Static Local Variables

Lecture 7

* Static, global variables

* Arrays

- Declaration

- Initialization e st at i ¢ modifier

- Multi-dimensional arrays * These variables are initialized before the
* Function Parameters function is called for the first time

* They keep their values between calls!
22/05 1 2/2/05 2

Global Variables Global Variable Examples

* Declared outside of any block
* Numbers initialized with default value 0

* Scope is entire program unless the st ati ¢
modifier is used to indicate that the
variable's scope is local to the current file

* Should be avoided because of potential
name conflicts and accidents (every
program part can change global variables!)

2205 3 2/2/05 4

Array Overview

Array elements are stored in
consecutive memory locations

(sizeof (int)= 4)

* Arrays group together
variables or constants of
identical type. E.g. X ..x+3 a[0]

i | . +4 . X+7 1
8integers: i nt af 8] ; P g{ 2}

* Access by index DTS g{ 2}
a[i] = 0; x+20. . x+23 a[5]
X+24. . x+27 a[6]

x+28. . x+31 a[7]

addr ess contents

This array occupies
8*4=32 bytes in memory

2205 5

Array Declaration

* Syntax:
<type> <indent>[<constant-int-expression>] ;

* Integer expression defines the number of
objects in the array. They are not initialized!

* Array index always starts with 0

2205 7

Example

Array Initialization

* Syntax:
<type> <indent>[{<const-int-expr>}] =
{ <const-expr>, ..., <const-expr> };

* The list of constant expressions is evaluated and
assigned to the array elements

* |f list is shorter than array size, Os are padded.

* Array size can be omitted; it is then defined by

the list length
2/2/05 8

Multi-Dimensional Arrays

* Arrays with more than one index
char page[ROWB] [COLS];
int table4[2][2][2]]2];

* Rectangular array of array of ...

* Flat memory layout

22/05 9

Example

Array Access
* Syntax: <ident>[<integer-expression>]

* The expression is evaluated and the array
element with that index is accessed

* C/C++ does not check whether the array
index is out-of-bounds!

Arrays as Function Parameters

* Arrays are passed by reference

* An array parameter is essentially the array
starting address. There is no size information
attached to it! Need to pass number of elements

* Functions cannot return arrays

2205 12

Call-By-Value

* When a function A f (B x) ; is called:
..f(e) ..
expression e's value is copied into the local
variable x

 Statements in the body of f act on this local
copy and do not change values in the
evaluated expression e

22/05 13

Swap Function

2205 15

Call-By-Reference

* Areference to a variable is passed to a function
(in form of a memory address)

* Statements in the function body that act on the
parameter change the variable that has been
passed to the function

* Syntax: <call-by-ref-par> ::= <type> &<identifier>

* Side effect + func. can return more than one value

* can only pass variables
2/2/05

Pros & Cons

* Call-By-Value:
+ Callee detached from caller, no direct
side-effects
- Data is copied to a local variable.
Can be time consuming.

* Call-By-Reference:

- Side effects; need to look at function
definition to find out!

- Only variables as parameters

+ No data is copied. Fast access!
(const qualifier protects space
consuming read-only parameters)

2/2/05

14

16

