
CMPUT 201, W2014, M. Buro Contents 1

Part 7: Parallel Computation with POSIX Threads

Contents [DOCUMENT NOT FINALIZED YET]

• Parallel Computation p.2

• POSIX Threads p.5

• Thread Basics p.7

• Creating, Joining, and Exiting PThreads p.12

• Thread Synchronization p.14

• Mutexes p.15

• Condition Variables p.22

• Producer/Consumer p.31

• Deadlocks and Livelocks p.40

Sources: http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html,

https://computing.llnl.gov/tutorials/pthreads, Wikipedia

CMPUT 201, W2014, M. Buro Parallel Computation 2

Parallel Computation

In this age of multi-processor and mulit-core computer
architectures it is important to utilize the gained com-
putational power by parallelizing programs.

The programs we have seen thus far are single-threaded
— there is only one flow of execution that manipu-
lates data in memory and connected devices. By con-
trast, multi-threaded applications use multiple execu-
tion flows that are independently run on multiple CPUs
or cores.

Parallel computers can be roughly classified according
to the level at which the hardware supports parallelism.
This classification is broadly analogous to the distance
between basic computing nodes:

Multi-Core Processors

A multi-core processor is a processor that includes mul-
tiple execution units (“cores”) on the same chip. A
multi-core processor can issue multiple instructions per
cycle from multiple instruction streams.

Simultaneous multi-threading (of which Intel’s Hyper-

CMPUT 201, W2014, M. Buro Parallel Computation 3

Threading is the best known) was an early form of
pseudo-multi-coreism. A processor capable of simul-
taneous multi-threading has only one execution unit,
but when that execution unit is idling (such as during
a cache miss), it uses that execution unit to process
a second thread. IBM’s Cell microprocessor, designed
for use in the Sony PlayStation 3, is another prominent
multi-core processor.

Symmetric Multiprocessing

A symmetric multiprocessor (SMP) is a computer sys-
tem with multiple identical processors that share mem-
ory and communicate via a bus. Bus contention pre-
vents bus architectures from scaling. As a result, SMPs
generally do not comprise more than 32 processors.

Distributed Computers

A distributed computer is a distributed memory com-
puter system in which the processing elements are con-
nected by a network. Distributed computers are highly
scalable.

A cluster is a group of loosely coupled computers that

CMPUT 201, W2014, M. Buro Parallel Computation 4

work together closely, so that in some respects they
can be regarded as a single computer. Clusters are
composed of multiple standalone machines connected
by a network. The vast majority of the fastest 500
supercomputers are clusters.

In this course we will study the basics of multi-threaded
programming. In particular, we will work with the POSIX
thread library and discuss how single-threaded programs
can be parallelized using threads, how threads can com-
municate with each other, and how we can protect data
from being corrupted by multiple threads trying to ac-
cess the data concurrently.

CMPUT 201, W2014, M. Buro POSIX Threads 5

POSIX Threads

The POSIX thread library is a standardized thread ap-
plication program interface for C and C++.

It allows one to spawn a new concurrent process flow.
It is most effective on multi-processor or multi-core sys-
tems where the process flow can be scheduled to run on
another processor thus gaining speed through parallel
or distributed processing.

Threads require less overhead than “forking” or spawn-
ing a new process because the system does not initialize
a new system virtual memory space and environment for
the process. While most effective on a multiprocessor
system, gains are also found on uni-processor systems
which exploit latency in I/O and other system functions
which may halt process execution. E.g., One thread
may execute while another is waiting for I/O or reading
from main memory to finish.

Parallel programming technologies such as MPI and
PVM are used in a distributed computing environment
while threads are limited to a single computer system.

CMPUT 201, W2014, M. Buro POSIX Threads 6

The purpose of using the POSIX, or any other, thread
library in your software is to execute software faster.
All threads within a process share the same address
space. A thread is spawned by defining a function and
its arguments which will be processed in the thread.

All running threads are executed simultaneously on all
available CPU cores. Hundreds of threads my run at
the same time, but if your system only has 4 cores, the
operating system will schedule all threads to take turns,
and at any given time only 4 threads will be active.

Achieving perfect parallelization of your computation
task means that your program runs k times faster on a
k-core computer, compared to a single-threaded imple-
mentation.

Some tasks such as matrix multiplication are very easy
to parallelize. Conceptually, you just let each core com-
pute a fraction of the entries of the result matrix. Other
algorithms are harder to parallelize. For instance, it has
been shown that even with n computation cores, one
needs at least logarithmic time to add n numbers each
consisting of n bits.

CMPUT 201, W2014, M. Buro Thread Basics 7

Thread Basics

Thread operations include thread creation, termination,
synchronization (join, blocking), scheduling, data man-
agement, and thread interaction.

A thread does not maintain a list of created threads,
nor does it know the thread that created it.

All threads within a process share the following data
(i.e., all items below have the same address in all threads):

• Code

• Most data (heap and global variables)

• Open files (descriptors)

• Signals and signal handlers

• Current working directory

• User and group id

CMPUT 201, W2014, M. Buro Thread Basics 8

Each thread has a unique:

• Thread ID

• Set of registers, including stack pointer

• Stack for local variables, return addresses

• Signal mask

• Priority

• Return value: errno

All pthread functions return 0 when successful.

CMPUT 201, W2014, M. Buro Thread Basics 9

Example

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *thread_func(void *ptr)

{

const char *msg = (char *)ptr;

printf("%s\n", msg);

// return pointer to thread result, can’t be pointing to

// local variable

return ptr;

}

int main()

{

pthread_t t1, t2;

const char *msg1 = "I am Thread 1";

const char *msg2 = "I am Thread 2";

void *ret1, *ret2;

// Create independent threads each of which will

// execute thread_func

pthread_create(&t1, 0, thread_func, (void*)msg1);

pthread_create(&t2, 0, thread_func, (void*)msg2);

CMPUT 201, W2014, M. Buro Thread Basics 10

Example (Continued)

// Wait till threads are complete before main

// continues. Unless we wait we run the risk of

// executing an exit which will terminate the

// process and all threads before the threads

// have completed. Thread results are stored in

// ret1 and ret2.

pthread_join(t1, &ret1);

pthread_join(t2, &ret2);

printf("Thread 1 returns: %s\n", (char*)ret1);

printf("Thread 2 returns: %s\n", (char*)ret2);

return 0;

}

Compile with: g++ -lpthread ex1.c

(-lpthread links with pthread library)

Run: ./a.out

Output:

I am Thread 1

I am Thread 2

Thread 1 returns: I am Thread 1

Thread 2 returns: I am Thread 2

CMPUT 201, W2014, M. Buro Thread Basics 11

Details

In this example the same function is used in each thread.
The arguments are different. The functions need not
be the same.

Threads terminate by explicitly calling pthread_exit,
by letting the function return, or by a call to the func-
tion exit which will terminate the process including all
threads.

Threads should not be killed by other threads directly
because this can possibly leak resources like memory,
file descriptors, and mutexes. Instead, a kill-flag can be
used which threads frequently check. If set by a master
thread, threads can then clean up and exit voluntarily.

bool kill_threads = false;

void *thread(void *data) {

...

while (work_left) {

if (kill_threads) {

return retval; // exit thread voluntarily

}

...

}

}

CMPUT 201, W2014, M. Buro Creating, Joining, and Exiting PThreads 12

Creating, Joining, and Exiting PThreads

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*function)(void *),

void *arg);

creates a new thread. Arguments:

• thread - pointer to thread id which will be set.
(unsigned long int defined in bits/pthreadtypes.h)

• attr - set to 0 if default thread attributes are used
(this is all we need in this course)

• function - pointer to the function to be threaded.
It has a single argument, which points to data we
want the thread to process.

• arg - pointer to argument of function. Multiple
arguments can be used by passing the address of a
struct or class object.

CMPUT 201, W2014, M. Buro Creating, Joining, and Exiting PThreads 13

int pthread_join(pthread_t th, void **retval);

waits for termination of another thread. Arguments:

• th - The current thread is suspended until the thread
identified by th terminates

• retval - If retval is not 0, the return value of th
is stored in the location pointed to by retval.

void pthread_exit(void *retval);

terminates the calling thread. Arguments:

retval - Return value of thread.

This function kills the thread. The pthread_exit

function never returns.

Note: *retval must not point to local data because
such data ceases to exist once the thread terminates.
Return values can also be stored in the data structure
whose address is passed on to pthread_create.

CMPUT 201, W2014, M. Buro Thread Synchronization 14

Thread Synchronization

The threads library provides three synchronization mech-
anisms:

• Mutexes — Mutual exclusion lock: Block access to
variables by other threads. This enforces exclusive
access by a thread to a variable or set of variables.

• Joins — Make a thread wait till others are complete
(terminated).

• Condition Variables — Used for waiting until sig-
nalled to continue by another thread.

CMPUT 201, W2014, M. Buro Mutexes 15

Mutexes

Mutexes are used to prevent data inconsistencies due to
operations by multiple threads upon the same memory
area performed at the same time or to execute opera-
tions in a certain order.

A contention or race condition can occur when two or
more threads need to perform operations on the same
memory area, but the results of computations depends
on the order in which these operations are performed.

Mutexes are used for serializing shared resources such
as memory or files.

Whenever a global resource can be accessed by more
than one thread the resource should have a mutex as-
sociated with it. Mutexes are used to only allow one
thread to enter so-called critical code regions that read
or write to shared data. Mutexes can only be used to
synchronize threads belonging to their parent process –
they do not work between processes.

CMPUT 201, W2014, M. Buro Mutexes 16

Example

// without mutex

int counter = 0;

void increment() // possible machine code:

{ // 1. load counter into register

counter++ // 2. increment register

} // 3. store register to counter

// with mutex guarding the critical section

pthread_mutex_t counter_mutex =

PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

void increment()

{

pthread_mutex_lock(&counter_mutex);

counter++

pthread_mutex_unlock(&counter_mutex);

}

CMPUT 201, W2014, M. Buro Mutexes 17

Data Inconsistency Example

Suppose counter=0 and two threads are calling
increment at virtually the same time. Also suppose
that memory accesses are serialized, i.e. only one CPU
core can actually access memory at any given time.

Still, without locking, counter can be 1 or 2 after
finishing both calls. How can this happen?

Thread 1 Thread 2

1. Load to Reg. (0)

1. Load to Reg. (0)

2. Incr. Reg. (1)

2. Incr. Reg. (1)

3. Store Reg. (1)

3. Store Reg. (1)

Result: counter = 1

CMPUT 201, W2014, M. Buro Mutexes 18

Good Case

Thread 1 Thread 2

1. Load to Reg. (0)

2. Incr. Reg. (1) doing something

3. Store Reg. (1) else

1. Load to Reg. (1)

doing something 2. Incr. Reg. (2)

else 3. Store Reg. (2)

Result: counter = 2, as expected!

To avoid data corruption or inconsistencies when threads
share data we need to ensure that at any given time at
most one thread is in the critical section, which in this
case is the counter++ instruction.

Using mutexes accomplishes this goal. When locking
a mutex, the runtime system checks whether another
thread already locked it. If so, the current thread is
suspended and added to a queue of waiting threads.

CMPUT 201, W2014, M. Buro Mutexes 19

When unlocking a mutex, a waiting thread is signalled
to continue and enter the critical section. In this case
the mutex stays locked. If no thread is waiting the
mutex is unlocked.

This way, at most one thread executes code in the
critical section between pthread_mutex_lock() and
pthread_mutex_unlock().

Thread 1 Thread 2

lock mutex do something

1. Load to Reg. (0) lock mutex

2. Incr. Reg. (1) wait

3. Store Reg. (1) wait

unlock mutex continue/still locked

1. Load to Reg. (1)

do something 2. Incr. Reg. (2)

else 3. Store Reg. (2)

unlock mutex

Result: counter = 2

CMPUT 201, W2014, M. Buro Mutexes 20

Complete Example

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

pthread_mutex_t counter_mutex =

PTHREAD_MUTEX_INITIALIZER;

int counter = 0;

void *increment(void*)

{

pthread_mutex_lock(&counter_mutex);

counter++;

printf("Counter value: %d\n", counter);

pthread_mutex_unlock(&counter_mutex);

}

int main()

{

const int TN = 10; // thread number

pthread_t threads[TN];

// create TN threads

for (int i=0; i < TN; ++i) {

pthread_create(&threads[i], 0, increment, 0);

}

CMPUT 201, W2014, M. Buro Mutexes 21

Complete Example (Continued)

// wait until all threads are complete before

// main continues

for (int i=0; i < TN; ++i) {

pthread_join(threads[i], 0);

}

return 0;

}

Compile with g++ -lpthread ex2.c

Run: ./a.out

Output:

Counter value: 1

Counter value: 2

...

Counter value: 10

Everytime, because counter is protected by a mutex.

CMPUT 201, W2014, M. Buro Condition Variables 22

Condition Variables

Condition variables provide yet another way for threads
to synchronize. While mutexes implement synchroniza-
tion by controlling thread access to data, condition vari-
ables allow threads to synchronize based upon the ac-
tual value of data.

Without condition variables, the programmer would need
to have threads continually polling (possibly in a critical
section), to check if the condition is met. This can be
very resource consuming because the thread would be
continuously busy. Using condition variables is a way
to achieve the same goal without polling.

A condition variable is always used in conjunction with
a mutex lock.

A representative sequence for using condition variables
is shown below:

CMPUT 201, W2014, M. Buro Condition Variables 23

Main Thread

- Declare and initialize global variables that require

synchronization (such as "count")

- Declare and initialize a condition variable

- Declare and initialize the associated mutex

- Create threads 1 and 2 to do work

- Join and continue

Thread 1

- Do work up to the point where a certain condition must

hold (such as "count" reaching a specified value)

- Lock associated mutex and check condition

- If condition doesn’t hold call pthread_cond_wait() to

perform a blocking wait for signal from thread 2. Note

that a call to pthread_cond_wait() unlocks the associated

mutex variable so that it can be used by thread 2.

- When signalled, wake up. Mutex is locked. Do some work.

- Explicitly unlock mutex

- Continue and return when done

Thread 2

- Do work

- Lock associated mutex

- Change the value of the global variable that thread 1 is

waiting upon.

- Check value of the global thread 1 wait variable. If it

fulfills the desired condition, signal thread 1.

- Unlock mutex.

- Continue and return when done

CMPUT 201, W2014, M. Buro Condition Variables 24

Using Condition Variables

This example code (cond.c) demonstrates the use of
condition variables we just described. The main func-
tion creates three threads. Two of the threads perform
work and update a “count” variable. The third thread
waits until the count variable reaches a specified value.

Output:

inc_count: thread 1, count = 1, unlocking mutex

Starting watch_count: thread 0

inc_count: thread 2, count = 2, unlocking mutex

inc_count: thread 1, count = 3, unlocking mutex

inc_count: thread 2, count = 4, unlocking mutex

inc_count: thread 1, count = 5, unlocking mutex

inc_count: thread 2, count = 6, unlocking mutex

inc_count: thread 1, count = 7, unlocking mutex

inc_count: thread 2, count = 8, unlocking mutex

inc_count: thread 1, count = 9, unlocking mutex

inc_count: thread 2, count = 10, unlocking mutex

inc_count: thread 1, count = 11, unlocking mutex

inc_count: thread 2, count = 12 Threshold reached.

inc_count: thread 2, count = 12, unlocking mutex

watch_count: thread 0 signal received.

watch_count: thread 0 count now = 137.

inc_count: thread 1, count = 138, unlocking mutex

inc_count: thread 2, count = 139, unlocking mutex

inc_count: thread 1, count = 140, unlocking mutex

inc_count: thread 2, count = 141, unlocking mutex

inc_count: thread 1, count = 142, unlocking mutex

inc_count: thread 2, count = 143, unlocking mutex

inc_count: thread 1, count = 144, unlocking mutex

inc_count: thread 2, count = 145, unlocking mutex

Main(): Waited on 3 threads. Done.

CMPUT 201, W2014, M. Buro Condition Variables 25

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <pthread.h>

const int NUM_THREADS = 3;

const int NUM_INC = 10; // how often inc_count increments

const int COUNT_LIMIT = 12; // when to wake up watch_count

int count = 0;

pthread_mutex_t count_mutex;

pthread_cond_t count_cond;

// increment counter a few times

// wake up watch_count thread when reaching COUNT_LIMIT

void *inc_count(void *t)

{

int my_id = *(int *)t;

for (int i=0; i < NUM_INC; ++i) {

pthread_mutex_lock(&count_mutex);

count++;

// check the value of count and signal waiting thread when

// condition is reached. This occurs while mutex is locked.

if (count == COUNT_LIMIT) {

pthread_cond_signal(&count_cond);

printf("inc_count: thread %d, count = %d Threshold reached.\n",

my_id, count);

}

printf("inc_count: thread %d, count = %d, unlocking mutex\n",

my_id, count);

pthread_mutex_unlock(&count_mutex);

// do some "work" so threads can alternate on mutex lock

sleep(1);

}

return 0;

}

CMPUT 201, W2014, M. Buro Condition Variables 26

// wait until signalled, then add 125

void *watch_count(void *t)

{

int my_id = *(int*)t;

printf("Starting watch_count: thread %d\n", my_id);

/*

Lock mutex and wait for signal. pthread_cond_wait will unlock

mutex while it waits. Also, if COUNT_LIMIT is reached before

this function is run by the waiting thread, the loop will be

skipped to prevent pthread_cond_wait from never returning.

*/

pthread_mutex_lock(&count_mutex);

while (count < COUNT_LIMIT) {

pthread_cond_wait(&count_cond, &count_mutex);

printf("watch_count: thread %d signal received.\n", my_id);

count += 125;

printf("watch_count: thread %d count now = %d.\n", my_id, count);

}

pthread_mutex_unlock(&count_mutex);

return 0;

}

CMPUT 201, W2014, M. Buro Condition Variables 27

int main (int argc, char *argv[])

{

pthread_t threads[NUM_THREADS];

int ids[NUM_THREADS];

// initialize mutex and condition variable objects

pthread_mutex_init(&count_mutex, 0);

pthread_cond_init(&count_cond, 0);

// create threads

// watch

ids[0] = 0;

pthread_create(&threads[i], 0, watch_count, (void *)&ids[0]);

// increment

for (int i=1; i < NUM_THREADS; ++i) {

ids[i] = i;

pthread_create(&threads[i], 0, inc_count, (void *)&ids[i]);

}

// wait for all threads to complete

for (int i=0; i < NUM_THREADS; ++i) {

pthread_join(threads[i], 0);

}

printf("Main(): Waited on %d threads. Done.\n", NUM_THREADS);

// clean up and exit

pthread_mutex_destroy(&count_mutex);

pthread_cond_destroy(&count_cond);

return 0;

}

CMPUT 201, W2014, M. Buro Condition Variables 28

Condition Variable Details

Functions for creating and destroying condition vari-
ables:

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

Condition variables must be defined with type
pthread_cond_t, and must be initialized before they
can be used. There are two ways to initialize a condition
variable:

1. Statically, when it is defined. For example:

pthread_cond_t myconvar = PTHREAD_COND_INITIALIZER;

2. Dynamically, with the pthread_cond_init() func-
tion. The ID of the created condition variable is re-
turned to the calling thread through the condition pa-
rameter. This method permits setting condition vari-
able object attributes, attr. We ignore attributes in this
course, and pass on 0 instead.

pthread_cond_destroy() should be used to free a
condition variable that is no longer needed.

CMPUT 201, W2014, M. Buro Condition Variables 29

Functions for waiting and signalling on condition vari-
ables:

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_broadcast(pthread_cond_t *cond);

int pthread_cond_signal(pthread_cond_t *cond);

pthread_cond_wait() blocks the calling thread un-
til the specified condition is signalled. This function
should be called while mutex is locked, and it will au-
tomatically release mutex while it waits. After a signal
is received and the thread is awakened, mutex will be
automatically locked for use by the thread. The pro-
grammer is then responsible for unlocking mutex at the
end of the critical section.

The pthread_cond_signal() function is used to sig-
nal (or wake up) another thread which is waiting on
the condition variable. It must be called after mutex
is locked. The mutex must be unlocked afterwards, for
pthread_cond_wait() to complete.

CMPUT 201, W2014, M. Buro Condition Variables 30

The pthread_cond_broadcast() function should be
used instead of pthread_cond_signal() if more than
one thread is in a blocking wait state. All waiting
threads will be woken up.

It is a logical error to call pthread_cond_signal()
before calling pthread_cond_wait(), because in this
case the signal will not be received — it’s lost.

Proper locking and unlocking of the associated mutex
variable is essential when using these functions. For
example:

• Failing to lock the mutex before calling
pthread_cond_wait() may cause it NOT to block.

• Failing to unlock the mutex after calling
pthread_cond_signal() may not allow a match-
ing pthread_cond_wait() function to complete
(it will remain blocked).

CMPUT 201, W2014, M. Buro Producer/Consumer 31

Producer/Consumer

When the processing time for individual work items
varies or work items become available only one after
another, using a producer/consumer (or writer/reader)
threading framework can improve CPU utilization.

A possible implementation spawns writer threads that
generate work items and add them to a queue (a dy-
namic first-in-first-out data structure), from which rea-
der threads remove work items and process them.

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <pthread.h>

#include "Queue.h"

pthread_mutex_t mutex;

pthread_cond_t item_arrived_cond;

pthread_cond_t item_read_cond;

// data guarded by mutex

Queue queue(100); // contains list of work items

bool kill_all; // true => ask readers to quit

int items_to_be_processed; // how many items in total

int items_processed; // number of processed items

CMPUT 201, W2014, M. Buro Producer/Consumer 32

// writer thread code that produces work items

void *writer(void *job)

{

// how many items to create?

int num_items = *(int*)job;

for (int i=0; i < num_items; ++i) {

pthread_mutex_lock(&mutex);

// wait until there is space in queue

while (queue.full()) {

pthread_cond_wait(&item_read_cond, &mutex);

}

queue.add(i);

items_to_be_processed++;

// signal to one waiting reader that work

// has arrived

pthread_cond_signal(&item_arrived_cond);

pthread_mutex_unlock(&mutex);

}

return 0;

}

CMPUT 201, W2014, M. Buro Producer/Consumer 33

// reader thread code that consumes work items

// and processes them

void *reader(void *)

{

for (;;) {

pthread_mutex_lock(&mutex);

while (queue.empty() && !kill_all) {

// wait here when queue is empty and

// termination not requested

pthread_cond_wait(&item_arrived_cond,

&mutex);

}

if (kill_all) {

// work done - quit thread

pthread_mutex_unlock(&mutex);

break;

}

// retrieve one work item

int work = queue.remove();

// let others access the queue

pthread_mutex_unlock(&mutex);

CMPUT 201, W2014, M. Buro Producer/Consumer 34

// process work item

{

// be busy for a while ...

volatile int a = work;

// volatile: a not loaded into register

// and compiler can’t remove the following

// useless code

for (int i=0; i < 1000000; ++i) {

a += i*3 + i*i;

}

// in production code, the result would

// now be stored somewhere ...

}

// signal to a waiting writer that item

// has been processed

pthread_mutex_lock(&mutex);

items_processed++;

pthread_cond_signal(&item_read_cond);

pthread_mutex_unlock(&mutex);

}

return 0;

}

CMPUT 201, W2014, M. Buro Producer/Consumer 35

int main(int argc, char *argv[])

{

if (argc != 4) {

fprintf(stderr, "call: %s #writers #readers #items\n",

argv[0]);

exit(10);

}

int num_writers = 2;

int num_readers = 8;

int num_items = 1000;

num_writers = atoi(argv[1]);

num_readers = atoi(argv[2]);

num_items = atoi(argv[3]);

printf("writers:%d, readers:%d items:%d\n",

num_writers, num_readers, num_items);

pthread_cond_init(&item_arrived_cond, 0);

pthread_cond_init(&item_read_cond, 0);

pthread_t writers[num_writers], readers[num_readers];

int jobs[num_writers];

queue.reset();

items_processed = items_to_be_processed = 0;

kill_all = false;

// spawn reader threads

for (int i=0; i < num_readers; ++i) {

pthread_create(&readers[i], 0, reader, 0);

}

CMPUT 201, W2014, M. Buro Producer/Consumer 36

// spawn writer threads

int items_per_writer = num_items / num_writers;

int rem = num_items % num_writers;

for (int i=0; i < num_writers; ++i) {

jobs[i] = items_per_writer;

if (rem-- > 0) { // distribute remaining items

jobs[i]++;

}

pthread_create(&writers[i], 0, writer, &jobs[i]);

}

// wait for all writers to finish

for (int i=0; i < num_writers; ++i) {

pthread_join(writers[i], 0);

}

// wait for all readers to finish their work

for (;;) {

pthread_mutex_lock(&mutex);

if (items_processed == items_to_be_processed) {

// done

pthread_mutex_unlock(&mutex);

break;

}

// wait for one reader to read item

pthread_cond_wait(&item_read_cond, &mutex);

pthread_mutex_unlock(&mutex);

}

CMPUT 201, W2014, M. Buro Producer/Consumer 37

// readers are now waiting for new work, but we are done

// so we ask them to quit

printf("terminate readers\n");

// wake up readers to make them see that kill_all

// has changed

pthread_mutex_lock(&mutex);

kill_all = true;

pthread_cond_broadcast(&item_arrived_cond);

pthread_mutex_unlock(&mutex);

// wait for all reader threads

for (int i=0; i < num_readers; ++i) {

pthread_join(readers[i], 0);

}

printf("processed: %d, to_be_processed: %d\n",

items_processed, items_to_be_processed);

// clean up

pthread_cond_destroy(&item_arrived_cond);

pthread_cond_destroy(&item_read_cond);

return 0;

}

CMPUT 201, W2014, M. Buro Producer/Consumer 38

// simple integer queue data structure supporting

//

// constructor(capacity) allocates capacity elements

// reset() empties queue

// add(x) adds element x at tail

// remove() removes and returns head element

// empty() true iff empty

// full() true iff full

class Queue

{

public:

// initializes empty queue with maximal c elements

Queue(int c) {

capacity = c;

data = new int[capacity];

reset();

}

~Queue() { delete [] data; }

// empties queue

void reset() { head = tail = n = 0; }

// return true iff queue is empty

bool empty() { return n == 0; }

// return true iff queue is full

bool full() { return n >= capacity; }

CMPUT 201, W2014, M. Buro Producer/Consumer 39

// add element to queue (at tail)

// pre-condition: not full

void add(int x) {

assert(!full());

data[tail++] = x;

if (tail >= capacity)

tail = 0;

n++;

}

// remove and return head element

// pre-condition: not empty

int remove() {

assert(!empty());

int x = data[head++];

if (head >= capacity)

head = 0;

n--;

return x;

}

private:

int capacity; // maximum number of elements

int *data; // pointer to element array

int head, tail; // current remove/add locations

int n; // actual number of elements stored

};

Code available in lec-week13-code

CMPUT 201, W2014, M. Buro Deadlocks and Livelocks 40

Deadlocks and Livelocks

A deadlock is a situation which occurs when a process
or thread enters a waiting state because a resource re-
quested by it is being held by another waiting process,
which in turn is waiting for another resource. If a pro-
cess is unable to change its state indefinitely because
the resources requested by it are being used by another
waiting process, then the system is said to be in a dead-
lock.

As an example, suppose a computer has three CD drives
and three processes. Each of the three processes holds
one of the drives. If each process now requests an-
other drive, the three processes will be in a deadlock.
Each process will be waiting for the “CD drive released”
event, which can only be caused by one of the other
waiting processes. Thus, it results in a circular chain.

A livelock is similar to a deadlock, except that the
states of the processes involved in the livelock con-
stantly change with regard to one another, none pro-
gressing. Livelock is a special case of resource starva-
tion; the general definition only states that a specific

CMPUT 201, W2014, M. Buro Deadlocks and Livelocks 41

process is not progressing.

A real-world example of livelock occurs when two people
meet in a narrow corridor, and each tries to be polite
by moving aside to let the other pass, but they end up
swaying from side to side without making any progress
because they both repeatedly move the same way at
the same time.

Livelock is a risk with some algorithms that detect and
recover from a deadlock. If more than one process takes
action, the deadlock detection algorithm can be repeat-
edly triggered. This can be avoided by ensuring that
only one process (chosen randomly or by priority) takes
action.

CMPUT 201, W2014, M. Buro Deadlocks and Livelocks 42

Deadlock Example

#include <pthread.h>

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;

void *simple_thread(void *)

{

pthread_mutex_lock(&mutex2); // lock mutex2

pthread_mutex_lock(&mutex1); // lock mutex1

pthread_mutex_unlock(&mutex1); // unlock mutex1

pthread_mutex_unlock(&mutex2); // unlock mutex2

return 0;

}

int main()

{

pthread_t tid;

// create a thread

pthread_create(&tid, 0, &simple_thread, 0);

pthread_mutex_lock(&mutex1); // lock mutex1

pthread_mutex_lock(&mutex2); // lock mutex2

pthread_mutex_unlock(&mutex2); // unlock mutex2

pthread_mutex_unlock(&mutex1); // unlock mutex1

// wait for thread to finish

pthread_join(tid, 0);

}

CMPUT 201, W2014, M. Buro Deadlocks and Livelocks 43

In this example, two threads lock two mutexes in dif-
ferent orders.

This creates a deadlock because both threads will be
successful acquiring their first respective mutexes, but
then block on the second call, where both will wait for
the other thread to unlock the mutex — which will
never happen.

This situation could have been prevented by locking
mutexes in the same order:

void *simple_thread(void *)

{

pthread_mutex_lock(&mutex1); // lock mutex1

pthread_mutex_lock(&mutex2); // lock mutex2

...

int main()

{

...

pthread_mutex_lock(&mutex1); // lock mutex1

pthread_mutex_lock(&mutex2); // lock mutex2

...

Now one of the threads will block on the first call, and
proceed once the other thread is done!

CMPUT 201, W2014, M. Buro Deadlocks and Livelocks 44

In general, deadlocks can be prevented by imposing an
order on mutexes and only locking mutexes in that or-
der.

Only rarely will mutexes be locked in consecutive lines
of code, and debugging deadlocks may therefore be
much harder in more complex projects.

Unlike “silent” data corruption which may happen in
data race situations, deadlocks manifest themselves ex-
plicitly: the program just freezes. But of course, like
data races, deadlocks may not happen in any particular
program test run because thread scheduling depends on
external factors such as other programs running at the
same time.

The valgrind tool helgrind can help identify the
lines of code which may potentially cause deadlocks,
e.g. by running

valgrind --tool=helgrind a.out

Your program should be compiled with -g to give
valgrind access to source code information. Try it
with the deadlock example mentioned earlier!

