Lecture 24

* map<U,V>
* Iterators
* Algorithms
* STL tips

map Example

4/20/05 1

map<Key,Data[,Compare]>

* #include <map>

* Sorted-pair-unique associative container
* Associates keys with data

* Value-type is pair<const Key, Data>

* Insert/delete operations do not invalidate
iterators

4/20/05 2

Commonly used map members

iterator begin() : returns iterator to first pair

iterator end() : returns iterator to end (past last pair)
size_type size() . # of pairs in map

bool empty() const : true iff map is empty

void erase(iterator pos) : removes pair at position pos
pair<iterator, bool> insert(const Key&):

- inserts key, returns iterator and true iff new
void clear() : erase all pairs

iterator find(const Key& k) :

- looks for key k, returns its position if found, and end() otherwise
Data& operator[](const Key& k) :

- returns the data associated with key k;

- if it does not exists inserts default data value!

4/20/05 4

lterators Iterator Concept Hierarchy

. . * Input Iterator, Output Iterator
* Generalization of pointers P ’ P

- permit single pass (like reading/writing file)

* Often used to iterate over ranges of objects . o . .
- read or write access, resp. - writing to input iterators

- iterator points to object not supported, nor reading from output iterators
- the incremented iterator points to the next object e Forward Iterator
* Central to generic programming: - can be used to step through a container several times
- interface between containers and algorithms (read or write)
- algorithms take iterators as arguments - only ++ supported (e.g. singly linked list)
- container only needs to provide a way to access * Bidirectional Iterator
its elements using iterators - motion in both directions (++ --, e.g. doubly linked list)
- allows to write generic algorithms operating on * Random Access Iterator

many different containers such as vector and !f/g’g/os 5 - allows adding of offsets to interators [e.g. *(it+5) keoos 6

set Algorithm Example

Ranges

* Most algorithms are expressed in terms of
iterator ranges [begin, end)

* Empty iff begin = end

* |f n iterators in a range, then [begin, end)
represents n+1 locations. Crucial!

* E.g. linear search (find) must be able to
return some value to indicate an
unsuccessful search

4/20/05 7

insert iterator reverse_iterator

* jterator adaptor that enables backwards
traversal of a range using operator++

* keeps track of the container c and insertion
point p

* *jj = x performs action p = c.insert(p, X); ++p;
4/20/05 9 4/20/05 10

Non-Mutating Algorithms: for_each

Work on a range and do not change elements
* template <class Inplterator, class UnaryFunc>

UnaryFunc for_each(Inplterator begin,

for_each - apply a function to each element Inplterator end,

* find - find an element UnaryFunc f)
* equal - checks whether two ranges are the same * applies function or functor f to each element in
* count - count elements equal to value [begin, end)

* returns the function object after it has been applied

* search - search for a sub-sequence : _
to all elements in [begin, end)

4/20/05 11 4/20/05 12

for_each example

4/20/05 13

for_each Implementation

4/20/05 14

Mutating Algorithms:

Work on a range and possibly change elements

remove_if : moves elements for which a predicate is false
to front, returns new_end, size unchanged

partition : reorders elements; x with pred(x)=true come
first

generate : assigns results of function calls to each element

copy : copies input range to output iterator

fill : assigns a value to each element

reverse :reverses range

rotate : general rotation of range w.r.t. to mid-point

random_shuffle : randomly shuffles all elements

... Many more 4/20/05 15

4/20/05 16

Sorting-Related Algorithms

sort : sorts elements in ascending order

lower_bound, upper_bound : find values in
sorted ranges in logarithmic time

merge : merge sorted ranges into one

includes : check if one range is contained in
another one

set_union, set_intersection,
set_difference, set_symmetric_difference
. set operations

4/20/05 17

Sort Examples

4/20/05 19

Sorting

* Sorts random access range in ascending order

* Implements ‘Introspection sort”which combines
quicksort and heapsort

* Worst and average case complexity: O(n log n)
* Fast!

Where to go from here?
STL resources on the web!
* Hashed associative containers
- e.g. hash_set<T, HashFunc, EqualKey>
- organized as hash tables

4/20/05 18

- faster than the standard tree-based containers

- but need more space
- see www.sgi.com/tech/stl

* More sorting related functions
(stable_sort, merge, ...)

* More C++ libraries at: www.boost.org

4/20/05 20

