Lecture 10

* Pointers continued
* C-strings

- Representation

- Library functions

271005 1

Pointers and Structures

* Two equivalent ways to access structure
members via pointers:

- (*p).member
- p->member

2/10/05 2

Example: Trees

* Trees are a special kind of graph

* Graphs consist of nodes and edges that
connect two nodes

* Trees: all nodes are connected, no cycles

* In computing science, trees are fundamental
dynamic data structures:
- Data is associated with nodes
- Nodes contain pointers to successor nodes

* Example: Binary Trees
(nodes have at most two successors)

2/1005 3

2/10/05 4




Deleting Trees

C-Strings: Constants

* A C-string is a sequence of characters
* C-string constants are double-quoted
- cout << "l am a string” << end|;
- cout << "hello world\n”;

2/1005 5

- can contain escape sequences such as \n

or\a

- " in the text is represented by \”,
e.g. cout << "\"”;

2/1005 7

Pointer Arrays,
Pointers to Pointers

* Pointers are variables themselves, thus

- they can be stored in arrays, and
- can point to pointers

2/10/05 6

C-String Representation

* Array of characters which contains the character
sequence

* Plus end-marker \0' (0 byte)

* Inefficient! (why?) C++ comes with a more sophisticated
string template class (later)

* C-strings can be initialized via =

2/10/05 8



C-String Library Functions (<cstring>)

* int strlen(const char s[]);

C-String Pitfalls

* Ensure that the char array is big enough - must - returns the # of characters in s excluding the end-marker
hold characters + end-marker 0! * void strcpy(char dest[], const char srcl]);

* Character with code 0 cannot be represented in a - copies string src to dest (dest must be large enough!)
C-string because 0 indicates end-of-string * int strcmp(const char s1[], const char s2[]);

* Assignments other than initializations are illegal - compares strings s1 and s2

* == and other relational operators don't work with - returns 0iff they are equal
C-strings
* Does not sound very useful

* Solution: library functions!

- return number > 0 iff s1 > s2 (lexicographical order)
- return number < 0 iff s1 < s2
* void strcat(char dest[], const char src[]);

- appends string src to dest overwriting its end-marker
and adds \0'

2/1005 9 2/10/05 10

String Assignment, Comparison strlen & strcpy Implementaton

2/1005 11 2/10/05 12



2/1005 13

2/10/05 14

strcat Implementaton

2/1005 15




