
CMPUT 204, F2010, M. Buro Contents 1

Part 2: Time Complexity and Asymptotic Notation

Contents

• Time Complexity of Algorithms p.2

• Asymptotic Notation p.7

• Limit-Based Tools p.18

[document finalized]

CMPUT 204, F2010, M. Buro Time Complexity of Algorithms 2

Time Complexity of Algorithms

Goal:

Establish precise framework for classifying algorithms
w.r.t. their efficiency

In this section, let P denote an infinite problem set

For algorithm A we define

TA(p) = runtime of A on problem instance p

(alternatively: space requirement)

Two abstractions will allow us to make general state-
ments:

1. We consider the size of p, denoted |p|, rather than
p itself
a) worst-case time complexity:

TA(n) = max{TA(p) | p ∈ P, |p| = n}
∼ maximum runtime of A for inputs of size n

CMPUT 204, F2010, M. Buro Time Complexity of Algorithms 3

b) average-case time complexity:

TA(n) = E({TA(p) | p ∈ P, |p| = n})
∼ expected runtime of A for inputs of size n
that have a certain probability distribution (usu-
ally uniform)

Example: Quicksort on average can sort n num-
bers in time ≈ n log n. But in the worst case it
runs ≈ n2 steps.

In case a) could say A1 is better than A2 if

∀n : TA1
(n) < TA2

(n)

but this is too restrictive, as the following graph illus-
trates:

CMPUT 204, F2010, M. Buro Time Complexity of Algorithms 4

2. Consider asymptotic behaviour of TA:

A1 better than A2 if

lim
n→∞

TA1
(n)

TA2
(n)

= 0

∼ eventually TA2
(n) grows faster than TA1

(n)

CMPUT 204, F2010, M. Buro Time Complexity of Algorithms 5

Lecture 5

Measuring Runtime

In general: sum up runtimes for each executed instruc-
tion

Depends on input (size)

Two common measures:

1. Unit-cost measure
cost per instruction is 1 time unit
realistic if operands fit in machine word size
otherwise:

2. Logarithmic-cost measure
consider size of operands in binary representation

l(i) =

{
0, i = 0
blog(i)c + 1, i > 0

(bxc : round down to nearest integer – “floor” op-
eration)
E.g., l(17) = blog(17)c+1 = b4.087c+1 = 4+1 =
5. So we need 5 bits to represent decimal number
17 in binary, which is right because 1710 = 100012.

CMPUT 204, F2010, M. Buro Time Complexity of Algorithms 6

Now the runtime of say i← j + k would be l(j) +
l(k) rather than just 1 when using the unit-cost mea-
sure, which is more accurate when dealing with large
numbers.

CMPUT 204, F2010, M. Buro Asymptotic Notation 7

Asymptotic Notation

Runtime Analysis with the Unit-Cost Measure

// input: array A[0..n− 1] and integer x
// output: position of x in A, or n if not found

function SeqSearch(A[0, . . . , n− 1], x)
1. i← 0 1 1
2. while i < n and A[i] 6= x do (j + 1)2 (n + 1) + n
3. i← i + 1 j n
4. end

5. return i 1 1
——– ——–
3j + 5 3n + 4
x found at j not found

For Boolean connectives we use the “short-cut” seman-
tics, i.e. in line 2. if i < n fails, A[i] 6= x is not eval-
uated, because the result of the and operation is false
regardless. Because of this shortcut, the program will
not try to access A[n] – which would be out of bounds!

CMPUT 204, F2010, M. Buro Asymptotic Notation 8

The worst-case runtime for SeqSearch on inputs of length
n is 3n + 4. We call this a linear-time algorithm.

SeqSearch is runtime-optimal up to a constant factor,
because in order to be correct, any algorithm that solves
the problem has to read each input number at least
once, i.e. it has to run at least n steps.

Growth Rate of Functions

When comparing runtime functions we are interested
only in their growth rate which is the asymptotic be-
haviour for large n. We concentrate on the leading term
because lower order terms become insignificant for large
n. Also, constant coefficients are less significant than
the rate.

Will use “big-O” notation to compare functions:

CMPUT 204, F2010, M. Buro Asymptotic Notation 9

O(g(n)) — read as “big O of g(n)”

• roughly: The set of functions which, as n gets large,
grow no faster than a constant times g(n).

• precisely: The set of functions f : N→ R such that
for each f there are constants c > 0 and n0 ∈ N
with |f (n)| ≤ c |g(n)| for all n ≥ n0.

CMPUT 204, F2010, M. Buro Asymptotic Notation 10

Examples:

h(n) = 10n− 1 ∈ O(n)

because |10n− 1| ≤ |10n| for n ≥ 1.

⇒ Setting c = 10 and n0 = 1 in the definition works.

h(n) = (n + 1)2 ∈ O(n2)

because |(n+1)2| = |n2 +2n+1| ≤ |n2 +2n2 +n2| =
4n2 for n ≥ 1

⇒ c = 4 and n0 = 1 works

h(n) =

{
5n, n ≤ 10120

n2, n > 10120 ∈ O(n2) ?

Yes: c = 1, n0 = 10120 + 1.

Lecture 6

h(n) = 1 + 1/(n + 1) ∈ O(1)

because |h(n)| = 1 + 1/(n+ 1) ≤ 1 + 1 = 2 for n ≥ 0

⇒ c = 2 and n0 = 0 works

CMPUT 204, F2010, M. Buro Asymptotic Notation 11

More Asymptotic Growth Rate Sets

Ω(g(n)) (“big-Omega”) is the set of functions f (n)
that

• roughly, grow at least as fast as g(n), namely

• ∃c > 0, n0, such that |f (n)| ≥ c|g(n)| for all n ≥
n0

Example: 6n3 ∈ Ω(n) (grows at least as fast)

because |6n3| ≥ |6n| for n ≥ 1

CMPUT 204, F2010, M. Buro Asymptotic Notation 12

Θ(g(n)) (“big-Theta”) is the set of functions f (n) that

• roughly, grow with the same rate as g(n), namely

• ∃c1 > 0, c2 > 0, n0, such that
c1|g(n)| ≤ |f (n)| ≤ c2|g(n)| for all n ≥ n0

Example: 5n2 + n ∈ Θ(n2) (equal growth rate)

because |5n2 + n| ≤ |5n2 + n2| = 6n2 for n ≥ 0

and |5n2 + n| ≥ |5n2| for n ≥ 0

CMPUT 204, F2010, M. Buro Asymptotic Notation 13

o(g(n)) (“small-o”) is the set of functions f (n) that

• roughly, grow slower than g(n), namely

• lim
n→∞

f (n)

g(n)
= 0

Example: n ∈ o(n2)

because lim
n→∞

n

n2
= 0

ω(g(n)) (“small-omega”) is the set of functions f (n)
that

• roughly, grow faster than g(n), namely

• lim
n→∞ |

f (n)

g(n)
| =∞

Example: n2 ∈ ω(n)

because lim
n→∞ |

n2

n
| =∞

CMPUT 204, F2010, M. Buro Asymptotic Notation 14

Venn Diagram of Growth Rate Sets:

Useful facts:

1. Θ(g) = O(g) ∩ Ω(g)

2. o(g) = O(g)− Θ(g) (in O(g), but not in Θ(g))

3. ω(g) = Ω(g)− Θ(g)

4. f ∈ o(g)⇒ f 6∈ Ω(g)

5. f ∈ ω(g)⇒ f 6∈ O(g)

CMPUT 204, F2010, M. Buro Asymptotic Notation 15

6. f ∈ O(g) if and only if g ∈ Ω(f)

7. f ∈ ω(g) if and only if g ∈ o(f)

8. f ∈ O(1) if and only if f is bounded

9. If f ∈ O(g) and g ∈ O(h) then f ∈ O(h)

I.e., f ∈ O(g) is a transitive relation

10. For f1 ∈ O(g1) and f2 ∈ O(g2):

(a) f1(n) + f2(n) ∈ O(|g1(n)| + |g2(n)|)

(b) f1(n) + f2(n) ∈ O(max(|g1(n)|, |g2(n)|))

This lets us concentrate on leading terms when
analysing growth rates.

E.g. f (n) = 3n4 + n4 + n3 log n + 5.

Then f (n) ∈ O(n4), because eventually 3n4 is
the biggest term.

(c) f1(n) · f2(n) ∈ O(g1(n) · g2(n))

CMPUT 204, F2010, M. Buro Asymptotic Notation 16

Mnemonics for growth rate sets:

f ∈ O(g): “f ≤ g” f ∈ o(g): “f < g”

f ∈ Ω(g): “f ≥ g” f ∈ ω(g): “f > g”

f ∈ Θ(g): “f = g”

Proof of selected facts (others: exercise)

9) Prove: If f ∈ O(g) and g ∈ O(h) then f ∈ O(h).

The premise says:

∃n1 ∈ N and ∃c1 > 0 such that |f (n)| ≤ c1 · |g(n)|
for all n ≥ n1 and

∃n2 ∈ N and ∃c2 > 0 with |g(n)| ≤ c2 · |h(n)| for all
n ≥ n2.

Therefore,

|f (n)| ≤ c1|g(n)| ≤ c1 · c2 · |h(n)|,

for all n with n ≥ n1 and n ≥ n2. Choosing c = c1 ·c2
and n0 = max(n1, n2) in the definition of f ∈ O(h),
we see that it holds. �

CMPUT 204, F2010, M. Buro Asymptotic Notation 17

10c) Prove: If

f1 ∈ O(g1) and f2 ∈ O(g2)

then
f1(n) · f2(n) ∈ O(g1(n) · g2(n)).

The premise says that there exists n1, n2 ∈ N and
c1, c2 > 0 such that

|f1(n)| ≤ c1 |g1(n)|
and

|f2(n)| ≤ c2 |g2(n)|

for n ≥ max(n1, n2).

Hence,

|f1(n)f2(n)| ≤ c1 · c2 |g1(n)g2(n)|

holds for n ≥ max(n1, n2), which means

f1(n) · f2(n) ∈ O(g1(n) · g2(n)).

�

CMPUT 204, F2010, M. Buro Limit-Based Tools 18

Limit-Based Tools

L1. lim
n→∞ |f (n)/g(n)| = 0

def⇔ f ∈ o(g)

(
facts 2+4⇒ f ∈ O(g) and f 6∈ Ω(g))

L2. lim
n→∞ |f (n)/g(n)| =∞ def⇔ f ∈ ω(g)

(
facts 3+5⇒ f ∈ Ω(g) and f 6∈ O(g))

L3. If lim
n→∞ |f (n)/g(n)| = c > 0, then f ∈ Θ(g)

(note that the converse is not true, as |f (n)/g(n)|
not necessarily converges, if f ∈ Θ(g))

CMPUT 204, F2010, M. Buro Limit-Based Tools 19

Examples:

nk ∈ o(nk+1) : lim
n→∞

nk

nk+1
= lim
n→∞

1

n
= 0 (L1)

n! ∈ o(nn) :
n!

nn
=

1 · 2 · 3 · · ·n
n · n · n · · ·n ≤

1 · n · · ·n
n · n · · ·n =

1

n

for n ≥ 1 ⇒ lim
n→∞

n!

nn
≤ lim

n→∞
1

n
= 0 (L1)

n! ∈ Θ(
√
n(ne)n) : We use Stirling’s approximation:

lim
n→∞

n!√
2πn(n/e)n

= 1,

and apply L3.

Exercise: what is the growth rate of ln(n!) ?

CMPUT 204, F2010, M. Buro Asymptotic Notation 20

Lecture 7

Sometimes, determining the limit of function ratios is
not straight forward.

E.g. What is lim
n→∞

log n

n
?

In situations where f and g are differentiable functions
from R to R, the following theorem often helps:

L’Hôpital’s rule [L’H]:

If lim
n→∞ f (n) =∞, lim

n→∞ g(n) =∞, and

lim
n→∞

f ′(n)

g′(n)
= L ∈ R,

then

lim
n→∞

f (n)

g(n)
= L

Note that L’H can be applied multiple times as long as
intermediate ratios have the form ∞

∞, but only if the
last ratio converges, we know that the original ratio
converges to the same value.

CMPUT 204, F2010, M. Buro Asymptotic Notation 21

Example: lnn ∈ o(n)

We want to show that lim
n→∞ |

lnn

n
| = 0

Both f (n) = lnn and g(n) = n go to ∞ for n→∞
Apply L’H:

lim
n→∞

f ′(n)

g′(n)
= lim
n→∞

1/n

1
= 0,

using the facts ln′(x) = 1
x and g′(n) = 1.

Thus, lim
n→∞ |

lnn

n
| = 0, and with L1, lnn ∈ o(n). �

CMPUT 204, F2010, M. Buro Asymptotic Notation 22

Example: Every monomial nk grows slower than en,
i.e.

∀k ∈ N : nk ∈ o(en) :

We prove this by fixing k and applying L’H to f (n) =
nk and g(n) = en k times. Recall from calculus that
f ′(n) = knk−1 and g′(n) = en, so

lim
n→∞

nk

en
= lim

n→∞
f ′(n)

g′(n)

= lim
n→∞

knk−1

en

= lim
n→∞

k(k − 1)nk−2

en

...

= lim
n→∞

k(k − 1)(k − 2) · · · 1
en

= 0, because k is a

fixed constant.

So, with L1: ∀k ∈ N : nk ∈ o(en). �

CMPUT 204, F2010, M. Buro Asymptotic Notation 23

Proof of L3:

lim
n→∞ |f (n)/g(n)| = c > 0 ⇒ f ∈ Θ(g)

Definition of lim
n→∞h(n) = c ∈ R :

∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : |h(n)− c| < ε

“For sufficiently large values of n, all function values
h(n) lie in the ±ε strip around c, where ε can be arbi-
trarily small.”

CMPUT 204, F2010, M. Buro Asymptotic Notation 24

Example: lim
n→∞

1

n
= 0.

Proof: Given ε > 0 choose n0 = 1
ε + 1 = 1+ε

ε .

Then |1n − 0| < ε for all n ≥ n0, because

|1n − 0| = 1
n

(n≥n0)
≤ 1

n0
= ε

1+ε < ε because 1 + ε > 1.

So, in summary we have proved |1n| < ε. Note, that

CMPUT 204, F2010, M. Buro Asymptotic Notation 25

choosing n0 = 1
ε + 1 we can prove |1n| < ε, which is

required by our limit definition, otherwise it would have
been |1n| ≤ ε.

Also, the process of finding n0 that works for a given ε
actually starts with the conclusion, like so: we want 1

n
to be less than ε, how do we chose n0? ...

Now back to the proof of L3:

CMPUT 204, F2010, M. Buro Asymptotic Notation 26

Fact: |x| < ε ⇔ − ε < x < ε

Plug in (h(n)− c) for x
|h(n)− c| < ε ⇔ − ε < h(n)− c < ε

add c to all terms⇔ c− ε < h(n) < c + ε

So: using above derivation, limn→∞ |f (n)/g(n)| = c
means

∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : c−ε < |f (n)/g(n)| < c+ε

(*)

Therefore, fixing ε = 1 (or any other value), we have

∃n0 ∈ N ∀n ≥ n0 : |f (n)/g(n)| < c + 1

⇒ (multiply by |g(n)|)
∃n0 ∈ N ∀n ≥ n0 : |f (n)| < (c + 1)|g(n)|

which means f ∈ O(g), because c + 1 > 0.

f ∈ Ω(g) can be proved analogously (exercise)

�

CMPUT 204, F2010, M. Buro Asymptotic Notation 27

Lecture 8

Important Growth Rates

∀k ≥ 1, c > 1:

O(1) (O((log n)k) (O(n) (O(n(log n)k) (

O(n2) (O(nk+2) (O(nk+3) (O(cn) (O(n!)

(O(nn)

Proofs: exercise.

For each A (B you need to prove two things:

1. A is a subset of B, A ⊆ B,
meaning f ∈ A⇒ f ∈ B, and

2. ∃f ∈ B : f 6∈ A
Hint: first show f ∈ o(g)⇒ O(f) (O(g).

CMPUT 204, F2010, M. Buro Asymptotic Notation 28

Some more useful generalizations:

Theorem

• Any polynomial p(n) with degree d is in O(nd)

• For any polynomial p(n) and any
c > 1: p(n) ∈ o(cn)

• ∀k ∈ N and ε > 0 : (log n)k ∈ o(nε)

Proofs: exercise

