
4/14/05 1

Lecture 26

� Unix & C I/O

� Review: C++ Tips

4/14/05 2

Final Exam

� Monday, April 26, 2-5pm, here

�

Bring OneCard - will be checked

�

Closed Book

�

Covered material: everything

� lectures, labs, homeworks,
assignments

4/14/05 3

Unix I/O

� In Unix all input and output is done by reading or
writing to files

� All devices are files (/dev/...) with special i/o
semantics

� Open file before using it

� System checks access permissions

� If OK, it returns a small non-negative number -
the file descriptor

� File descriptors 0,1,2 are called standard input,
standard output, and standard error

� C file pointers (later): stdin,stdout,stderr

� C++ file streams cin, cout, cerr 4/14/05 4

� The command shell connects fd 0,1,2 with the
console (input: keyboard, output: text window)

� User can redirect I/O to and from files using
> , >>, and <

� prog < infile > outfile
connects file desriptors 0 and 1 to the named files

� Normally file descriptor 2 remains attached to the
console to display error messages

� Can also be redirected: syntax is shell-dependent, e.g.

� bash: prog > xxx 2>&1 # both stdout,stderr are redirected

� tcsh: prog >& xxx # to file xxx

� >> appends output to a file

Redirection

4/14/05 5

C File I/O

� Low-level I/O is handled by library functions

� open, creat, read, write, close

� e.g. write

� � � �

(1, hello world , strlen(hello world));

� first argument is file descriptor (1 = std.output)

� fds 0,1,2 are opened when program starts

� All other files have to be opened:

� int open(char *name, int flags, int perms)

� file name, access flags, access permissions

� int fd = open

� �

(foo , O_RDONLY, 0666); //ugo+rw

� #include <cstdio> , man 2 open/read/write...
4/14/05 6

FILE wrapper

� <cstdio> provides a wrapper for the low-level I/O
routines - FILE - which is more convenient

� FILE *fopen(char *filename, char *mode)

� returns 0 if something went wrong
(errno contains error code)

� modes:

� “r”: read “r+”: read & write

� “w”: write (truncate) “w+”: read & write (trunc.)

� “a” - append

�

� � � �

FILE *fp = fopen(foo , w); if (!fp) { // ... error

� int fclose(FILE *fp)

� closes file, returns 0 iff no error occurred

4/14/05 7

�

size_t fwrite(void *ptr, size_t size, size_t n, FILE *fp)

� writes size*n bytes to file *fp starting at address ptr

� size_t fread(void *ptr, size_t size, size_t n, FILE *fp)

� reads size*n bytes from file *fp and stores them at ptr

� fwrite/fread return number of successfully written/read
bytes, use feof and ferror to distinguish end of file and
read errors

FILE Functions

4/14/05 8

�

int feof(FILE *fp) : != 0 iff end of file reached

� int ferror(FILE *fp) : != 0 iff error occurred

� global variable errno contains error code

� int fprintf(FILE *fp, ccptr format, ...): formatted output

� int fscanf(FILE *fp, ccptr format, ...): formatted input

More FILE Functions

4/14/05 9

Example
// C library version
#include <cstdio>
#include <cstdlib>
int main() {

FILE *fp = fopen(“foo”, “w”);
if (!fp) { fprintf(stderr, “error”); exit(10); }
for (int i=0; i < 500000; ++i) fprintf(fp, “%d “, i);
fclose(fp);

}

// C++ library version
#include <fstream>
#include <iostream>
using namespace std;
int main() {

ofstream of(“foo”);
if (!of) { cerr << “error”; exit(10); }
for (int i=0; i < 500000; ++i) of << i << “ “;

 // of.close(); closed when of is destroyed
}
// C++ version ~1.5 times slower, but typesafe and
// extensible

4/14/05 10

Formatted Output

� typedef const char *ccptr;

� int printf(ccptr format, ...) = fprintf(stdout, format, ...)

� int fprintf(FILE *fp, ccptr format, ...)

� formatted data output

� variable # of parameters to be printed, must match format
string. Modern compilers check that.

� e.g. printf(

� �

%d %d %f\n , i, j, real); prints a two integers
and a double value in readable form to stdout

4/14/05 11

Format String

� %c : character

� %s : C string

� %d : integer number

� %f : double precision floating point number

� %e

�

: - - , scientific notation

� ... many more: man fprintf

� %% = %

� general:

� % [flags] [width] [prec] [len-mod] conv-spec
4/14/05 12

// format examples
#include <cstdio>

char c = 'x';
int i = 12345;
float f = 3.1415926535;
char *s = “foo”;

printf(“%% c=%c i=%d f=%f s=%s”, c, i, f, s);
// ”% c=x i=12345 f=3.141593 s=foo”

printf(“%d TEST“, i); // “12345 TEST”
printf(“%8dTEST“, i); // “ 12345TEST”
printf(“%08dTEST“, i); // “00012345TEST”
printf(“%-8dTEST“, i); // “12345 TEST”

printf(“%f TEST”, f); // “3.141593 TEST”
printf(“%.1f TEST”, f); // “3.1 TEST”
printf(“%7.2f TEST”, f); // “ 3.14 TEST”
printf(“%+13.8f TEST”, f); // “ +3.14159274 TEST”

printf(“%e\n”, f); // “3.141593e+00”

4/14/05 13

Formatted Input

� int scanf(ccptr format, ...) = fscanf(stdin, format, ...)

� int fscanf(FILE *fp, ccptr format, ...)

� formatted data input

� variable number of pointers to variables to be read,
must match format string

� returns number of successfully read values

� e.g. fscanf(fp,

� �

%d %d %f , &i, &j, &real); reads two
integers and a double value and returns 3 if OK

� DANGEROUS! Hopefully the compiler find type errors

4/14/05 14

Input Example
#include <cstdio>

int a,b,c,r = scanf(“%d %d %d”, &a, &b, &c);
if (r != 3)// less than 3 values read from stdin

// => error
int c = fgetc(stdin);
if (c == EOF) { // end of file reached or error

if (feof(stdin)) // end of file
else // error

char buffer[200];
int r = fgets(buffer, 200, stdin);
if (r == 0) // nothing read or error

4/14/05 15

�REVIEW C/C++ Programming Tips

� �

Wisdom and beauty form a very rare combination.
(Petronius Arbiter, Satyricon XCIV)

� �

With great power comes great responsibility.
 (Spiderman's Uncle)

4/14/05 16

� Why C?

� Code is FAST; compiler is FAST; often only little
slower than hand-written assembly language code

� Lingua Franca of computer science

� Portable. C compilers are available on all systems

� Compilers/interpreters for new languages are often
written in C

� Why C++?

� C + classes + templates: FAST + convenient

� You are still in total control, unlike Java or C#

4/14/05 17

From C to C++

� Use const and inline instead of #define

� Macros are not typesafe

� Macros may have unwanted side effects. Use inline
functions instead! (e.g. #define max(a,b) ((a)>(b)?...))

� Prefer C++ library I/O over C library I/O

� C's fprintf and friends are unsafe and not extensible

� C++ iostream class safe and extensible

� iostream speed is catching up, so speed is hardly a
reason anymore for choosing C-library I/O

� Prefer C++-style casts

� Distinguish between pointers and references 4/14/05 18

Memory Management

� Use the same form in corresponding calls to
new and delete

� int *p = new Foo; ... delete p;

� int *p = new Foo[100] ... delete [] p;

� For each new there must be a delete

� Delete pointer members in destructors

� otherwise you are creating memory leaks

� No need for checking the return value of new

� It throws an exception if no memory available

� delete p with p=0 is OK (ignored, no check req.)

4/14/05 19

� �

The Big 4

� Define copy constructor and assignment
operator when memory is dynamically allocated

� default bit-wise copy is not sufficient in this case

� Make destructors virtual in base classes

� otherwise base class pointers can't call the right destr.

� Have operator= return reference to *this

� for iterated assignments a = b = c ...

� Assign to all data members in operator=

� Check for self assignment in operator=

� if (this == &rhs) return *this;
4/14/05 20

Operators
� Never overload && || ,

� Distinguish between prefix and postfix forms of
++/--

� they (should) return different types

� ++i : returns reference to i

� i++ : returns value of temporary object (can be slower!)

� Be consistent. E.g.

� + += prefix++ postfix++ should have related
semantics

4/14/05 21

Class/Function Design (1)

� Guard header files against multiple inclusion

� #ifndef ClassName_H ...

� Strive for complete and minimal interfaces

� complete: users can do anything they need to do

� minimal: as few functions as possible, no overlapping

� Minimize compilation dependencies between files

� Consider forward declaration in conjunction with
pointers/references to minimize file dependencies

� class Address;
class Person { ... Adress *address; ... }

�

� �

No need to #include Address.h ! 4/14/05 22

� Avoid data members in public interfaces

� use inlined get/set functions - more flexible

� Use const whenever possible

� Pass and return objects by reference

� But don't return references to non-existent objects
like local variables!

� Avoid returning
� �

writable handles to internal
data from const member functions

� otherwise constant objects can be altered

Class/Function Design (2)

4/14/05 23

Inheritance

� Make sure public inheritance models

� �

is a

� Never redefine an inherited non-virtual function

� different results for pBase->f() and pDeriv->f()

� Never redefine an inherited default parameter
value

� virtual functions are dynamically bound

� default parameters are statically bound

� Avoid casting down the inheritance hierarchy

� use virtual functions instead

4/14/05 24

Exceptions
� Use destructors to prevent resource leaks

� Say good-bye to pointers that manipulate local
resources - use smart pointers

� Prevent resource leaks in constructors

� destructors are only called for fully constructed objects

� Prevent exceptions from leaving destructors

� Exceptions within exceptions terminate program

� Special case: exceptions call destructors ...

� Catch exceptions by reference

� all alternatives create problems

4/14/05 25

Efficiency

� Choose suitable data structures and efficient
algorithms

� Consider the 80-20 rule

� ~80% of the resources are used by ~20% of the code

� Focus your optimization efforts by using profilers

� Avoid frequent heap memory allocation

� Know how to save space

� bits, bytes, unions, home-brewed memory allocators

� Understand costs of virtual functions, multiple
inheritance, exception handling, and RTTI

� Consider alternative libs. (e.g. iostream vs. stdio) 4/14/05 26

STL Tips (1)

� Choose your containers wisely

� sequence/associative, speed, memory consumption

� Careful when storing pointers in containers

� if the container owns the objects they have to be
destroyed before the container is

� possibly dangling pointers to vanished objects

� specify comparison functors

� If speed matters, use vectors or hashed
associative containers. If speed really matters,
don't use STL (for now, but STL implementations
are becoming faster)

4/14/05 27

STL Tips (2)

� Make sure destination ranges are big enough

� Note which algorithms expect sorted ranges

� Have realistic expectations about thread safety of
STL containers: YOU need to lock containers

� Call empty() instead of checking size() against 0

� Make element copies cheap and correct

� STL copies elements often

� Always have comparison functions return false for
equal values

� More tips in: S.Meyers: Effective STL
4/14/05 28

� I am always looking for good students!

� Design/Implementation of a Real-Time
Strategy Game environment:

� � �

Hack-free server/client operation

� 3d Graphics, artificial intelligence

� Making machines smarter:

� Machine Learning

� Heuristic Search, Planning

� Interested? See me in December

� Apply for an NSERC Summer Scholarship!

Fin, Ende, The End

