
CMPUT 204, F2010, M. Buro Contents 1

Part 6: Dynamic Programming

Contents

• Dynamic Programming p.2

• Fibonacci Numbers p.3

• Binomial Coefficients p.7

• Dynamic Programming and Optimization p.10

• The Knapsack Problem p.11

•Memory Functions p.15

• Graph Introduction p.18

• Graph Data Structures p.26

• Connectivity p.27

• Connectivity in Directed Graphs p.35

• The All-Pairs Shortest Path Problem p.38

• Transitive Closure of Directed Graphs p.46

[document finalized]

CMPUT 204, F2010, M. Buro Dynamic Programming 2

Dynamic Programming

Historic term:

Programming refers to “planning” or “optimization”.

Other examples: “Linear Programming”, “Quadratic
Programming”, which deal with optimization subject
to linear or quadratic constraints.

Dynamic programming is a technique for solving prob-
lems with overlapping subproblems.

Rather than solving overlapping subproblems again and
again, the idea is to store obtained solutions and reuse
them later as needed.

Therefore, dynamic programming trades space for speed.

Sometimes, the gain is considerable.

Often, dynamic programming is used for solving op-
timization problems quickly. We will discuss some of
these problems after introducing the concept using two
simple non-optimization problems.

CMPUT 204, F2010, M. Buro Fibonacci Numbers 3

Fibonacci Numbers

Consider computing Fibonacci sequence elements:

F (0) = 0, F (1) = 1

F (n) = F (n− 1) + F (n− 2), n ≥ 2

n 0 1 2 3 4 5 6 7 8 9 10
F (n) 0 1 1 2 3 5 8 13 21 34 55

Question: how do we compute F (n) quickly?

Direct implementation based on recursive definiton:

function fib1(n)

if n < 2 then

return n

else

return fib1(n-1) + fib1(n-2)

end

Repeated work leads to exponential runtime!

CMPUT 204, F2010, M. Buro Fibonacci Numbers 4

To see this let T (n) denote the number of additions
executed in the computation of fib1(n). Then for
n ≥ 4:

T (n) = T (n− 1) + T (n− 2) + 1

= [T (n− 2) + T (n− 3) + 1] + T (n− 2) + 1

≥ 2T (n− 2) + 2 [T (n− 3) ≥ 0]

≥ 2T (n− 2)

≥ 2iT (n− 2i)

and T (0) = T (1) = 0, T (2) = 1, and T (3) = 2.

In the second expansion step we see that F (n − 2) is
computed twice.

For even n we reach base case 2 for i = (n− 2)/2.

T (n) ≥ 2n/2−1T (2) = (
√

2)n/2 =̇ 1.414n/2

For odd n a similar exponential lower bound holds.

This means that our function has at least exponential
runtime!

To speed things up we need to avoid repeated compu-
tations.

CMPUT 204, F2010, M. Buro Fibonacci Numbers 5

Iterative (or non-recursive) implementation using an ar-
ray to store previously computed Fibonacci numbers:

function fib2(n)

A[0] <- 0

A[1] <- 1

for i <- 2 to n do

A[i] <- A[i-1] + A[i-2]

end

return A[n]

At the time we want to compute F (i), the previous
values F (i − 1) and F (i − 2) have been computed
already and stored in the array. Therefore, without any
work repetition, fib2 computes F (n) in time Θ(n), at
the cost of Θ(n) space.

The space requirement can be reduced to Θ(1) by not-
ing that at any given time we only need to memorize
the two immediate predecessors.

CMPUT 204, F2010, M. Buro Fibonacci Numbers 6

function fib3(n)

x <- 0 // previous-previous value

y <- 1 // previous value

for i <- 2 to n do

nexty <- x + y // next value

x <- y // prev.-prev = prev

y <- nexty // previous = next

end

return y

CMPUT 204, F2010, M. Buro Computing Binomial Coefficients 7

Computing Binomial Coefficients

From elementary combinatorics you may recall that the
binomial coefficient

(n
k

)
is the number of k-element

subsets of an n-element set (0 ≤ k ≤ n).

The name binomial coefficients comes from the bino-
mial formula which holds for all a, b ∈ R and n ∈ N:

(a + b)n =

n∑

i=0

(
n

i

)
an−ibi

Among the many properties of
(n
k

)
are the following:

1.
(n

0

)
=
(n
n

)
= 1

2.
(n
k

)
=
(n
n−k

)

3.
(n
k

)
= n!
k!(n−k)!

4.
(n
k

)
=
(n−1
k−1

)
+
(n−1
k

)
(0 < k < n)

Property 4 suggest a recursive way of computing
(n
k

)
.

Rather than using the straightforward recursive func-
tion that would solve many subproblems repeatedly, we
apply the dynamic programming idea of saving interme-
diate results and organizing the computation in such a

CMPUT 204, F2010, M. Buro Computing Binomial Coefficients 8

way that we can reuse prior results as much as possible.

We fill a table of
(n
k

)
values row by row like so:

1. For each new row n we set the (n, 0) and (n, n)
entries to 1.

2. For computing the (n, k) entries we make use of
property 4 by adding entries (n−1, k−1) and (n−1, k),
i.e. going up one step and going left from there.

So,
(n
k

)
can be computed just based on additions (“Pas-

CMPUT 204, F2010, M. Buro Computing Binomial Coefficients 9

cal’s triangle”).

function choose(n,k)

for i <- 0 to n do

for j <- 0 to min(i,k) do

if j = 0 or j = i then

C[i,j] <- 1

else

C[i,j] <- C[i-1,j-1] + C[i-1, j]

end

end

end

return C[n,k]

The runtime of this function is O(nk) (two nested
loops: one iterates Θ(n) times, the other O(k) times.

The space requirement is also O(nk).

The space requirement can be reduced considerably.

CMPUT 204, F2010, M. Buro Dynamic Programming and Optimization 10

Dynamic Programming and Optimization

Dynamic programming can also be used for combina-
torial optimization.

Two conditions have to be met:

1. Optimal substructure. Check whether the problem
exhibits the optimal substructure property, i.e. an
optimal solution to the problem contains within it
optimal solutions to subproblems. Examples: sub-
paths of optimal paths are optimal, subtrees of op-
timal search trees are optimal.

2. Overlapping subproblems. When a recursive algo-
rithm revisits subproblems repeatedly, we say that
the optimization problem has overlapping subprob-
lems. In this case we can apply the dynammic pro-
gramming idea to save time by storing solutions to
subproblems and looking them up when we need
them later.

At an additional cost of memory we can speed up the
reconstruction of an optimal solution by storing which
choice we made in each subproblem in a table.

CMPUT 204, F2010, M. Buro The Knapsack Problem 11

The Knapsack Problem

Recall Knapsack Problem:

Given n items of known weights w1, . . . , wn and values
v1, . . . , vn and a knapsack of capacity W , find the most
valuable subset of items that fit into the knapsack.

In the Brute Force section we saw an exponential time
algorithm that enumerated all item subsets.

Here we assume that all weights and the knapsack ca-
pacity are integers.

To design a dynamic programming algorithm we need
to derive a recurrence relation that expresses a solution
to an instance in terms of solutions to smaller subin-
stances.

Define an instance by the first i items (i ≤ n)

(w1, v1), . . . , (wi, vi)

and knapsack capacity j (1 ≤ j ≤ W) and V [i, j] as
the value of an optimal solution to this instance.

CMPUT 204, F2010, M. Buro The Knapsack Problem 12

Lecture 23

Observations:

• For optimal subsets that don’t include item i the op-
timal value is

V [i− 1, j]

• For optimal subsets that include item i the optimal
value is

vi + V [i− 1, j − wi]
Therefore, the value of the optimal solution is the max-
imum of these values, i.e.

V [i, j] =
{

max
{
V [i− 1, j], vi + V [i− 1, j − wi]

}
, wi ≤ j

V [i− 1, j], wi > j

with V [0, j] = 0 for j ≥ 0 and V [i, 0] = 0 for i ≥ 0.

CMPUT 204, F2010, M. Buro The Knapsack Problem 13

Strategy for filling the matrix?

Similar to the binomial coefficient computation: top-
down, left to right.

CMPUT 204, F2010, M. Buro The Knapsack Problem 14

Example: W = 5

Weight Value i\j 0 1 2 3 4 5
0 0 0 0 0 0 0

w1 = 2 v1 = 12 1 0 0 12 12 12 12
w2 = 1 v2 = 10 2 0 10 12 22 22 22
w3 = 3 v2 = 20 3 0 10 12 22 30 32
w4 = 2 v2 = 15 4 0 10 15 25 30 37

V [i, j] = max
{
V [i− 1, j], vi + V [i− 1, j − wi]

}

Reconstructing an optimal solution:

V [4, 5] 6= V [3, 5]⇒ item 4 selected, 5− w4 = 3 left

V [3, 3] = V [2, 3]⇒ item 3 not selected

V [2, 3] 6= V [1, 3]⇒ item 2 selected, 3− w2 = 2 left

V [1, 2] 6= V [0, 2]⇒ item 1 selected, 1− w1 = 0 left

Thus, an optimal solution consists of items 1, 2, and 4.

The time and space requirements of this algorithm are
both in Θ(nW) and the time needed to find the com-
position of an optimal solution is in O(n) (exercise).

CMPUT 204, F2010, M. Buro Memory Functions 15

Memory Functions

The direct top-down approach to finding a solution
leads to an algorithm that solves common subproblems
more than once and hence can be very inefficient. The
classic dynamic programming approach, on the other
hand, works bottom-up: it fills a table with solutions
to all smaller subproblems.

Sometimes, not all subproblems have to be solved to
obtain optimal solutions. The top-down approach does
not suffer from this inefficiency. Therefore, it is natural
to try to combine the strengths of both methods.

So called memory functions accomplish this goal by
proceeding top-down but storing and using previously
computed function values.

CMPUT 204, F2010, M. Buro Memory Functions 16

Example: Memory function version of Knapsack

function KS(w[1..n], v[1..n], W)

clear M

return MemKS(n, W, M, w, v)

function MemKS(i, j, M, w[1..n], v[1..n])

if i <= 0 or j <= 0 then return 0 end

val <- lookup(M, i, j)

if val < 0 then // new

if j < w[i] then

val <- MemKS(i-1, j, M, w, v)

else

val <- max(MemKS(i-1, j, M, w, v),

v[i] + MemKS(i-1, j-w[i], M, w, v))

end

store(M, i, j, val) // memoize value

end

return val

To be effective, both locating entry (i, j) and clearing
data structure M must be fast.

CMPUT 204, F2010, M. Buro Memory Functions 17

As an example consider using an array for storing V[i,j]

The memory function based approach may only visit a
small fraction of this array. So, initializing every ele-
ment with -1 in the beginning could take more time
than the actual top-down dynamic programming run.

How can we avoid initializing the array everytime we
call KS for solving a new Knapsack problem?

Rather than using the value itself to distinguish whether
we have visited the entry before (≥ 0?), we can use
integers M[i,j] and a global generation count C, with
the convention that M[i,j] = C iff entry (i,j) has
already been computed in the current generation.

So, to “clear M” in the KS function we simply increme-
nent the generation count C which invalidates all previ-
ously used entries in constant time. Only in the begin-
ning and when the generation count wraps around to
0, the entire array needs to be filled with 0 and C set
to 1.

This only happens every (2K − 1)-th time, if we store
K-bit integers exponential time savings!

CMPUT 204, F2010, M. Buro Graph Introduction 18

Graph Introduction Lecture 24

Graphs model binary relations R ⊆ V × V
• Objects are represented by vertices

• Related objects are connected by edges

Example: Relation R with

(x, y) ∈ R ⇔ Person x knows person y

Relations are not necessarily symmetric:

(x, y) ∈ R 6⇒ (y, x) ∈ R

Therefore we need directed edges (“arcs”)

CMPUT 204, F2010, M. Buro Graph Introduction 19

For symmetric relations undirected edges suffice

Example:

(x, y) ∈ F ⇔ x is a friend of y

Then (usually) (x, y) ∈ F ⇔ (y, x) ∈ F

CMPUT 204, F2010, M. Buro Graph Introduction 20

Definition:

An (undirected) graph is a pair G = (V,E) that is
composed of a non-empty vertex (or node) set V and
an edge set E, such that each edge contains one or two
vertices, i.e. for all e ∈ E, e ⊆ V and 1 ≤ |e| ≤ 2.

G = (V,E) V = {v1 . . . v6}
E = { {v2, v3}, {v3, v4}, {v4, v5}, {v5}, {v4, v6}, {v2, v6} }
The order of G is 6 (number of nodes), its size is also
6 (number of edges)

CMPUT 204, F2010, M. Buro Graph Introduction 21

The order of G = (V,E) is |V |.
The size of G = (V,E) is |E|.
We say that edge e = {u, v} connects node u with
node v. In case e = {u}, vertex u is connected to itself
and forms a loop.

A graph is called simple if it does not contain loops.

A vertex u is called a neighbour of vertex v iff {u, v} ∈
E.

The number of neighbours of a vertex u is called its
degree, denoted deg(u). A loop contributes twice to
the degree.

u, v ∈ V are adjacent iff {u, v} ∈ E
u, v ∈ V are incident to edge e ∈ E iff e = {u, v}

CMPUT 204, F2010, M. Buro Graph Introduction 22

Fundamental Graph Classes and Properties

Formal definitions coming up.

CMPUT 204, F2010, M. Buro Graph Introduction 23

V = U ∪W and U ∩W = ∅ (node partition)

All edges of form e = {u,w} with u ∈ U and w ∈ W

CMPUT 204, F2010, M. Buro Graph Introduction 24

Definition:

A directed graph is a pair G = (V,E) that is com-
posed of a non-empty vertex set V and an edge set
E ⊆ V × V .

Edge e = (u, v) connects vertex u with vertex v (u is
said to be adjacent to v, and v is adjacent from u).
u is called the initial vertex of e, and v is called the
terminal vertex of e.

The in-degree of a vertex v, denoted deg−(v), is the
number of edges with v as their terminal vertex.

The out-degree of a vertex v, denoted deg+(v), is the
number of edges with v as their initial vertex.

Loops contribute 1 to both the in- and out-degree.

CMPUT 204, F2010, M. Buro Graph Introduction 25

G = (V,E), V = {v1 . . . v6}
E = {(v1, v2), (v1, v5), (v2, v4), (v3, v2), (v4, v4)}

CMPUT 204, F2010, M. Buro Graph Data Structures 26

Graph Data Structures

Adjacency lists are smaller ifG is sparse (|E| ∈ O(|V |))
If G is dense (|E| quadratic in |V |), adjacency matri-
ces save space and allow direct access to edge informa-
tion.

Which representation is better depends on algorithm
used

CMPUT 204, F2010, M. Buro Connectivity 27

Connectivity

Many real-world problems can be modeled with paths
formed by traveling along the edges of graphs.

Problems of efficiently planning routes for mail deliv-
ery, garbage pickup, diagnostics in computer networks,
etc. can be solved using models that involve paths in
graphs.

Informally, a path is a sequence of edges that begins at
a vertex of a graph and travels from vertex to vertex
along edges of the graph.

Definition
Let n ∈ N and G = (V,E) a graph. A path of length
n from u to v in G is a sequence of n edges

(e1, e2, . . . , en)

– written as (ei)
n
i=1 – such that ei = {xi−1, xi} ∈ E

for all i, with u = x0 and xn = v.

In case of directed graphs, ei = (xi−1, xi) ∈ E.

CMPUT 204, F2010, M. Buro Connectivity 28

Sometimes it is convenient to define a path just by the
sequence of visited vertices, which implies the edges:

(x0, x1, . . . xn)

The path is a circuit (or cycle) iff x0 = xn and n > 0.

A path or circuit is simple iff it does not contain the
same node more than once (except for the necessary
repetition of the start and end vertex).

CMPUT 204, F2010, M. Buro Connectivity 29

Examples

CMPUT 204, F2010, M. Buro Connectivity 30

Lecture 25

A graph is called connected iff there is a path between
every pair of distinct vertices of the graph.

Theorem
There is a simple path between every pair of distinct
vertices of a connected graph.

Proof
Let G = (V,E) be a connected graph and u, v ∈ V .
Then there exists a path P0 = (ei)

n
i=1 that connects u

to v, with ei = {xi−1, xi} ∈ E for all i, with u = x0
and xn = v.

If no vertex is repeated, then P0 is a simple path and we
are done. Otherwise, let i, j be distinct integers with
i < j and xi = xj.

CMPUT 204, F2010, M. Buro Connectivity 31

If we delete the edges ei+1, . . . , ej from P0 we obtain
a shorter path P1 from u to v and has fewer repeated
nodes. If P1 is a path we are done. Otherwise, we
repeat the process.

Since P0 is a finite sequence, eventually we must reach
stage k where no vertices are repeated and the resulting
path Pk is simple. �

CMPUT 204, F2010, M. Buro Connectivity 32

Given a graph G = (V,E), being reachable defines a
relation C on V :

(u, v) ∈ C ⇔ u = v or there is a path from u to v in G

Then, C is

• reflexive: ∀v ∈ V : (v, v) ∈ C
• symmetric: ∀u, v ∈ V : (u, v) ∈ C ⇒ (v, u) ∈ C
• and transitive: ∀x, y, z ∈ V :

[(x, y) ∈ C ∧ (y, z) ∈ C]⇒ (x, z) ∈ C
(Why?)

This means that C is an equivalence relation, and as
such the set of all element equivalence classes (= sets of
nodes that are related to each other) forms a partition
of V .

CMPUT 204, F2010, M. Buro Connectivity 33

Each such equivalence class together with the set of
edges that are incident to those vertices are called con-
nected component.

Observations:

Connected components of graph G are connected sub-
graphs of G that contain vertices and all incident edges
of G, such that no other vertex can be added to create
larger connected subgraphs.

[Graph H = (W,F) is a subgraph of G = (V,E) iff
W ⊆ V and F ⊆ E]

A graph is connected iff it has one connected compo-
nent.

CMPUT 204, F2010, M. Buro Connectivity 34

Definition

A graph is called acyclic iff it does not contain a cycle.

A connected acyclic graph is called a tree.

An acyclic graph is also called forest.

CMPUT 204, F2010, M. Buro Connectivity in Directed Graphs 35

Connectivity in Directed Graphs

There are two notions of connectedness in directed graphs,
depending on whether the directions of the edges are
considered.

Definition
A directed graph (V,E) is strongly connected iff for
all distinct vertices u, v ∈ V there is a path from u to
v and from v to u.

A directed graph is weakly connected iff the under-
lying undirected graph, that is constructed by turning
every directed edge into an undirected edge, is con-
nected.

CMPUT 204, F2010, M. Buro Connectivity in Directed Graphs 36

Similar to the reachability relation on graphs, the reach-
ability relation C on digraphs given by

(u, v) ∈ C ⇔
u = v or there is a path from u to v and from v to u

is an equivalence relation and therefore induces a vertex
partition. The subgraphs induced by the equivalence
classes are called strongly connected components
(SCCs).

In each SCC, every node can be reached from any other
by a directed path, and like connected components in
graphs, they can’t be enlarged by adding a node.

CMPUT 204, F2010, M. Buro Connectivity in Directed Graphs 37

Definition

A directed graph is acyclic iff it does not contain a
directed cycle.

A directed graph is a directed tree iff it would be
a tree if all directed edges are turned into undirected
edges and in-degree deg−(v) ≤ 1 for all vertices.

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 38

The All-Pairs Shortest Path Problem

In this section we shall see a dynamic programming
formulation to solve the all-pairs shortest-path problem
on a directed graph G = (V,E), which seeks to find
shortest paths between any two nodes in V .

Finding shortest paths has many applications.

For example:

•Minimize travel time between cities

• Find shortest paths for mobile objects in video games

•More generally, minimize the cost of doing an activ-
ity
– Vertices are states of the world

– Edge weights are costs of moving between states

For studying distance related graph problems we aug-
ment graphs by a weight function w : E → R, that
assigns weights (or distances) to edges. Formally, we
define a weighted digraph as triple G = (V,E,w).

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 39

For convenience we assume that the vertices are num-
bered 1, 2, . . . , |V | = n, so that the input is an n× n
maxtrix W representing the edge weights. That is,
W = (wij), where

wij =





0 if i = j
weight of edge (i, j) if i 6= j and (i, j) ∈ E
∞ if i 6= j and (i, j) 6∈ E

The weight w(e) of an edge e = (i, j) equals wij and
the weight w(P) of a path P = (ek)nk=1 is defined as

w(P) :=

n∑

k=1

w(ek)

We allow negative-weight edges, but we assume that
the input graph contains no negative-weight cycles, i.e.
cycles whose edge weight sum is < 0 (why?).

The goal of the all-pairs shortest-path computation is
to determine for each pair of vertices (i, j) the weight
δij of a minimum-weight (i.e. shortest) path from i to
j.

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 40

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 41

Dynamic Programming Approach Lecture 26

Without loss of generality (w.l.o.g.) shortest paths are
simple.

If vertices are repeated we can simply iteratate removing
cycle edges to obtain a path that is not longer than the
orgiginal one, like in the undirected case we have seen.

We define an intermediate vertex of a simple path
P that is induced by vertex sequence v1, . . . , vl as any
vertex along P other than v1 and vl.

To create a sequence of subproblems of increasing com-
plexity we consider vertex subset {1 . . . k} and restrict
the intermediate vertices of paths from i to j to that
set.

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 42

Consider a shortest path P from i to j subject to this

restriction and call its weight δ
(k)
ij . Then

• If k is not an intermediate vertex of P , then all
intermediate vertices of P are in the set {1 . . . k−1}
and δ

(k)
ij = δ

(k−1)
ij .

• If k is an intermediate vertex of P , then we decom-
pose P into two paths: P1 from i to k and P2 from
k to j.

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 43

Then P1 and P2 are shortest paths with intermediate
nodes in {1 . . . k − 1}, because repeating k is not
beneficial and if shorter paths P ′1 or P ′2 existed, they
could be used to shorten P .

• If k = 0 then no intermediate vertex is allowed, and

therefore δ
(0)
ij = wij

From this we obtain the following recurrence relation:

δ
(k)
ij =

{
wij k = 0

min(δ
(k−1)
ij , δ

(k−1)
ik + δ

(k−1)
kj) k > 0

Because for any path all intermediate vertices are in

{1, . . . , n} the final answer is: δij = δ
(n)
ij for all i, j ∈

V .

The Floyd–Warshall algorithm (1962) uses this observa-

tion to iteratively compute matrices D(k) := (δ
(k)
ij) for

k = 0, . . . n, thereby computing all shortest distances
between all node pairs (i, j).

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 44

CMPUT 204, F2010, M. Buro The All-Pairs Shortest Path Problem 45

function FloydWarshall(W[1..n,1..n])

D <- W // matrix containing deltas(k)

for k <- 1 to n do

// previous matrix is D, current one is E

for i <- 1 to n do

for j <- 1 to n do

E[i,j] <- min(D[i,j], D[i,k]+D[k,j])

end

end

D <- E // new matrix complete, copy over

end

return D

Runtime: Θ(n3) Space: Θ(n2)

There is actually no need for matrix E as D can be
updated in-place.

How to reconstruct optimal paths?

Can this algorithm be used to detect negative cycles?

(Exercises)

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 46

Transitive Closure of Directed Graphs

Given a directed graphG = (V,E) with V = {1, 2 . . . n}
we might wish to determine whether there is a path in
G from i to j for all vertex pairs i, j ∈ V .

For this purpose we define the transitive closure of
G as graph G∗ = (V,E∗) where

E∗ = {(i, j) | i = j or there is a path from i to j in G}

How can we compute E∗?

One option is to use the Floyd-Warshall algorithm:

We set w(e) = 1 for all e ∈ E with e 6= (i, i) for all
i ∈ V
Then it is easy to verify that

There is a path from i to j in G iff δij < n

This solves the transitive closure problem in time Θ(n3)

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 47

By revisiting the derivation of the recurrence relation
for the Floyd-Warshall algorithm, we can decrease the
storage and runtime of the transitive closure algorithm
in practice.

Intuition: Rather than computing path lengths we only
need to update Boolean values that indicate reachabil-
ity.

For k = 1, 2, . . . , n we define t
(k)
ij to be 1 if there is a

path from i to j with all intermediate nodes in the set
{1, . . . , k}, and 0 otherwise.

Our goal: E∗ = {(i, j) | t(n)
ij = 1}

The base case k = 0 is trivial:

t
(0)
ij =

{
0 if i 6= j and (i, j) 6∈ E
1 otherwise

How to update values when going from k − 1 to k?

We can reach j from i stepping over nodes ≤ k iff
we can reach j over intermediate nodes ≤ k− 1 or we
can reach k from i and j from k using nodes ≤ k− 1.

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 48

This leads to the following recurrence relation:

t
(k)
ij = t

(k−1)
ij ∨ (t

(k−1)
ik ∧ t(k−1)

kj)

where ∨,∧ are the Boolean connectives “or” and “and”,
respectively.

function TransitiveClosure(E[1..n,1..n])

Initialize T from E (k=0)

for k <- 1 to n do

for i <- 1 to n do

for j <- 1 to n do

T[i,j] <- T[i,j] v (T[i,k] ^ T[k,j])

end

end

end

return T

Here we omitted the creation of intermediate matrices
T (k) for each value of k. Why does this work? (Exer-
cise)

Although, the runtime of TransitiveClosure is still
Θ(n3), its innermost loop runs faster than Floyd-War-

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 49

shall’s on modern computers. In addition, we need less
space.

The computation speed can be increased further by ad-
justing the code such that modern vector operations
can be used, that apply Boolean operations in bit-
parallel fashion.

Depending on the computer architecture this can speed
up the innermost loop by factors of 32 or greater!

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 50

Lecture 27

Is there a way to compute the transitive closure of a
directed graphs faster than Θ(n3)?

Yes. Based on fast matrix multiplication!

Consider matrix multiplication � over algebraic struc-
ture S = (B,∨,∧, 0, 1), where

• B = {0, 1} is the value set (Boolean false, true),

• ∨ is the Boolean OR operation,

• ∧ is the Boolean AND operation,

• 0 is the neutral element for ∨, and

• 1 is the neutral element for ∧

(A�B)ij =

n∨

k=1

(aik ∧ bkj),

for Boolean n× n matrices A,B.

Note that this is the standard matrix multiplication with
+ replaced by ∨ and · replaced by ∧
Define A�k := A� A · · · � A︸ ︷︷ ︸

A k-times

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 51

Theorem: Let T := (t
(0)
ij), i.e.

Tii = 1 for all i ∈ V , and for i 6= j, Tij = 1 iff
(i, j) ∈ E.

Then there exists a directed path from i to j of length
≤ l iff (T�l)ij = 1.

Proof: Induction on l.

Suppose l = 1. From the definition of T we know
Tij = 1 iff j can be reached from i with 0 or 1 step.

Now assume the claim holds for l − 1 with l ≥ 2.

Consider the last multiplication step:

(T�l)ij = ((T�l−1)� T)ij =

n∨

k=1

(T�l−1)ik ∧ Tkj

Therefore, (T�l)ij = 1 iff there exists a node k such
that there is a path from i to k in ≤ l− 1 steps and j
can be reached from k in 0 or 1 step.

This means that (T�l)ij = 1 iff j can be reached from
i in ≤ l steps. �

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 52

The theorem suggests an alternative way of computing
the transitive closure:

E∗ = {(i, j) | (T�n)ij = 1}
This works, because if j can be reached from i in G,
then it can be reached in ≤ n steps. For if we need
> n steps, a vertex is repeated and we can shorten the
path. This argument also shows

T�n+i = T�n for all i ≥ 0 (∗)

What is the runtime?

Using the standard matrix multiplication method and
applying it n − 1 times will take Θ(n · n3) = Θ(n4)
bit operations, which is worse than the Floyd-Warshall-
based method.

However, using equation (∗) and the doubling trick we
have seen when computing powers we can reduce the
runtime:

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 53

function PowerTC(T[1..n,1..n])

i <- 1

while i < n do

T <- T o T // Boolean matrix multipl.

i <- i*2

end

return T

This computes T�k for some k ≥ n (which equals
T�n) in ≈ log n iterations.

Total number of bit operations: Θ((log n) · n3)

Still not good enough.

Can we apply the Strassen-Winograd algorithm?

Not directly, because S is not a ring (it has no inverse
element for ∨, which would require (−a) ∨ a = 0 for
all a ∈ {0, 1})

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 54

However, there is a way around this problem:

(A�B)ij =

n∨

k=1

(aik ∧ bkj),

can be computed using regular arithmetic:

(A�B)ij = {[
n∑

k=1

(aik · bkj)] > 0},

where {x > 0} is 1 if x > 0 and 0 otherwise. (∗∗)

So the algorithm becomes

function StrassenTC(T[1..n,1..n])

i <- 1

while i < n do

T <- Strassen(T,T) // regular multipl.

T <- ScaleBack(T) // using (**)

i <- i*2

end

return T

How fast is it in terms of bit operations?

CMPUT 204, F2010, M. Buro Transitive Closure of Directed Graphs 55

Based on the equations on page 19 in part 5 it can
be proved that intermediate results in the Strassen-
Winograd algorithm when multiplying two (n×n)-0/1-
matrices lie in range −6n . . . 6n.

Using standard quadratic time multiplication each ring
operation can be performed with O((log n)2) bit oper-
ations.

Therefore, each iteration uses O((log n)2nlog 7) bit op-
erations, and the total runtime is

O((log n)3nlog 7) ⊆ O(n2.81)

— which is better than Θ(n3).

In the Strassen-Winograd algorithm one can also do
all operations modulo (n+1), i.e. taking the remainder
when dividing by n+1 after each addition, subtraction,
and multiplication.

