
CMPUT 204, F2010, M. Buro Contents 1

Part 4: Brute Force Algorithms

Contents

• Brute Force Algorithm Design p.2

• Selection Sort p.4

• String Matching p.8

• Closest-Pair Problem p.11

• Knapsack Problem p.14

• Job Assignment Problem p.16

[document finalized]

CMPUT 204, F2010, M. Buro Brute Force Algorithm Design 2

Brute Force Algorithm Design

“Brute force” is a straightforward approach to solving
a problem, usually directly based on the problem state-
ment and definitions of the concepts involved.

The “force” implied by this definition is that of a com-
puter and not that of one’s intellect. There is a tradeoff
between the time the program runs to produce an an-
swer and the time it takes us to write a correct program.

For instance, if we anticipate that we only need to run
a program a few times and the simplest solution we
can think of runs sufficiently fast, why not using it?
We will make less errors implementing it, and the total
time (designing + proving correctness + implementing
+ testing + running the program) may be minimal.

On the other hand, if we want to use a program fre-
quently or want to apply it to large inputs we are inter-
ested in finding efficient solutions, i.e. we may want to
invest more time in finding a faster algorithm, that for
instance decreases the runtime from Θ(n2) to Θ(n log n)
(sorting), or better yet, from Ω(n!) to Θ(n3) (job as-
signment problem). Here we discuss several examples

CMPUT 204, F2010, M. Buro Brute Force Algorithm Design 3

of brute force algorithm design.

CMPUT 204, F2010, M. Buro Selection Sort 4

Selection Sort

Perhaps the simplest way to sort n numbers (or keys in
general) in non-decreasing order is based on this idea:
what property does the first number in a sorted se-
quence have? It is the smallest ... So we could first
find the smallest key in the sequence and then swap it
with the first key. Then what’s left is a sorting problem
which is smaller than the original one: we need to sort
the remaining n− 1 numbers, etc. This sorting proce-
dure is called “selection sort”, because in each step we
select the minimum, swap, and continue.

Sample run:

i 0 1 2 3 4 6 5

3 0 4 2 1 6 5 i

m m

i 0 1 2 3 4 6 5

0 3 4 2 1 6 5 i m

m

0 1 2 3 4 5 6 done

0 1 4 2 3 6 5 i

i m

0 1 2 4 3 6 5

i m



CMPUT 204, F2010, M. Buro Selection Sort 5

Pseudo Code:

// sort n > 0 keys in non-decreasing order

function SelectionSort(A[0..n-1])

for i <- 0 to n-2 do

// find minimum key in A[i..n-1]

m <- i // index of minimum key

for j <- i+1 to n-1 do

if A[j] < A[m] then // (*)

m <- j // found smaller value

end

end

// swap minimal key with current one

t <- A[i]

A[i] <- A[m]

A[m] <- t

end

Correctness:

Above program terminates for all inputs because it only
features for-loops, which we know always stop regard-
less of the bounds. Finding invariants for both loops
based on the algorithm’s description above is left as an
exercise.

CMPUT 204, F2010, M. Buro Selection Sort 6

Runtime Analysis:

To simplify the runtime analysis we concentrate on how
often the innermost loop body (*) is executed. Every
other part is executed at most as often.

In the outer loop, i counts from 0 to n− 2, that’s less
than n times, and the inner loop is executed also less
than n times for each i.

Thus, the inner loop is executed less than n2 times in
total, i.e., worst-case runtime T (n) ∈ O(n2).

The exact number of times (*) is executed is the same
as for the uniqueness algorithm we have seen before
 T (n) ∈ Θ(n2).

So, the runtime of selection sort is quadratic in n, which
is SLOW:

n n*n

10 100

100 10000

1000 1000000

10000 100000000

Imagine having to sort 1000000 numbers ... Even on

CMPUT 204, F2010, M. Buro Selection Sort 7

today’s fast desktop computers this would take more
than 1000 seconds when using selection sort.

Can we do better?

Yes — later we will study sorting algorithms with worst-
case runtime Θ(n log n).

It is often the case that sophisticated algorithms that
asymptotically are more efficient than basic algorithms
are only truly faster beyond a certain input size. This
means that sometimes hybrid algorithms, that use ba-
sic approaches for small input sizes and sophisticated
methods for larger inputs, are the overall winners.

CMPUT 204, F2010, M. Buro String Matching 8

String Matching

Searching for words in texts is a very common task.
Applications range from text editors to matching genes.

The problem is this: given a text character string T
and a pattern character string P , determine whether P
occurs in T and if so, report the first matching location.

The straightforward “brute force” solution is to shift P
from left to right and to see whether it matches T at
the current location.

Example:

i= 012345678901234567

11111111

T= NOBODY_NOTICED_HIM

P= NOT no

NOT no

NOT no

NOT no

NOT no

NOT no

NOT no

NOT yes! return 7



CMPUT 204, F2010, M. Buro String Matching 9

// returns smallest index of pattern P

// in text T if it occurs, and -1 otherwise

function StringMatch(T[0..n-1], P[0..m-1])

for i <- 0 to n-m do

// does P match T at location i?

j <- 0

while j < m and P[j] = T[i+j] do

j <- j + 1

end

if j = m then

return i // yes, return location

end

end

return -1 // pattern not found

In the worst case, when P does not occur, the runtime
of StringMatch is Θ(nm), because the first loop runs
to completion (n − m + 1 iterations), and the inner
loop always iterates m times.

When m is small, this algorithm is very efficient. How-
ever, the runtime degenerates to Θ(n2) in case m grow-
ths linearly in n. This may be unacceptable. Is there a
faster matching algorithm?

Yes, several.

CMPUT 204, F2010, M. Buro String Matching 10

The Knuth-Morris-Pratt (KMP) algorithm, for instance,
takes Θ(m) time for preprocessing P , followed by Θ(n)
operations to search for P in T using the result of the
preprocessing step. Total runtime: Θ(n + m), which
depending on n,m can be much smaller than Θ(nm).

CMPUT 204, F2010, M. Buro The closest pair problem 11

The closest pair problem

Example from computational geometry:

Given n points in the plane, determine the pair of points
that is closest to each other.

How can we determine such pair? Following the “brute
force” design approach, we could simply enumerate all
pairs of points and keep track of the minimal encoun-
tered distance.

CMPUT 204, F2010, M. Buro The closest pair problem 12

Recall: the distance d of two points (x1, y1) and (x2, y2)

in the plane is given by d =
√

(x1 − x2)2 + (y1 − y2)2.

Because the square root function is monotonically in-
creasing (for a, b ≥ 0, a < b ⇔ √a <

√
b), we ac-

tually only need to compare squared distances, thereby
avoiding the costly and potentially inaccurate square
root computation.

These ideas lead to the following pseudo code:

function ClosestPair(X[0..n-1], Y[0..n-1])

dsmin <- oo // current smallest squared distance

for i <- 0 to n-2 // look at all point pairs

for j <- i+1 to n-1

dx <- X[i]-X[j] // compute squared distance

dy <- Y[i]-Y[j]

ds <- dx*dx + dy*dy

if ds < dsmin then

dsmin <- ds // new minimum

im <- i // memorize point indexes

jm <- j

end

end

end

return (im, jm) // return closest pair indexes



CMPUT 204, F2010, M. Buro The closest pair problem 13

The program is correct because it always terminates
(the runtime is in fact Θ(n2), as we have seen twice al-
ready when we looked at uniqueness and selection sort,
which featured the same for loops) and the algorithm
looks at all pairs (i, j) with i < j, computes squared
distances between points i and j, and updates minimum
indexes im,jm when shorter distances are encountered.
The first encountered squared distance will trigger an
update, because dsmin is initialized with infinity.

This Θ(n2) time algorithm is not practical for large
point sets, and there exists a Θ(n log n) time closest
point algorithm that is described in the text books.

CMPUT 204, F2010, M. Buro The Knapsack Problem 14

The Knapsack Problem

Lecture 12

Given n items of known weights w1, . . . , wn and values
v1, . . . , vn and a knapsack of capacity W , find the most
valuable subset of items that fit into the knapsack.

Example:

Item Weight Value

1 7 42

2 3 12 W = 10

3 4 40

4 5 25

What is a straightforward approach to solve this prob-
lem? Exhaustive search, i.e. enumerating all possible
subsets and evaluating packings with regard to their
value if they are feasible.

CMPUT 204, F2010, M. Buro The Knapsack Problem 15

Subset Weight Value

{} 0 0

{1} 7 42

{2} 3 12

{3} 4 40

{4} 5 25

{1,2} 10 54

{1,3} 11 -

{1,4} 12 -

{2,3} 7 52

{2,4} 8 37

{3,4} 9 65 optimal

{1,2,3} 14 -

{1,2,4} 15 -

{1,3,4} 16 -

{2,3,4} 12 -

{1,2,3,4} 19 - - : infeasible

The runtime of solving the knapsack problem by ex-
haustive enumeration is Ω(2n), because there are 2n

subsets to consider for n items. For the knapsack prob-
lem and a large class of similar combinatorial optimiza-
tion problems we currently do not know any polynomial
time algorithms. Exercise: write a program that solves
small knapsack problem instances.

CMPUT 204, F2010, M. Buro The Job Assignment Problem 16

The Job Assignment Problem

Given n workers, n jobs, and a function c(w, j) that
specifies the cost of worker w executing job j, find a
cost-minimal assignment of all jobs to workers, so that
each worker has a job.

Example: cost functions can be represented as matri-
ces, e.g.

c j1 j2 j3 j4
w1 9 2 7 8
w2 6 4 3 7
w3 5 8 1 8
w4 7 6 9 4

c(w1, j2) = 2, c(w2, j4) = 8

Representing both workers and jobs by natural numbers
between 1..n, we are asked to specify a vector of jobs
(j1, . . . , jn) so that job jk is assigned to worker k, each
job 1..n occurs in the vector exactly once, and its cost

n∑

k=1

c(k, jk)

is minimal.



CMPUT 204, F2010, M. Buro The Job Assignment Problem 17

Trying to gain some intuition what it takes to solve this
problem, we soon realize that for instance the minimal
cost entry is not necessarily part of an optimal solution,
and more generally no simple strategy seems to work.

So we are tempted to again follow the “brute force”
design idea of enumerating all feasible choices and min-
imizing the cost.

How many feasible assignments are there?

Each job has to be assigned to exactly one worker. This
means, that feasible vectors are permutations of 1..n.

Enumerating all feasible job assignments and comput-
ing their cost therefore has runtime Ω(n!). This means
that our brute force algorithm is practically useless even
for small n (e.g. 15! = 1, 307, 674, 368, 000).

Fortunately, there is a much more efficient algorithm for
this problem called the Hungarian Method, whose
runtime is O(n3).


