ⇔ u = v or there is a path from u to v in G

Then, C is

• reflexive: ∀v ∈ V : (v, v) ∈ C
• symmetric: ∀u, v ∈ V : (u, v) ∈ C ⇒ (v, u) ∈ C
• and transitive ∀x, y, z ∈ V :

[(x, y) ∈ C ∧ (y, z) ∈ C]⇒ (x, z) ∈ C
(Why?)

This means that C is an equivalence relation, and as
such the set of all element equivalence classes forms a
partition of V .



CMPUT 272, F2010, M. Buro Connectivity 61

Each such equivalence class v/C together with the set
of edges that are incident to those vertices is called
connected component.

Observations:

Connected components of graph G are connected sub-
graphs of G that contain vertices and all incident edges
of G, such that no other vertex can be added to create
larger connected subgraphs.

[ Graph H = (W,F ) is a subgraph of G = (V,E) iff
W ⊆ V and F ⊆ E ]

A graph is connected iff it has one connected compo-
nent.
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Definition

A graph is called acyclic iff it does not contain a cycle.

A connected acyclic graph is called a tree.

An acyclic graph is also called forest.
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Connectivity in Directed Graphs

There are two notions of connectedness in directed graphs,
depending on whether the directions of the edges are
considered.

Definition
A directed graph (V,E) is strongly connected iff for
all distinct vertices u, v ∈ V there is a path from u to
v and from v to u.

A directed graph is weakly connected iff the under-
lying undirected graph, that is constructed by turning
every directed edge into an undirected edge, is con-
nected.
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Similar to the reachability relation on graphs, the reach-
ability relation C on digraphs given by

(u, v) ∈ C ⇔
u = v or there is a path from u to v and from v to u

is an equivalence relation and therefore induces a vertex
partition. The subgraphs induced by the equivalence
classes are called strongly connected components
(SCCs).

In each SCC, every node can be reached from any other
by a directed path, and like connected components in
graphs, they can’t be enlarged by adding a node.
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Definition

A directed graph is acyclic iff it does not contain a
directed cycle.

A directed graph is a directed tree iff it would be
a tree if all directed edges are turned into undirected
edges and in-degree deg−(v) ≤ 1 for all vertices.
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Some Fundamental Graph Properties

The Handshake Lemma (Euler 1736):
Let G = (V,E) be a graph with V = {v1, . . . , vn}.
Then

n∑

i=1

deg(vi) = 2|E|

Example

n∑

i=1

deg(vi) = 1 + 3 + 2 + 1 + 2 + 1 = 10

|E| = 5

Corollary: Any graph contains an even number of ver-
tices of odd degree.
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Proof: Suppose the number of vertices of odd degree
is odd – say l. Then – assuming the first l nodes have
odd degree:

n∑

i=1

deg(vi) =

l∑

i=1

(2 · ai + 1)

︸ ︷︷ ︸
odd degrees

+

n∑

i=l+1

2 · ai
︸ ︷︷ ︸

even degrees

for some integers ai. This means
n∑

i=1

deg(vi) = l + 2

n∑

i=1

ai

which is an odd number. This contradicts the Hand-
shake Lemma. �
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Proof of the Handshake Lemma:

We first prove the result for simple (loop-free) graphs:

We count the number I of incidence pairs (v, e) (also
called “half-handshakes”), where v ∈ V, e ∈ E, and
e = {v, u} for some u ∈ V (i.e. v is incident to e), in
two ways.

Because each edge has two incident vertices we know
I = 2|E|.

On the other hand, node v belongs to deg(v) incidence
pairs: namely all (v, e) for which e = {v, u} ∈ E for
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some u ∈ V .

Therefore, I =
∑n
i=1deg(vi), and

n∑

i=1

deg(vi) = 2|E|

holds for simple graphs.

If we now add an arbitrary number l of loop edges to
a simple graph, the equation still holds because each
loop adds 2 to the vertex degree, i.e. both sides are
increased by 2l. �
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Characterizations of Trees

Trees are everywhere – not just around us. When talk-
ing about graphs, trees have many uses in science. For
instance, they can describe hierarchical object relation-
ships and are at the core of many efficient data struc-
tures (e.g. heaps).

Here we will present and prove a series of tree char-
acterizations which are useful for proving properties of
tree-based algorithms. Moreover, the proofs we will
see make use of various proof techniques we have seen
earlier.
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Theorem: Let G be a simple graph with n nodes and
e edges. Then the following statements are equivalent:

1. G is a tree (connected and acyclic).

2. Every two distinct nodes of G are joined by a unique
path.

3. G is connected and n = e + 1.

4. G is acyclic and n = e + 1.

5. G is acyclic and if any two non-adjacent nodes are
joined by an edge, the resulting graph has exactly
one simple cycle.
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Lecture 19

Proof:
We show 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 5. ⇒ 1., which
establishes the equivalence of each pair of properties.
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1⇒ 2:
If G is a tree (i.e. acyclic and connected) then every
two distinct nodes are joined by a unique path.

Suppose that there are two paths P1 and P2 from node
u to node v. Tracing the two paths simultaneously
from u to v, let w be the first point that is on both
paths, but for which the successor nodes x and y are
on different paths.

Also, let z be the next node after w that is on both
paths. Note that such vertex exists, because the paths
share vertex v.

Then the paths from w to z along P1 and from z to
w along P2 reversed together create a cycle. But this
can’t happen if G is acyclic. This is a contradiction to
the premise, and therefore every node pair is connected
by a unique path. �
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2⇒ 3:
If every two nodes of G are joined by a unique path,
then G is connected and n = e + 1.

G is connected because any two nodes are joined by a
path.

To show n = e + 1, we use induction.

The statement is true for n = 1 because there can’t be
any edges in G which is assumed to be simple.

Now assume it’s true for < n nodes. Removing any
edge from G breaks G into two connected components
G1 and G2, because paths are unique.
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Suppose their orders are n1 and n2, respectively, with

n1 + n2 = n

By the induction hypothesis, which applies to G1, G2:

n1 = e1 + 1 and n2 = e2 + 1

But then
n = n1 + n2

= (e1 + 1) + (e2 + 1)

= (e1 + e2) + 2

= (e− 1) + 2

= e + 1

�
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3⇒ 4:
If G is connected and n = e + 1, then G is acyclic.

Suppose G has a simple cycle of length k. Then there
are k nodes and k edges on this cycle.

Since G is connected, for each node v not on the cycle,
there is a shortest path from v to a node on the cycle.

On these shortest paths, the first edge {v, v′} is not
contained in shorter shortest paths from any other node
outside the cycle.

If it were, then the current path from v to the cycle
would not be the shortest possible.
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Thus, we see by sorting the n − k non-cycle nodes by
increasing distance to the cycle, that for any such node
there is at least one edge in G.

Therefore, e ≥ (n− k) + k = n, which contradicts the
assumption n = e + 1, i.e. e = n− 1.

So, G can’t have any cycles. �

CMPUT 272, F2010, M. Buro Some Fundamental Graph Properties 78

4⇒ 5:
If G is acyclic and n = e + 1, then if any two non-
adjacent nodes are joined by an edge, the resulting
graph has exactly one simple cycle.

Since G doesn’t have cycles, each connected compo-
nent of G is a tree. Suppose there are k components
of order ni and size ei, respectively.

Then, by (1. ⇒ 3.), ni = ei + 1, and therefore n =
e + k.

It follows that k = 1, so G is in fact connected, and
therefore a tree.

By (1.⇒ 2.), for any pair of non-adjacent nodes u and
v, there is a unique path between them. Adding edge
{u, v} thus results in exactly one simple cycle. �
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5⇒ 1:
If G is acyclic joining any non-adjacent points results
in a single simple cycle, then G is a tree.

Since joining any pair of non-adjacent nodes gives a
cycle, the points must be connected by a path. Thus
G is connected and acyclic, and therefore a tree. �


