Lecture 14 C++ Classes
Overview: Classes vs. Structures
* C++ Classes

- Intro * Structures are special cases of classes
- Member functions * Structures don't impose any overhead
- Constructors, destructors * Structures are not initialized
- Copy constructor * Manual structure clean-up when no longer
needed
3/3/05 1 3/3/05 2
Classes Class Definition

* provide additional functionality
(some introduce run-time overhead):

- Access restrictions
- Member functions
- Automatic initialization, destruction
- Separation of interface and implementation

. o ] ) * Syntax: class <class_name> {
- Inheritance (modeling isA relationship & more) <class_body>

* also called “objects” = data + associated functions g
* The body consists of declarations and definitions
of data and function members
3/3/05 3 3/3/05 4




Access Restrictions

* public: the data/function member is
accessible to all member functions and the
owner of the class variable

* private: data/function is only accessible to
member functions but not to the object
owner

* protected: similar to private, used with
class inheritance (later)

* default access type is private

3305 5

Member Functions

* Act on local data members
* Defined in class body (or outside, later)
* Can be called by the variable owner if public

* Call syntax:
<class-variable>.<function-name>(<param-list>);

3305 7

Access Examples

33105 6

Member Function Implementation

* C++ programs can be translated into equivalent C
programs (in fact, the first C++ compilers did just that)

* How can class member functions be implemented?
- Member functions access local data

- Need object address => add one parameter: pointer to
object
- Class::func(<param-list>) =>
Class_func(Class *p, <param-list>)
3/3/05 8



Member Function Example

3/3/05

Suggestions (2)

* Consider #include directives to incorporate private
declarations into the class definition or put them at the

end of the class definition. Users don't need to see them.

* Small functions that are often called should be defined in
the class body. The compiler can then replace function
calls by the function body (inline functions)

* Use member functions to acess data members (e.g.
set_x, get_x). It simplifies debugging and is more flexible
w.r.t. later implementation changes. Should be inline
functions (speed).

e Otherwise, refrain from implementations in the class
body - it makes reading your code easier

3/3/05

9

11

Separating
Interface and Implementation

* A class user does not need to know its
implementation details. Knowing the public
members is sufficient

* Suggestions:

- Use a header file for each class

- Put a comment on top of the class definition
describing its purpose. Briefly comment each
member. The class users look at the header
files to get concise documentation

3/3/05 10

3305 12



Constructors

* Class variables are automatically initialized by constructors
* NICE! No uninitialized struct variables anymore!

If not defined, the (default) constructor does nothing

* Declaration syntax for class X: X(<parameter-list>); ;305 13

Destructor

* |s called whenever a class variable leaves the
scope or is deleted. NICE: automatic cleanup!

* No parameters - only one destructor.
The default destructor does nothing

* Must be defined whenever the class object
allocates resources (memory, files ...)

* Declaration syntax for class X: ~X(); yy0s 1

Copy Constructor

* |s called when a class variable is passed by value or a
class value is assigned in a class variable declaration

e Default: bit-copy! (define own c.c. if pointers are used!)

* Declaration syntax for class X: X(const X &x); .




