
CMPUT 201, W2014, M. Buro Contents 1

Part 2: C/C++ Basics

Contents [DOCUMENT FINALIZED]

• C vs. C++ p.4

• Basic Building Blocks p.5

• C++ Programming Quickstart p.6

• Identifiers p.9

• Comments p.10

• Variable Definition p.12

• Simple Types p.13

• Integer Type Qualifiers: signed, unsigned p.16

• Arithmetic and Number Ranges p.17

• Integer Constants p.18

• Floating-Point Constants p.19

• Character Constants p.20

• Enumeration Types p.21

• Arithmetic Operators p.22

•Mixing integers and floating-point values p.23

CMPUT 201, W2014, M. Buro Contents 2

• Relational Operators p.24

• Useful g++ Flags p.25

• Logical Operators p.26

• Increment & Decrement Operators p.27

• Expressions p.29

• Assignment Operators p.30

• Overview: Associativity, Precedence, Arity p.33

• Type Conversions p.34

• Program Flow Control p.35

• if-then-else Statement p.36

• switch Statement p.38

• goto Statement p.39

• Loops p.40

• while Loop p.41

• do Loop p.42

• for Loop p.43

• Loop Control p.46

CMPUT 201, W2014, M. Buro Contents 3

• Functions p.48

• Function Declarations p.50

• Function Definitions p.51

• Some C Library Functions p.54

• Variable Scope p.55

• Function Call Mechanism p.57

• Passing Parameters: Call-By-Value p.60

• Passing Parameters: Call-By-Reference C++ p.61

• Swap Function C++ p.62

• Passing Large Objects C++ p.63

C++ : feature available in C++ but not in C

CMPUT 201, W2014, M. Buro C vs. C++ 4

C vs. C++

// this is a C program

#include <stdio.h>

int main()

{

printf("hello world\n");

return 0;

}

// this is a C++ program

#include <iostream>

using namespace std;

int main()

{

cout << "hello world" << endl;

return 0;

}

Week 2 Similar syntax (how it looks) and semantics (what
it does)

C can be considered a C++ subset (well, almost). That
is: most C programs are valid C++ programs

Major C++ additions: classes, inheritance, operator
overloading, templates

In this course we’ll treat C as C++ subset and use
g++ as compiler. If you want to compile the presented
programs with gcc you need to instruct it to accept c99
standard programs: gcc -std=c99

C++ features not available in C will be highlighted.

CMPUT 201, W2014, M. Buro Basic Building Blocks 5

Basic Building Blocks

// this is a comment

/*

This is also a comment

*/

#include <stdio.h> // preprocessor command

int foo(int x) // function definition

{ // code block

return x+1; // return expression value

}

int main() // this is where all C programs start

{

int i = 0; // variable definition + init.

while (i < 10) { // loop + condition

i = i+1; // expression + assignment

printf("%d ", foo(i)); // function calls, output

}

if (i >= 10) i = 1; // conditional code execution

else i = 0;

return i; // return result, exit function

}

CMPUT 201, W2014, M. Buro C++ Programming Quickstart 6

C++ Programming Quickstart

We’d like to start programming right away. Here is
what you need to know:

• C++ program execution starts in function main

• Statements are executed one after the other

• Variables have to be defined before using them, e.g.
int i = 5; // int variable i set to 5

• Common operators used for arithmetic and Boolean
expressions, e.g.
a = b + c; // b plus c assigned to a

a < b // true if a less than b

• Code blocks are enclosed in {...}
• Conditional program execution:
if (a < b) {

// executed if condition is true

}
while (a >= b) {

// repeatedly executed while true

}

CMPUT 201, W2014, M. Buro C++ Programming Quickstart 7

C++ Programming Quickstart (continued)

We also would like to see some program output.

Without going into much detail yet we will use C library
function printf (“print formatted”, type man 3 printf
for learn more, including the need to include stdio.h).

// outputs some text enclosed in ""

printf("hello world");

// output variables

// %d is a placeholder for an int value

// %f is a placeholder for a float value

// number of % and following variables

// must match

int a = 5;

float b = 3.5;

printf("This is an integer: %d", a);

printf("This is a fp value: %f", b);

// move cursor to next line (newline)

printf("\n");

CMPUT 201, W2014, M. Buro C++ Programming Quickstart 8

C++ Programming Quickstart (continued)

After creating a source code file (e.g. foo.c) with an
editor such as emacs, issue

g++ foo.c

This will create file a.out, which you can start by issuing
./a.out in the terminal window. If you want to give the
created executable a different name use option -o

If the program contains errors, the compiler will let you
know.

In this case you have to correct the errors using the
editor and compile again.

It is a good idea to open two terminal windows: one for
editing (you don’t leave the editor) and one for compil-
ing and running your program.

In the lab we will see how to compile from within emacs,
which is convenient because you can directly jump to
error locations.

CMPUT 201, W2014, M. Buro Identifiers 9

Identifiers

Used to name variables, functions, struct members, and
labels

• Identifiers are case-sensitive

• Start with or letter

• Remaining part all letters, digits, or

• Exceptions are C++ keywords such as
if else static for do while ...

Valid identifiers:
sumOfValues x0 FooBar foobar x y z

Invalid identifiers:
0x $y .name while @abc foo# ^ ^ ;-)

CMPUT 201, W2014, M. Buro Comments 10

Comments

It is important to comment your code – for others and
yourself!

C++ comments have the following form:

• // this is a single line comment

• /* this is a

multi-

line

comment

*/

•Multi-line comments cannot be nested!
Illegal: /* /* */ */

CMPUT 201, W2014, M. Buro Comments 11

Where to put comments?

Good comments are very important. Put them

• at the beginning of files describing their purpose,

• on top of function definitions discussing parameters,
function effects, and return values,

• on top of class definitions describing their purpose,

• in front of non-trivial parts, meaning anything you
wouldn’t instantly understand when looking at the
code a month later

No need to write novels or to comment each program
statement

CMPUT 201, W2014, M. Buro Variable Definition 12

Variable Definition

int lower, upper, step;

char c; // all values undefined!

float f = 0; // initialized with 0

int i = c + 1; // undefined! Does g++ complain?

const float PI = 3.1415926535;

PI = 0; // compiler complains! (const)

• In C++, variables need to be defined prior to usage

• Variable definitions define the type of data to be
stored in a variable. Variables can be initialized on
the spot.

• Value of uninitialized variables is undefined!
(unlike Java)

• const-qualifier makes variables read-only

CMPUT 201, W2014, M. Buro Simple Types 13

Simple Types

Integer Types

• finite range of integral numbers {0,±1,±2, ...}
• multi-purpose: memory = sequence of integers,

everything is encoded as integers

Floating-Point Types

• finite subset of rational numbers of form m · 2k,
where m, k are integers

• can express very small to very big numbers

• suitable for scientific computations

• inexact! rounding errors!

float a = 1.0;

float b = 1.00000001;

// here, a equals b!

• other fundamental algebraic laws no longer valid!
E.g. a + (b + c) 6= (a + b) + c for suitable a, b, c

CMPUT 201, W2014, M. Buro Simple Types 14

Simple Types (2)

• bool: false, true; 1 byte (8 bits) C++

• char: ASCII character (’a’, ’?’ ...); 1 byte integer

• short: -32,768..+32,767; 2 byte integer (16 bits)

• int: -2,147,483,648..+2,147,483,647;
4 byte integer (32 bits)

• float: ≈ −1038..− 10−38, 0,+10−38.. + 1038

4 byte floating-point value (7 digits)

• double: ≈ −10308..−10−308, 0,+10−308..+10308

8 byte floating-point value (15 digits)

CMPUT 201, W2014, M. Buro Simple Types 15

Examples

#include <stdio.h>

int main()

{

bool flag = false; // 1 byte Boolean variable

int numOfBeans = 0; // 4 byte signed int. variable

unsigned short bits16 = 0; // 2 byte unsigned integer

float x = 0.1; // 4 byte f-p variable

printf("flag=%d numOfBeans=%d bits16=%d PI=%.20f",

flag, numOfBeans, bits16, x);

}

Output:

flag=0 numOfBeans=0 bits16=0 x=0.10000000149011611938

• printf prints values of various types defined in the
format string by %d (integer) and %.20f (float with
20 digits after decimal point). See
http://www.cplusplus.com/reference/cstdio/printf/

or the section on formatted input/output later in the
notes for details.

• Can you explain why the value of x is not 0.1 in the
output?

CMPUT 201, W2014, M. Buro Integer Type Qualifiers: signed, unsigned 16

Integer Type Qualifiers: signed, unsigned

Specifies whether a variable is signed or unsigned

No qualifier → signed

• signed char: -128..127 1 byte

• unsigned char: 0..255 1 byte

• short: -32768..32767 2 bytes

• unsigned short: 0..65535 2 bytes

• unsigned int: 0..4,294,967,295 4 bytes

CMPUT 201, W2014, M. Buro Arithmetic and Number Ranges 17

Arithmetic and Number Ranges

unsigned char foo = 255;

unsigned char bar = foo+1; // bar = 0!

int x = 123456, y = 654321;

int z = x * y; // z = -824525248 Ouch!

No overflows are detected in C++ arithmetic.

Integer +/- simply wraps around!

More specifically: arithmetic is done modulo 2k (k =
variable bit size), i.e. only the remainder when dividing
by 2k is maintained (= the k least-significant bits).

So, double check that arithmetic in your program doesn’t
exceed variable number ranges!

The C++ compiler and the runtime system can’t help
you.

When in doubt, add explicit range checks.

CMPUT 201, W2014, M. Buro Integer Constants 18

Integer Constants

• An integer constant like 12345 is an int
int foo = 12345;

• Unsigned constants end with u or U
unsigned short bar = 60000u;

• Leading 0 (zero) indicates an octal (base 8) constant
(e.g. 037 = 3 · 8 + 7 = 31)
unsigned short file permissions = 0666;

• Leading 0x means hexadecimal
(base 16, digits: 0..9,a,b,d,e,f)
E.g. 0x1f = 31, 0x100 = 256, 0xa = 10
unsigned int thirty two ones = 0xffffffff;

CMPUT 201, W2014, M. Buro Floating-Point Constants 19

Floating-Point Constants

• Floating-point constants contain a decimal point
(123.4) or an exponent (2e-2 = 2 · 10−2 = 0.02) or
both

• Their type is double (8 bytes), unless suffixed

• Suffixes f and F indicate float (4 bytes)

float two = 2.0; // converted to float

float e = 2.71828182845905f;

CMPUT 201, W2014, M. Buro Character Constants 20

Character Constants

char charx = ’x’; // = 120

char newline = ’\n’; // = 10

char digit1 = ’0’ + 1; // = 49 (’1’)

char hex = ’\x7f’; // = 127

• Characters within single quotes e.g. ’A’ ’%’

• Characters are stored as 1-byte integers using their
ASCII code.
E.g. ’0’ is represented as 48 (man ascii)

• Escape sequences for non-printable characters:
’\n’ newline, ’\’’ single quote,
’\\’ backslash, ’\a’ bell,
’\r’ carriage return, ’\xhh’ hexadecimal code

CMPUT 201, W2014, M. Buro Enumeration Types 21

Enumeration Types

enum Month { JAN=1, FEB, MAR, APR ...};

// JAN=1 FEB=2 MAR=3 APR=4 ...

enum Month u, v;

u = JAN; v = APR;

enum Answer { NO, YES };

enum Answer a = YES;

int b = a; // legal (1)

a = 1; // illegal!

a = JAN; // legal?

// C++ allows: Month u; Answer a;

// (enum is implicit)

• List of named integer constants

• First constant has value 0, next 1, etc.

• Values can be assigned

• Unassigned successors set to previous value + 1

• Names in different enumerations must be distinct.
Values need not.

CMPUT 201, W2014, M. Buro Arithmetic Operators 22

Arithmetic Operators

+ - * / % : result type depends on operands

int x1 = x0 + delta;

float c = a * b;

int y1 = 8 / 5; // = 1

int y2 = -8 / 5; // = -1

int y3 = 8 % 5; // = 3

• Division int / int rounds towards 0

• x / 0 and x % 0 lead to undefined behaviour

• x % y computes the remainder when x is divided by
y (can not be applied to floating-point values).

• The following relation holds true for all a, b != 0:
((a / b) * b + (a % b)) == a

I.e., -7 % 3 = -1

CMPUT 201, W2014, M. Buro Mixing integers and floating-point values 23

Mixing integers and floating-point values

• Two int operands : integer operation
– Careful! (4/5) = 0 !

– Division result is rounded towards 0

• One integer and one floating-point operand
– the integer is silently converted into floating-point

format

– then the floating-point operator is executed

– (4.0/5) = (4/0.5) = 0.8

• Two floats: floating-point operation
– (4.0/5.0) = 0.8

If x and y are integers and you want to compute the
“exact” floating-point ratio you need to “cast types”
like so:

double ratio = ((double)x)/y;

This instructs the compiler to generate code that first
converts x into a double floating-point number.

CMPUT 201, W2014, M. Buro Relational Operators 24

Relational Operators

Compare two values with

> >= < <= == (equal) != (not equal)

bool v1_eq_v2 = (v1 == v2); // equal?

bool x_ge_0 = (x >= 0); // greater or eq.

bool x = 5; // != 0 -> true

int a = (1 > 0); // true -> 1

Result type bool (values: true or false)

Watch out: == is equality test, = is assigment!

bool vs. int

• bool is only available in C++

• In integer expressions, bool values are interpreted as
0 (false) or 1 (true)

• int values != 0 are interpreted as true, 0 as false

CMPUT 201, W2014, M. Buro Useful g++ Flags 25

Useful g++ Flags

g++ -Wall -Wextra -Wconversion -O test.c

reports potentially dangerous but valid C++ code such
as

if (c = 0) ... // assignment, not equality test

or uninitialized variables (for which data-flow analysis is
required which is done only when optimizing code: -O)

Is the value of c = 0 in above example true or false?

CMPUT 201, W2014, M. Buro Logical Operators 26

Logical Operators

if (a >= ’a’ && a <= ’z’).. // a is a lower-case letter

if (a < ’0’ || a > ’9’)... // a is *not* a digit

if (!valid) ... // true iff valid is false

&& || : Boolean shortcut operators

• evaluated from left to right

• evaluation stops when truth-value is known

• && (shortcut and): evaluation of (exp1 && exp2)

stops when exp1 evaluates to false

• || (shortcut or): evaluation of (exp1 || exp2)

stops when exp1 evaluates to true

! : Boolean negation !false = true, !true = false

(can also be applied to ints: !5 = false, !0 = true)

CMPUT 201, W2014, M. Buro Increment & Decrement Operators 27

Increment & Decrement Operators

int a = 0;

a++; // a now 1

a--; // a now 0

++a; // a now 1

--a; // a now 0

int x = 5;

int y = x++; // y=5, x=6

int z = ++x; // z=7, x=7

int n = 3;

x = n + n++; // undefined!

y = y && n++; // DANGER!

• ++ : adds 1 to variable, -- : subtracts 1

• can be either prefix (++n) or postfix (n++)

• ++n increments n, value of expression is that of n
after increment

• n++ increments n, value of expression is original
value of n

CMPUT 201, W2014, M. Buro Increment & Decrement Operators 28

Watch out! If expression terms have side-effects like ++
or function calls, evaluation order may matter!

In this case, split expression like so:

int x = 5;

int a = (++x) + (x--);

// case 1. ++x first: a = 6 + 6 = 12

// case 2. x-- first: a = 5 + 5 = 10

// better:

int a = x++; // evaluate x++ first

// and then --x

a += --x; // shorthand for a = a + (--x)

This works because ; marks a so-called sequence point
at which all previous expressions are fully evaluated be-
fore proceeding.

CMPUT 201, W2014, M. Buro Expressions 29

Expressions

Week 3

(a+b) * (a-b) // OK

)a+b(// not OK

(a2*x + a1)*x + a0 // OK

a + b + c // OK, a + b first

a + b * c // OK, * first

(a >= b) || (c != 1) // Boolean expr.

• Built from variables, constants, operators, and ()

• infix notation (i.e., operator between operands)

• () used for explicit evaluation order, must be bal-
anced

• Operators have fixed arity, associativity & prece-
dence

CMPUT 201, W2014, M. Buro Assignment Operators 30

Assignment Operators

int a, b, c;

float d;

a = a + 4; a += 4; // equivalent

b = b >> x; b >>= x; // equivalent

c = c | 3; c |= 3; // equivalent

d = d * (a+1); d *= a+1; // equivalent

• Set/change value of variable

• Syntax: <variable> = <expression> ;
(<class> denotes a word in a syntactic class, such
as a variable or expression)

• Semantics: expression is evaluated first and its value
is assigned to variable

• v OP= e is equivalent to v = v OP (e),
where OP is one of + - * / % << >> & ^ |

CMPUT 201, W2014, M. Buro Assignment Operators 31

Operator Precedence

Order of operator evaluation in the absence of ()

b + c * d

// * before +

// same as: (b + (c * d))

b >= 5 && c <= 6

// >= and <= before &&

// same as: ((b >= 5) && (c <= 6))

a = c+1;

// + before =

// same as a = (c+1);

Establishing an operator precedence relation decreases
the need for explicit ordering using ()

If in doubt about operator precedence, use () !

CMPUT 201, W2014, M. Buro Assignment Operators 32

Operator Associativity

The evaluation order of binary operators of the same
precedence level

a - b - c

// ambiguous! Could mean (a-b)-c or a-(b-c)

// which may have different values!

// In C++, left to right evaluation: (a-b)-c

// - is left associative

a = b = c+1;

// assignments are evaluated right to left

// same as: a = (b = (c+1));

// the value of an assignment is the

// value that was assigned

// = is right associative

CMPUT 201, W2014, M. Buro Associativity, Precedence, Arity Table 33

Associativity, Precedence, Arity Table

() [] -> . ltr 15 (high)

! ~ ++ -- + - * & (type) sizeof rtl 14

* / % ltr 13

+ - ltr 12

<< >> ltr 11

< <= > >= ltr 10

== != ltr 9

& ltr 8

^ ltr 7

| ltr 6

&& ltr 5

|| ltr 4

?: rtl 3

= += -= *= /= %= &= |= <<= >>= rtl 2

, ltr 1 (low)

• rtl: right (to left) associative, ltr: left (to right) associative

• cyan box : arity 1 (unary operators), all others arity 2 (binary)

• number: precedence level (e.g., == binds tighter than =)

There is no need to memorize this table. For now,
just be aware that unary operators bind tighter than
binary operators, * / % binds tighter than + - and
assignment operators are near the bottom and right
associative.

CMPUT 201, W2014, M. Buro Type Conversions 34

Type Conversions

int a; double b;

// Implicit type casting

b = a; // OK, ints can be represented by doubles

a = b; // not OK, warning should be issued

// Explicit type casting: convert double into int,

// compiler stays silent

a = (int)b; // oldest C style

a = int(b); // older C++ style

a = static_cast<int>(b); // new C++ style

Types of variable and expression must be compatible

The expression value is silently converted to type of
variable if possible

Explicit type casts suppress warnings, but precision may
be lost!

Floating point numbers are truncated when converted
to integers, not rounded! (e.g.,: (int)6.9 = 6)

CMPUT 201, W2014, M. Buro Program Flow Control 35

Program Flow Control

• if-then-else

• switch

• goto

• loops

• functions

CMPUT 201, W2014, M. Buro if-then-else Statement 36

if-then-else Statement

if (y > x) {

x = y; // executed if condition is true

}

if (x < 0) {

sign = -1; // first condition true

} else if (x > 0) {

sign = +1; // first false, second true

} else {

sign = 0; // both false

}

If the then/else parts consist of more than one state-
ment, it must be enclosed in { }

Good practice: always use { } irrespective of the num-
ber of statements.

This way, when adding statements later, the code will
not become incorrect.

CMPUT 201, W2014, M. Buro if-then-else Statement 37

Code Indentation

// bad indentation

if (x > 0) {

do_this...

}

else {

do_that...

} y = 0;

// good indentation

if (x > 0) {

do_this...

} else {

do_that...

}

y = 0;

Code in if and else branches or code blocks in general
must be indented (commonly by 2 or 4 spaces) to im-
prove readability.

Using the tab character is discouraged because when
mixing spaces with tabs the text appearance depends
on the tab-length, which is usually 8 spaces but can
vary.

CMPUT 201, W2014, M. Buro switch Statement 38

switch Statement

Multi-way switch dependent on integer value

char c; ...

switch (c) { // integer expression

case ’+’: // integer constant

result = x + y; // gets here if c == ’+’

break; // continue at (*) below

case ’-’:

result = x - y; // gets here if c == ’-’

break; // continue at (*) below

case ’q’,’x’:

exit(0); // gets here if c == ’q’ or ’x’

default: // all other cases handled here

cerr << "illegal input" << endl;

exit(10);

}

// (*)

Important: each case should be terminated by a break
statement, unless the program leaves the block.

Otherwise, execution will “fall through”,
i.e. the following case’s code will be executed next.

CMPUT 201, W2014, M. Buro goto Statement 39

goto Statement

...

goto jump_location;

...

jump_location:; // resume execution here

• Control flow resumes at a specific location marked
by a label (identifier)

• Avoid! Goto code is hard to understand and main-
tain ; “Spaghetti code”

// pasta anyone?

int i = 5; goto A;

C:;

printf("confused\n");

B:; i++;

A:; if (i < 10) goto B;

goto C;

CMPUT 201, W2014, M. Buro Loops 40

Loops

• Repeat execution of statements until a condition is
met

• Three forms:

while (<expr>)

<statement>

do

<statement>
while (<expr>) ;

for (<init> ; <expr> ; <update>)

<statement>

where <statement> is either a single statement, or
a block enclosed in { }

CMPUT 201, W2014, M. Buro while Loop 41

while Loop

// sum up values 1..100

int s = 0, i = 1;

while (i <= 100) {

s += i;

i++;

}

• while (<expr>) <statement>

• while the expression evaluates to true execute state-
ment repeatedly

• repeated code must be indented

CMPUT 201, W2014, M. Buro do Loop 42

do Loop

int s = 0, i = 1;

do {

s = s+i;

i++;

} while (i <= 100);

• do <statement> while (<expr>) ;

• first execute statement and loop if expression evalu-
ates to true

• repeated code block must be indented

• unlike while loops, bodies of do loops are executed
at least once because the expression is checked at
the end.

CMPUT 201, W2014, M. Buro for Loop 43

for Loop

int s = 0;

for (int i=1; i <= 100; ++i) {

s += i;

}

for (<init> ; <expr> ; <update>)

<statement>

is a shorthand for

{
<init> ;

while (<expr>) {
<statement>

<update> ;

}
}

CMPUT 201, W2014, M. Buro for Loop 44

for Loop (continued)

Advantage of for loops: initialization, loop condition,
and variable update are co-located which makes the
code easier to understand.

Each part can be made more complex by using the
comma operator, which simply chains expressions:

for (int a=2, b=3;

a * b < 100;

a++, b += 2) {

// use a and b

}

Here, variables a,b are defined, the loop body is exe-
cuted as long as a * b < 100 and after each iteration
a is incremented by 1 and b by 2.

CMPUT 201, W2014, M. Buro for Loop 45

for Loop (continued)

for (float x = 0; x < 1.0, x += 0.1)

// use x

}

printf("%f\n", x); // compiler complains

// x undeclared

Variables defined in the initialization part are local to
the for loop, i.e. they are not accessible outside.

This is a useful data encapsulation feature, which guards
against accidentally reusing data that was set elsewhere.

double x;

for (x = 0; x < 1.0, x += 0.1)

// use x

}

printf("x after termination %f\n", x);

Sometimes, however, we’d like to have access to loop
variables after the loop has terminated. In this case, we
can just use a previously defined variable.

CMPUT 201, W2014, M. Buro Loop Control 46

Loop Control

• break; : exits loop immediately

• continue; : skips loop body

while (...) {

...

break;

// equivalent to

// goto break_loc;

...

}

break_loc: ;

while (...) {

...

continue;

// equivalent to

// goto cont_loc;

...

cont_loc: ;

}

In for loops, continue resumes with the update

CMPUT 201, W2014, M. Buro Loop Control 47

Example

int N = 1000; // number of items

int x = 5; // element to look for

int i;

for (i=0; i < N; i++) {

// look for x at position i

...

if (found)

break; // loop terminates if found

}

if (i < N) {

// found x at position i

} else {

// here: i = N, i.e. we didn’t find x

}

CMPUT 201, W2014, M. Buro Functions 48

Functions

void sub_task1() { ... } // implemented by Peter

void sub_task1() { ... } // implemented by Ann

void sub_task3() { } // mock implementation

bool done() { ... } // implemented by Sue

int main()

{

sub_task1(); // executes code in function

// when done, resume here

sub_task2();

while (!done()) {

sub_task3();

}

}

CMPUT 201, W2014, M. Buro Functions 49

Functions (2)

•Modular programming: break tasks down into smaller
sub-tasks

• Idea: give code block a name, jump to it when
needed, and resume execution at calling site when
done.

• Increases readability

• Eases debugging and program maintenance because
program pieces can be tested individually

• Faster project development: each team member can
work on a different function.

CMPUT 201, W2014, M. Buro Function Declarations 50

Function Declarations

void write(float x); // returns nothing

int add4(int a1, int a2, int a3, int a4);

int random(); // returns a random number

• Functions must be declared before they are used

• Syntax:

<type> <function-name> (<parameter-list>);

•Meaning: a function is declared that computes and
returns a value of a certain type given a list of pa-
rameters

• return type void indicates that nothing is returned

• empty parameter list: no parameters are used

Once the compiler sees a function declaration it can
check whether subsequent calls meet its standards, i.e.,
whether the passed on parameters have the correct type
and whether the returned value is used according to its
type.

E.g., the header file stdio.h contains the declaration
of function printf.

CMPUT 201, W2014, M. Buro Function Definitions 51

Function Definitions

// compute sum of four parameters

int add4(int a1, int a2, int a3, int a4)

{

return a1 + a2 +a3 + a4;

}

• Function definitions specify the code that is executed
when calling the function.

• Syntax:

<type> <name> (<param-list>)

{

<statements>
}

• Exit void functions with return;.
Can be placed anywhere in the function body.

• Values are returned by return <expr> ;

Type of expression must match function return type.

• Parameters are treated as local variables

CMPUT 201, W2014, M. Buro Function Definitions 52

Function Examples

// compute the square of x

int square(int x) { return x * x; }

// return true if and only if x is odd

bool is_odd(int x) { return x % 2; }

// compute absolute value of x

int abs(int x)

{

if (x >= 0)

return x;

return -x;

}

// does abs(x) return the correct value

// for all x?

CMPUT 201, W2014, M. Buro Function Definitions 53

More Function Examples

// compute n! = 1*2*3*4*...*(n-1)*n

// ("n factorial") iteratively

int factorial(int n)

{

int prod = 1;

for (int i=2; i <= n; ++i) {

prod *= i;

}

return prod;

}

// compute n! recursively using

// 0! = 1 and n! = n * (n-1)!

int rfactorial(int n)

{

if (n <= 1)

return 1;

return n * rfactorial(n-1);

}

CMPUT 201, W2014, M. Buro Some C Library Functions 54

Some C Library Functions

// exit program with error code err

// (0 usually indicates success)

// can be queried using shell variable $?

// e.g.: ls asdfasdf; echo $?

void exit(int err);

// read a character from standard input

int getchar();

// compute the sine of x

double sin(double x);

// return nearest integer to x

double round(double x);

To learn more about standard C library functions con-
sult http://www.cplusplus.com/ref/ or

man stdio.h / stdlib.h / string.h / math.h

More about library functions later in the course.

CMPUT 201, W2014, M. Buro Variable Scope 55

Variable Scope

• Variables (and constants) have a lifespan from the
time they are created until they are no longer used

• Local variables are declared within statement blocks
enclosed in { }

• They live from the time the block is entered until
the block is left, i.e. they are unknown outside the
block.

•Memory for them is allocated on the process stack.

• Unlike Java and Python, numerical variables (char,
..., double) are not automatically initialized in C++!
It is the programmer’s responsibility to ensure that
variables that are used are properly initialized.

•When functions are exited, memory for local vari-
ables is released

CMPUT 201, W2014, M. Buro Variable Scope 56

Local Variable Scope

int main()

{

int uninitialized;

float initialized = 22.0/7.0; // (*)

float x = 2.0; // (**)

{ // nested block

float x; // (***)

x = initialized; // copies (*) to (***)

}

x = 3.1415926; // changes (**)

for (int i=10; i >= 0; --i) { printf("?"); }

i = 5; // i unknown here! i local to for block

int i; // variables can be defined anywhere

for (i=10; i >= 0; --i) { }

printf("%d\n", i); // i lives here! value is -1

}

CMPUT 201, W2014, M. Buro Function Call Mechanism 57

Function Call Mechanism

• Uses process stack (Last-In-First-Out data structure)

• Stack-pointer register (SP) in CPU points to next
available byte in memory

Calling a function step by step:

• Evaluate parameters and push values onto stack

• Then push return address onto stack

• Then make room for local variables by adjusting SP

• Before returning from the function, store result in
register for the caller to be used

• Finally, pop local variables, parameters, and return
address off stack, and jump to the return address to
continue execution.

(This is a simplified description of what actually is going
on in modern CPUs when calling a function)

CMPUT 201, W2014, M. Buro Function Call Mechanism 58

Example

int foo(int n)

{

int x = 1;

return x + n;

}

int a = foo(5);

1. parameter 5 is pushed onto stack (parameter n)

2. return address is pushed onto stack (when returning
the execution will resume with storing the function
result into variable a)

3. room is created for local variable x on stack

4. x is set to 1

5. x + n is evaluated and result 6 is stored in register

6. CPU pops x, return address, and n off the stack, and

7. resumes execution with storing return-value register
in variable a (6)

CMPUT 201, W2014, M. Buro Function Call Mechanism 59

R�!��
VIXYVR�EHHVIWW

\�!��

HEXE�SJ�GEPPMRK
���JYRGXMSRW

HEXE�SJ�GEPPIH
��JYRGXMSRW

TYWL

TST

74
74
74

74

TYWL��

TYWL�VIXYVR�EHHVIWW
QEOI�VSSQ�JSV�\

TST�EJXIV�VIXYVR

7XEGO

For each function invocation memory for parameters,
the return address, and local variables is allocated on
the stack.

Stack-based memory allocation is fast — only the SP
register has to be changed.

CMPUT 201, W2014, M. Buro Passing Parameters: Call-By-Value 60

Passing Parameters: Call-By-Value

void increment(int x) { ++x; }

int y = 5;

increment(y);

// oops, that didn’t work: y is still 5!

When a function increment is called via increment(e)
expression e is evaluated and its value is copied into lo-
cal variable x

Statements in the function body act on this local copy
and do not change values in the evaluated expression e

The function is said to have no side effects on the
caller’s environment.

So it can’t possibly change y in this example.

CMPUT 201, W2014, M. Buro Passing Parameters: Call-By-Reference C++ 61

Passing Parameters: Call-By-Reference C++

void increment(int & x) { ++x; }

int y = 5;

increment(y);

// that worked: y now 6

• A reference to a variable is passed to a function (in
form of a memory address)

• Statements in the function body that act on the
parameter variable (x) change the variable that has
been passed to the function (y).

• This means that functions now can have side effects,
i.e. can change something in the caller’s environ-
ment.

• Can only pass variables, but not expressions, because
an address is required. E.g., this call is illegal:

increment(3 + x);

CMPUT 201, W2014, M. Buro Swap Function C++ 62

Swap Function C++

void naive_swap(int & x, int & y)

{

x = y;

y = x;

}

int a = 1, b = 2;

naive_swap(a, b); // oops: a = b = 2 !

void swap(int & x, int & y)

{

// triangle exchange

int temp = x; x = y; y = temp;

}

a = 1; b = 2;

swap(a, b); // ok! a = 2, b = 1

CMPUT 201, W2014, M. Buro Passing Large Objects C++ 63

Passing Large Objects C++

void do_something(T big) { ... }

...

T x;

do_something(x); // slow!

• Passing large objects of type T by value is wasteful:
they are copied into local variables

• Better: const reference

void do_something(const T & big) { ... }

...

T x;

do_something(x); // much faster!

This is much faster because only an address is passed
to the function instead of a big object.

const ensures that we don’t accidentally change the
variable with which the function was called.

CMPUT 201, W2014, M. Buro Passing Large Objects C++ 64

Pros & Cons

Call-by-Value

+ Callee detached from caller, no direct side-effects
because parameter values are copied into local vari-
ables

− Data is copied to a local variable.
Can be time consuming

Call-by-Reference

− Side effects; need to look at function declaration to
see whether call-by-reference is used and the func-
tion possibly changes parameter variables

− Parameters restricted to variables

+ Only reference (i.e., address in memory) is copied.
Fast.
(const qualifier protects read-only parameters)

