The P
Lecture 12 e Preprocessor

* Compilation: transforming a textual program

description into an executable form
* Preprocessor i ] o
* Preprocessor: separate first step in compilation:

- Remove comments
- Macro substitution (#define)
- Conditional compilation (#if)
- File inclusion (#include)

* Preprocessor directive: first non-white-space
character in line is #

* Only one per line

2/1905 1 2/19/05 2

Macros With Parameters

Macro
Substitution

Syntax of a macro definition:
#define <identifier> <replacement text>

Subsequent occurrences of the identifier in C-identifier
context get replaced by the replacement text. E.g.
xXFOREVERxx = 0; and “FOREVER” are not replaced!

Replacement text normally is the remainder of line ¢ Syntax:
#define <ident>(<ident>,...,<ident>) <text>

Long definitions may be continued by placing \ at the
end of each line to be continued ¢ Macro parameters get replaced by actual parameters

when macro is expanded
Scope is from point of definition to the end of current P

source file * Macro expansion is done recursively until no more
matches are found

#undef <identifier> deletes definition
2/1905 3 2/19/05 4



More Macro Examples

2/1905 5

Conditional Compilation

¢ Compiling parts of programs depending on constant
expressions. If false, program text is skipped

 Useful for dealing with different environments and debugging
¢ Can pass values to g++ via -D option. E.g.
- g++ -DUNIX -DNDEBUG foo.c // UNIX,NDEBUG defined
- g++ -DFOO0=3 foo.c // FOO has value 3

21905 7

#if Statement

* Syntax & Semantics
#if <const-expr> - true iff const-expr = 0

#ifdef <ident> - true iff <ident> is defined
#ifndef <ident> - true iff <ident> is undefined
#else - alternative path

#elif <const-expr> - else-if condition

#endif - end of #if statement

* <const-expr> consist of macro names, integer

constants, operators, parenthesis and
defined(macro name).

* #error “text” - generates error msg. “text”

File Inclusion

e Two forms:
- #include “filename”
- #include <filename>

2/19/05 6

* Line is replaced by the content of the file filename,

which itself may contain #include lines

* “flename”: search for file begins in directory where
the source program was found. If not found, search

in system header directories

e <filename> : search file in system header directories

* Main purpose: including interface information such

as function prototypes and types

2/19/05 8



#include Examples

2/19005 9

Testing and Debugging

* Testing each function is CRUCIAL
* cout statements are useful to follow execution

* Pre- and post-conditions should be checked
during program execution
2/19/05 11

Another #include Example
How to avoid including the same file twice
which would cause compiler error msgs.?

assert Macro

* Syntax:#include <cassert>
assert(<expression>)

2/19/05 10

* Execution stops iff the expression evaluates to 0.
An error message informs about the program file

and line number where the assertion failed

* Check can be turned off by defining NDEBUG
before #include <cassert>

(usually done with compiler option -DNDEBUG in

makefile)
* Turn assert on when debugging program

* Turn off to speed up execution when sure that code

is functional

2/19/05 12



assert Example

2/19005 13




