Lecture 18

* Global operators
* Friends
* Class operators

3/18/05 1

Global Operators
* How to define global operators such as
input/output operators << >> ?

* Example: Input/Output declaration syntax:
- ostream &operator<< (ostream &os, const X &x)

{..}
- istream &operator>> (istream &is, X &x)
{..}

- Reference to streams returned. Therefore
cout << x <<Yy; and cin >> x >>y; possible

3/18/05 2

Example

3/18/05 3

Solution: getters/setters or friends

3/18/05 4

Another Inheritance Application: (new)

Friends Generic output/input
* Would like to design functions that work on all
* Syntax (in class definition): derived objects
- friend <function-declaration> : * Solution: pass a reference or pointer to a base

class object to your function. Virtual functions in
the derived class object can the be accessed.

* Example: C++ standard library output streams
- ostream : output stream (base class)
- ofstream : output file stream (public ostream)
* Qutput is directed to a file

- ostringstream - output string stream (public ostream)

¢ Qutput is accumulated in string
3/18/05 5 3/18/05 6

- friend <class-name> ;

* Functions or entire classes now have
access to all data/function members,
even to those that are private!

* Avoid - usually indicates a broken design

Class operators can be overloaded:

* Unary:

+ - * 1 & ~ ++ -- (prefix/suffix)

* Binary:

+ -] %N &| << >>

= 4= -= *= [= O N= &= |: <<= >S>S= ==
= < > <= >=

(1 O

-> - >¥

new del ete

&& ||

« DON'T OVERLOAD: prefix-& &8 | |

3/18/05 8

Int-Vector Revisited

3/18/05 9

Why Two Definitions?

3/18/05 10

Member Function Syntax

Unary prefix operator ++x (or --x):

- X& operator++() { ... }
Unary postfix operator x++ (or x--):
- X operator++(int) { ... }

* Binary infix operatorx @ x: (@ =+-%*...)

-Y operator@const X &) { ... }

[l Y operator[](T i) {...}

(): Y operator()(<parans>) {...}
->! Y* operator->() {...}

has to return pointer because e.g. a->foo accesses member

3/18/05 11

Calling Class Operators

* Class operator applications are transformed
into regular member function calls: E.g.

-Vv[i] -> v.operator[]()
- a+b-> a.operator+(b)
- ++X -> x.operator++()
- X- ->x.operator--(0)
* So, class operators are member functions

* They can be virtual!

3/18/05 12

Complex Class Implementation

14

