Lecture 25 Error Handling

* Historical Way

* Exceptions - Use function return codes to indicate error

* Smart pointers conditions
- E.g. intfgetc(FILE *stream);

¢ Returns read character (value in 0..255)
¢ Or-1if read error occurred

- Drawbacks
¢ What if function returns full range of values?
¢ Users can ignore errors
* Modern Solution: Exceptions

4/14/05 1 4/14/05 2

Syntax

Exceptions

* Dealing with rare error conditions
* Write code as if nothing can go wrong

* Enclose it in try-block which will be exited if
some operation fails and throws an exception

* Add a catch-block to handle exceptions

4/14/05 3

Example

4/14/05 5

Catching Exceptions

* Once an exception is thrown (can be any type!),
program execution is stopped

* The runtime system then looks for the next catch
statement whose type is compatible with the
thrown value:

- If the exception was thrown in a try block, the following
catch statements are checked

- If no match, the search for an exception handler
resumes in the caller (“stack unwinding”) after all
local objects have been destroyed.

- If no matching catch statement is found, the program
is aborted by calling terminate()

e If match fauind execiitinn resiimes there 414005 6

How to Catch?

* All exception objects are copied in the stack
unwinding process, possibly many times

- Because local temporal objects are destroyed
* Exceptions should be caught by reference. E.g.
- Catch-by-pointer: delete or not delete?
- Catch-by-value: one additional copy, possible slicing!
* Be aware that catching exceptions is expensive —
exceptions should be rare events!

4/14/05 7

Example

4/14/05 8

Operator new and Exceptions

* new throws std::bad_alloc in case memo
is unavailable

* Thus, checking the result of new (I=0) is a
waste of time - it's always =0

* C++ standard demands that memory is
available if new doesn't throw
- In practice, however, this is O/S dependent

- lL.e.: In some O/S's memory allocation always
succeeds, and you'll learn that you don't have
enough memory later — segfault ...

RAIl Examples

* Say good-bye to using local pointers for
memory allocation

- T*p=newT,.... delete p;

- delete p may not be executed if exception is
thrown!

- Solution: smart pointers (next slides)
* Open fstreams with constructor call
- ofstream os(‘output.txt’);
- When os goes out of scope, file is closed

ry

4/14/05 9

4/14/05 11

Code must be Exception Safe

Resource deallocation code may not be reached in case of

exceptions

Use the RAIl scheme:
Resource Allocation Is Initialization

Exceptions within constructors must be handled right

away to free resources (and maybe re-thrown)

- Destructor is not called on partly constructed objects

Exceptions must not leave destructors

- If an exception occurs in destructor while unwinding the

stack, program terminates
- Partly completed destructor has not done its job!

Smart Pointers

* Objects that look, act, and feel like built-in
pointers
* Used for resource management. E.g.
- Reference counting
- Solving the pointers & exceptions problem
* Gain control over:
- Construction and destruction
- Copying and assignment
- Dereferencing

4/14/05 10

4/14/05 12

Auto Pointers
* Sole owner of objects auto_ptr Example

* When auto pointers leave scope, the object they
point to is destroyed

* Auto pointer assignment p=q transfers ownership
- |hs object (*p) is destroyed
- p now points to rhs object (*q)
- g points to 0

* Dangerous:

- storing auto pointers in containers - why?
- passing them by value - transferring ownership!
* Usual meaning of *p and p-> 414005 13 414005 14

More Smart Pointers
* In Boost library:

Auto Pointer Implementation

- scoped_ptr<T>, scoped_array<T>
¢ Simple sole ownership of single object or array, resp.
¢ Cannot be copied (safeguard)

- shared_ptr<T>, shared_array<T>

* Shared, reference counted ownership of single object
or array, respectively

¢ Can be stored in STL containers
¢ Cannot handle cyclic data structures

- More...

* These template classes will become part of
41405 15 the C++ standard library 471405 16

Scoped Examples

4/14/05 17

Shared Example

/05 18

