Lecture 16

* Vector class
* Class inheritance
* Virtual functions

Vector class that requires definitions

3/10/05 1

3/10/05 3

Shallow vs. Deep Copy

* If object only contains simple types or pointers that
are shared among objects, bit-wise (=shallow)
copy is O.K. - no need to define the copy
constructor and assignment operator

* Otherwise, use deep-copy: recursively clone data
members

* Make sure there are no resource leaks and no
self-assignments!

3/10/05 2

Class Inheritance

* Object Oriented Programming Paradigm
* Derive new class from existing base class(es)

- inherits data and function members from base class(es)

- code/data reuse
(functions and data are inherited from base classes)

- code adaption (make use of base class impl.)
* Single inheritance (inherit from one base class)
* Multiple inheritance (more than one, rare)

3/10/05 4

Inheritance Example

* Sub-class/derived class specializes super-

class/base

class

* Usually models “Is A” relationship

* Eg. “aRectangle is a Shape’,
“a Square is a Shape’,

“an

Ellipse is a Shape”,

“a Circle is a Shape”

* Type hierarchy:
- Shape <--+---- Ellipse

+---- Circle
+---- Rectangle
+-—--- Square

3/10/05 5

Example:
Shapes

3/10/05 6

* Derived class inherits all data and function

Inheritance Types

members from base class(es)

* Access permissions depend on qualifiers

* class Y : public X{ ... }

-Y“san” X

- Sub-class Y can access public and protected

members of X, cannot access private members of X
* class Y : protected X { ...}
- Y “is implemented in terms of” X

- public members of X become protected in Y

3/1005 7

Example

3/10/05 8

Graphics Example

* Class Graphics contains a list of pointers to
objects to be drawn: Circles, Rectangles, ...

* First solution: Objects contain their type-id

10/05 9

Problems: slow + need to change code
when adding new shapes, hard to maintain

3/10/05 10

Virtual Functions

* For a base class pointer, execute member
functions in the current object context
[Shape *p;... p->draw()]

* Polymorphism: same function name, different
action

* Objects must know their type!
* Solution: Virtual Functions

3/10/05 11

Graphics 2

¢ Second solution: virtual function draw

* Keyword virtual indicates that the function
in sub-classes is accessible via base-class

pointers
3/10/05 12

Solution 2

* No type_id, no switch. Faster and easy to maintain

* Type of *objs[i] known at runtime => the correct draw
function can be called. HOW?

3/10/05 13

Virtual Function Implementation
* New data-member is added to class variables
- pointer to virtual function table (VFTP)
* One virtual function table is created for each class

* The virtual function table contains addresses of
virtual functions

* Two stage access: Shape *p; p->draw(screen);
calls (*p->VFTP[C_DRAWY])(screen);

