Lecture 8

* Functions continued
* Programming with arrays
¢ C structures
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Example
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Function Overloading

* We would like to use a single function name
for similar functionality applied to different
types. E.g. +-*/ print

* Compiler distinguishes functions by their
signature: function name + list of parameter
types without & and const

* To find the matching function the compiler

- looks for an exact type match first,

- then for matches after promotion within
integer and floating point types, and then

- for other conversions of built-in or user types
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Overloading Example
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Default Arguments Default Argument Examples

* Arguments can have default values

* Syntax in parameter list of function
declaration:
<type> <identifier> = <constant-expression>

* All default arguments must be in the
rightmost positions

* Omitting arguments begins with the
rightmost one

2/305 5 2/3/05 6
Programming with Arrays: Searching 1
SearChmg and Sortlng * Task: find an element in an array

* Common computational tasks « if found, return its (smallest) index
* Need to be implemented efficiently « otherwise, return -1
* Details in algorithms/data structure courses such

as 204
* Here only some basics to illustrate programming

with arrays:

- linear search
- simple sorting
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Searching 2

* Task: find the maximum element in an array
and return its index
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Sorting

* Task: sort an array in increasing order

* |dea: find maximal element, move it to the
end, and apply the same algorithm to the
remaining array part (“Selection Sort”)
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C-Structures

* Collection of one or more variables

* Grouped together under a single name
* Called “records” in Pascal-like languages
* Structures help organize data
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Struct Definition

* Syntax: struct <struct-name> {
<type> <ident>,...,<ident>;

L

* Data members are laid out in consecutive
memory locations

* Recursive structure definitions are not allowed

* Data is accessed by the . operator
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Struct Initialization

* Structure variables are not initialized by default!

* Explicit initialization:
add = { <const-expr>,...,<const-expr> }

* Data members are initialized corresponding to
their order in definition
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Structures & Functions

* Structures can be passed by value or by
reference

* Passing by reference is faster
* Returning structs is allowed
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