Lecture 9

* C-structs continued

* Pointers

* Dynamic memory allocation
* Pointers vs. arrays

* Pointer arithmetic

2805 1

sizeof Operator

* Unary operator
* Syntax: sizeof(<expression>) or sizeof(<type>)

* Computes the size of an object or type
measured in bytes

2/8/05 3

Structure Assignment

* Structure variables can occur on the lhs of
assignments

* Type of the rhs expression must be identical
* All structure members are copied one by one

* By default, structures can't be compared
(but see overloading ==, >, ... for C++ classes)

2/8/05 2

Struct Memory Layout

* Layout and size of structures depend on
compiler and machine architecture!

* In g++ under Linux for Intel/AMD x86 CPUs:

- ints are aligned to addresses divisible by 4
- shorts are aligned to addresses divisible by 2

2/8/05 4

Structure Memory Layout Cont.

* Accessing aligned ints is faster than
unaligned ints

* Reason: data bus from CPU to memory is
32, 64, or even 128 bits wide

- aligned int: just one memory access
- unaligned int: possibly two accesses!

2805 5

Pointers and Addresses
e Pointers are variables that contain the address of a
variable

* Aleading *in a variable declaration indicates a pointer
variable; no default initialization!

* In pointer assignments the & (address) operator is used to
determine the address of an object in memory (1* byte)

2805 7

Packed Structures in g++

* Save memory with __attribute__((packed))
* packed structures: smaller, but slower access
* non-standard C language extension

* Compiles only with gcc/g++
2/8/05 6

Dereferencing

* The unary operator * is used for indirection
or dereferencing

* When applied to a pointer it accesses the
object the pointer points to

2/8/05 8

Operators * & Dynamic Variable Allocation Preview

* Higher precedence than arithmetic operators * Required for dynamic data structures (lists,trees...)
* Same precedence as ++ -- (rtl associativity) * Reserves memory on the memory heap
* Sometimes parenthesis are needed! * Allocate a variable of type T: T *p =new T;
* To deallocate (delete) an object a pointer p points
to:

delete p;

2805 9

Array Example

Pointers and Arrays

* In C there is a strong relationship between
pointers and arrays

* Any [] operation can be expressed by an
equivalent pointer expression

* The pointer version used to be faster, but is
harder to understand

* Modern compilers generate equally fast code

2/8/05 11 2/8/05 12

Pointers and Arrays (cont.) Pointer Arithmetic

*intn; Tp;..
* pa+C points to the C-th successor of *pa p = p+n; //increments p by n*sizeof(T)
* pa-C points to the C-th predecessor of *pa p = p-n; // decrements p by n*sizeof(T)
* The actual address is incremented resp. * If p and g point to elements of the same
decremented by sizeof(*pa) * C array, == = <> <= >= between p and q work
E.g. by 4*Cif pa points to an int properly
* Array variables = constant pointers * Pointer subtraction also valid: if p and q
- pa=a; //legal point to members of the same array and p
- a=pa; //illegal >= (, then p-q is the number of elements
e afi] equivalent to *(a+i) from p to q exclusive.
* &ali] equivalent to a+i * All other pointer operations are illegal

2805 13 2805 14

