Lecture 8

* Functions continued
* Programming with arrays
¢ C structures

2305 1

Example

2B3/05 2

Function Overloading

* We would like to use a single function name
for similar functionality applied to different
types. E.g. +-*/ print

* Compiler distinguishes functions by their
signature: function name + list of parameter
types without & and const

* To find the matching function the compiler

- looks for an exact type match first,

- then for matches after promotion within
integer and floating point types, and then

- for other conversions of built-in or user types
2305 3

Overloading Example

2305 4




Default Arguments Default Argument Examples

* Arguments can have default values

* Syntax in parameter list of function
declaration:
<type> <identifier> = <constant-expression>

* All default arguments must be in the
rightmost positions

* Omitting arguments begins with the
rightmost one

2/305 5 2/3/05 6
Programming with Arrays: Searching 1
SearChmg and Sortlng * Task: find an element in an array

* Common computational tasks « if found, return its (smallest) index
* Need to be implemented efficiently « otherwise, return -1
* Details in algorithms/data structure courses such

as 204
* Here only some basics to illustrate programming

with arrays:

- linear search
- simple sorting

2305 7 2p3/05 8



Searching 2

* Task: find the maximum element in an array
and return its index

2305 9

Sorting

* Task: sort an array in increasing order

* |dea: find maximal element, move it to the
end, and apply the same algorithm to the
remaining array part (“Selection Sort”)

23/05 10

C-Structures

* Collection of one or more variables

* Grouped together under a single name
* Called “records” in Pascal-like languages
* Structures help organize data

2305 11

Struct Definition

* Syntax: struct <struct-name> {
<type> <ident>,...,<ident>;

L

* Data members are laid out in consecutive
memory locations

* Recursive structure definitions are not allowed

* Data is accessed by the . operator

2305 12




Struct Initialization

* Structure variables are not initialized by default!

* Explicit initialization:
add = { <const-expr>,...,<const-expr> }

* Data members are initialized corresponding to
their order in definition

2305 13

Structures & Functions

* Structures can be passed by value or by
reference

* Passing by reference is faster
* Returning structs is allowed

2305 14



