Lecture 11

* C-strings continued
- C++1/0
- Command line arguments
* Dynamic memory allocation

Better Solution
* Input stream function
- void getline(char sf], int max_total_len);

2/1505 1

* Reads entire input line into string s including

whitespaces
* Copies up to max_total_len-1 characters
* End-of-line character (\n') is not copied
* Even better: C++ string class (later)

2/1505 3

C-String + C++ 1/O

* Qutput using << operator
- E.g. char s[] = ”hello”; cout <<s;
* Input using >> also possible, BUT

- leading whitespaces (blanks, tabs, newline) are
skipped

- reading stops at next whitespace

- string length in input may be larger than string

variable! Unsafe! SO DON'T USE >> ON C-STRINGS!
2/15/05 2

Command-Line Arguments

* main prototype: int main(int argc, char *argv(l);
- argc: number of command-line arguments +1
- argv: array of pointers to command-line args.
- argv[Q]: pointer to program name
- argv[1]: pointer to first argument, ...
2/15/05 4

Dynamic Memory Allocation Operator new
Operators new and delete

Local variables and functions parameters are
located on the stack (LIFO data structure)

Dynamic memory is allocated from a different part
of memory called heap

Operator new dynamically allocates memory « Syntax: new <type>

Operator delete is used to release it when no longer

needed - can be done later, even in a different func. * Allocates space for a variable of type <type>
. . on the heap and returns a pointer to it

As always, YOU are in control because the compiler

cannot know when memory is no longer needed and * No initialization if <type> is a basic C type

can be deleted. . . .
If no memory is available new returns 0

C/C++ does not have a garbage collector
2/1505 5 2/1505 6

Operator delete Dynamic Arrays

* Frees memory when it is no longer used

e Syntax: delete <pointer-to-allocated-mem>

.] : < >[< -of- >
e Good practice: set pointer to 0 after delete to Syntax: new <type>[<num-of-elements>]

prevent further access of this address * Allocates an array of elements of type
* 0 special pointer value: can be assigned to any <type>
pointer variable regardless of type * Elements are not initialized for basic C types

* 0 not part of process memory. Can indicate no

. ,
memory, invalid pointer, no successor, etc. thtleer;erl: I[o]ng;e)(r)i?]?::j-tz-e;y:lnaermgzxg;i

21505 7 2/15/05 8

Speed / Memory Issues

Good new/delete Practice * Allocating dynamic memory is SLOW

* Program has to maintain list of available memory
blocks

* If speed is important try to minimize news/deletes

* new/delete come in pairs: for every new there
should be a delete in your program

* More specifically: E.g. by reusing arrays

- for every new at least one corresponding delete * new allocates more memory than you think

- for every new[] at least one corresponding delete[] (overhead usually 4 or 8 bytes per call, getting better)
* Helps avoiding memory leaks * Allocating arrays is therefore more efficient than

single variables

* You can roll your own memory allocation by
overloading the new operator (later)

2/1505 9 2/15/05 10

Memory Allocation in C

* There are no new/delete operators in C

* Use library function calls

- malloc : allocates memory
- free : releases memory

* To learn about them: man malloc

2/1505 11

