
4/14/05 1

Lecture 25

� Exceptions

� Smart pointers

4/14/05 2

Error Handling

� Historical Way

� Use function return codes to indicate error
conditions

� E.g. int fgetc(FILE *stream);

� Returns read character (value in 0..255)

� Or -1 if read error occurred

� Drawbacks

�

What if function returns full range of values?

� Users can ignore errors

� Modern Solution: Exceptions

4/14/05 3

Exceptions

� Dealing with rare error conditions

� Write code as if nothing can go wrong

� Enclose it in try-block which will be exited if
some operation fails and throws an exception

� Add a catch-block to handle exceptions

4/14/05 4

Syntax
function definition:

<type> <func>(<ParamList>) [throw (<ExceptionList>)] {
 ... throw <exception>(<Params>);
}

If <ExceptionList> is empty, <func> can't throw exc.
If throw clause is missing, <func> can throw anything.
Important: if <func> throws an exception not on the
list, function std::unexpected() is called
(terminates)

try-catch block:

try { ... }
catch (<type> [<var>]) { ... } (can be more than
one)

Or catch (...) { ... } : catches all exceptions

Re-throw in catch blocks (throw;): catch search cont.

4/14/05 5

Example
struct MyException {
 int what;
 MyException(int w=0): what(w) { }
};

void foo() {
...
if (error) throw MyException(5); // exceptional case
...

}

int main() {

try { foo(); }

catch (MyException &e) {
cout << “caught exception: ” << e.what;

}
}

4/14/05 6

Catching Exceptions

� Once an exception is thrown (can be any type!),
program execution is stopped

� The runtime system then looks for the next catch
statement whose type is compatible with the
thrown value:

� If the exception was thrown in a try block, the following
catch statements are checked

� If no match, the search for an exception handler
resumes in the caller (

� �

stack unwinding) after all
local objects have been destroyed.

� If no matching catch statement is found, the program
is aborted by calling terminate()

� If match found, execution resumes there

4/14/05 7

How to Catch?

� All exception objects are copied in the stack
unwinding process, possibly many times

� Because local temporal objects are destroyed

� Exceptions should be caught by reference. E.g.

� Catch-by-pointer: delete or not delete?

� Catch-by-value: one additional copy, possible slicing!

�

�Be aware that catching exceptions is expensive
exceptions should be rare events!

4/14/05 8

Example
void foo() {

...
if (error) throw MyException();

// creates local object
// while stack is unwound, this object gets copied
// everytime, because temporal objects are deleted
// when function is exited

}

int main() {

try { foo(); }

catch (MyException &e) { // no additional copy!
}
catch (MyException e) { // bad: additional copy!
}
catch (MyException *e) { // bad: delete or not?
}

}

4/14/05 9

Operator new and Exceptions

� new throws std::bad_alloc in case memory
is unavailable

� Thus, checking the result of new (!=0) is a

�waste of time it's always != 0

� C++ standard demands that memory is
available if new doesn't throw

� In practice, however, this is O/S dependent

� I.e.: In some O/S's memory allocation always
succeeds, and you'll learn that you don't have

�enough memory later segfault ...
4/14/05 10

Code must be Exception Safe

� Resource deallocation code may not be reached in case of
exceptions

�

Use the RAII scheme:
Resource Allocation Is Initialization

� Exceptions within constructors must be handled right
away to free resources (and maybe re-thrown)

� Destructor is not called on partly constructed objects

�

Exceptions must not leave destructors

� If an exception occurs in destructor while unwinding the
stack, program terminates

� Partly completed destructor has not done its job!

4/14/05 11

RAII Examples

� Say good-bye to using local pointers for
memory allocation

� T *p = new T; delete p;

� delete p may not be executed if exception is
thrown!

� Solution: smart pointers (next slides)

� Open fstreams with constructor call

� ofstream os

� �

(output.txt);

� When os goes out of scope, file is closed

4/14/05 12

Smart Pointers

� Objects that look, act, and feel like built-in
pointers

� Used for resource management. E.g.

� Reference counting

� Solving the pointers & exceptions problem

� Gain control over:

� Construction and destruction

� Copying and assignment

� Dereferencing

4/14/05 13

Auto Pointers

� Sole owner of objects

� When auto pointers leave scope, the object they
point to is destroyed

� Auto pointer assignment p=q transfers ownership

� lhs object (*p) is destroyed

� p now points to rhs object (*q)

� q points to 0

� Dangerous:

� storing auto pointers in containers - why?

� �passing them by value transferring ownership!

� Usual meaning of *p and p-> 4/14/05 14

auto_ptr Example
#include <memory>
using namespace std;

class Foo { ... };

void foo() {
auto_ptr<Foo> p = new Foo; // or p(new Foo);
bar(p);
...
// p is are destroyed here (releasing Foo obj.)
// even if exceptions is thrown in bar()

}

4/14/05 15

Auto Pointer Implementation
template <typename T> class auto_ptr {
public:

auto_ptr(T *p_ = 0) : p(p_) { }

~auto_ptr() { delete p; } // here's the
magic!

...

T& operator*() const { return *p; }
T* operator->() const { return p; }

 T get() const { return p; }

private:
T *p; // actual pointer

}
4/14/05 16

More Smart Pointers

� In Boost library:

� scoped_ptr<T>, scoped_array<T>

� Simple sole ownership of single object or array, resp.

� Cannot be copied (safeguard)

� shared_ptr<T>, shared_array<T>

� Shared, reference counted ownership of single object
or array, respectively

� Can be stored in STL containers

� Cannot handle cyclic data structures

� More...

� These template classes will become part of
the C++ standard library

4/14/05 17

Scoped Examples
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
using namespace boost;

void foo() {
scoped_ptr<Foo> p(new Foo);
scoped_ptr<Foo> q = p; // illegal, safeguard!

p->bar(); ... // use like regular pointer

scoped_array<Foo> pa(new Foo[100]);
scoped_array<Foo> qa = pa; // illegal

pa[10].bar(); // use like regular array

// p destroyed here => destroys Foo object
// pa destroyed here => destroys Foo array

}

4/14/05 18

Shared Example
#include <boost/shared_ptr.hpp>
using namespace boost;

void foo(shared_ptr<Foo> &q) {
shared_ptr<Foo> p(new Foo); // reference count

1
q = p; // copy => reference count

2

// p destroyed here => reference count 1
// Foo object not destroyed yet!

}

void main() {
 shared_ptr<Foo> q;

 foo(q); ...

 // q destroyed here
 // => reference count 0 => object destroyed
}

